


                  In Praise of Computer Organization and Design: The Hardware/
Software Interface, Fifth Edition  

 “Textbook selection is oft en a frustrating act of compromise—pedagogy, content 
coverage, quality of exposition, level of rigor, cost.  Computer Organization and 
Design  is the rare book that hits all the right notes across the board, without 
compromise. It is not only the premier computer organization textbook, it is a 
shining example of what all computer science textbooks could and should be.”

  —Michael Goldweber,  Xavier University    

 “I have been using  Computer Organization and Design  for years, from the very 
fi rst edition. Th e new Fift h Edition is yet another outstanding improvement on an 
already classic text. Th e evolution from desktop computing to mobile computing 
to Big Data brings new coverage of embedded processors such as the ARM, new 
material on how soft ware and hardware interact to increase performance, and 
cloud computing. All this without sacrifi cing the fundamentals.”

  —Ed Harcourt,  St. Lawrence University    

 “To Millennials:  Computer Organization and Design  is  the  computer architecture 
book you should keep on your (virtual) bookshelf. Th e book is both old and new, 
because it develops venerable principles—Moore's Law, abstraction, common case 
fast, redundancy, memory hierarchies, parallelism, and pipelining—but illustrates 
them with contemporary designs, e.g., ARM Cortex A8 and Intel Core i7.”

  —Mark D. Hill,  University of Wisconsin-Madison    

 “Th e new edition of  Computer Organization and Design  keeps pace with advances 
in emerging embedded and many-core (GPU) systems, where tablets and 
smartphones will are quickly becoming our new desktops. Th is text acknowledges 
these changes, but continues to provide a rich foundation of the fundamentals 
in computer organization and design which will be needed for the designers of 
hardware and soft ware that power this new class of devices and systems.”

  —Dave Kaeli,  Northeastern University    

 “Th e Fift h Edition of  Computer Organization and Design  provides more than an 
introduction to computer architecture. It prepares the reader for the changes necessary 
to meet the ever-increasing performance needs of mobile systems and big data 
processing at a time that diffi  culties in semiconductor scaling are making all systems 
power constrained. In this new era for computing, hardware and soft ware must be co-
designed and system-level architecture is as critical as component-level optimizations.”

  —Christos Kozyrakis,  Stanford University    

 “Patterson and Hennessy brilliantly address the issues in ever-changing computer 
hardware architectures, emphasizing on interactions among hardware and soft ware 
components at various abstraction levels. By interspersing I/O and parallelism concepts 
with a variety of mechanisms in hardware and soft ware throughout the book, the new 
edition achieves an excellent holistic presentation of computer architecture for the 
PostPC era. Th is book is an essential guide to hardware and soft ware professionals 
facing energy effi  ciency and parallelization challenges in Tablet PC to cloud computing.”

  —Jae C. Oh,  Syracuse University    
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for contributions to RISC, and he shared the IEEE Johnson Information Storage Award 
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the C & C Prize with John Hennessy. Like his co-author, Patterson is a Fellow of the 
American Academy of Arts and Sciences, the Computer History Museum, ACM, 
and IEEE, and he was elected to the National Academy of Engineering, the National 
Academy of Sciences, and the Silicon Valley Engineering Hall of Fame. He served on 
the Information Technology Advisory Committee to the U.S. President, as chair of the 
CS division in the Berkeley EECS department, as chair of the Computing Research 
Association, and as President of ACM. Th is record led to Distinguished Service Awards 
from ACM and CRA. 

 At Berkeley, Patterson led the design and implementation of RISC I, likely the fi rst 
VLSI reduced instruction set computer, and the foundation of the commercial 
SPARC architecture. He was a leader of the Redundant Arrays of Inexpensive Disks 
(RAID) project, which led to dependable storage systems from many companies. 
He was also involved in the Network of Workstations (NOW) project, which led to 
cluster technology used by Internet companies and later to cloud computing. Th ese 
projects earned three dissertation awards from ACM. His current research projects 
are Algorithm-Machine-People and Algorithms and Specializers for Provably Optimal 
Implementations with Resilience and Effi  ciency. Th e AMP Lab is developing scalable 
machine learning algorithms, warehouse-scale-computer-friendly programming 
models, and crowd-sourcing tools to gain valuable insights quickly from big data in 
the cloud. Th e ASPIRE Lab uses deep hardware and soft ware co-tuning to achieve the 
highest possible performance and energy effi  ciency for mobile and rack computing 
systems. 

  John L. Hennessy  is the tenth president of Stanford University, where he has been 
a member of the faculty since 1977 in the departments of electrical engineering and 
computer science. Hennessy is a Fellow of the IEEE and ACM; a member of the 
National Academy of Engineering, the National Academy of Science, and the American 
Philosophical Society; and a Fellow of the American Academy of Arts and Sciences. 
Among his many awards are the 2001 Eckert-Mauchly Award for his contributions to 
RISC technology, the 2001 Seymour Cray Computer Engineering Award, and the 2000 
John von Neumann Award, which he shared with David Patterson. He has also received 
seven honorary doctorates. 

 In 1981, he started the MIPS project at Stanford with a handful of graduate students. 
Aft er completing the project in 1984, he took a leave from the university to cofound 
MIPS Computer Systems (now MIPS Technologies), which developed one of the fi rst 
commercial RISC microprocessors. As of 2006, over 2 billion MIPS microprocessors have 
been shipped in devices ranging from video games and palmtop computers to laser printers 
and network switches. Hennessy subsequently led the DASH (Director Architecture 
for Shared Memory) project, which prototyped the fi rst scalable cache coherent 
multiprocessor; many of the key ideas have been adopted in modern multiprocessors. 
In addition to his technical activities and university responsibilities, he has continued to 
work with numerous start-ups both as an early-stage advisor and an investor. 
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                  Preface  

    Th e most beautiful thing we can experience is the mysterious. It is the 
source of all true art and science.  

   Albert Einstein, What I Believe,    1930    

  About This Book 
 We believe that learning in computer science and engineering should refl ect 
the current state of the fi eld, as well as introduce the principles that are shaping 
computing. We also feel that readers in every specialty of computing need 
to appreciate the organizational paradigms that determine the capabilities, 
performance, energy, and, ultimately, the success of computer systems. 

 Modern computer technology requires professionals of every computing 
specialty to understand both hardware and soft ware. Th e interaction between 
hardware and soft ware at a variety of levels also off ers a framework for understanding 
the fundamentals of computing. Whether your primary interest is hardware or 
soft ware, computer science or electrical engineering, the central ideas in computer 
organization and design are the same. Th us, our emphasis in this book is to show 
the relationship between hardware and soft ware and to focus on the concepts that 
are the basis for current computers. 

 Th e recent switch from uniprocessor to multicore microprocessors confi rmed 
the soundness of this perspective, given since the fi rst edition. While programmers 
could ignore the advice and rely on computer architects, compiler writers, and silicon 
engineers to make their programs run faster or be more energy-effi  cient without 
change, that era is over. For programs to run faster, they must become parallel. 
While the goal of many researchers is to make it possible for programmers to be 
unaware of the underlying parallel nature of the hardware they are programming, 
it will take many years to realize this vision. Our view is that for at least the next 
decade, most programmers are going to have to understand the hardware/soft ware 
interface if they want programs to run effi  ciently on parallel computers. 

 Th e audience for this book includes those with little experience in assembly 
language or logic design who need to understand basic computer organization as 
well as readers with backgrounds in assembly language and/or logic design who 
want to learn how to design a computer or understand how a system works and 
why it performs as it does. 
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   About the Other Book 
 Some readers may be familiar with  Computer Architecture: A Quantitative 
Approach , popularly known as Hennessy and Patterson. (Th is book in turn is 
oft en called Patterson and Hennessy.) Our motivation in writing the earlier book 
was to describe the principles of computer architecture using solid engineering 
fundamentals and quantitative cost/performance tradeoff s. We used an approach 
that combined examples and measurements, based on commercial systems, to 
create realistic design experiences. Our goal was to demonstrate that computer 
architecture could be learned using quantitative methodologies instead of a 
descriptive approach. It was intended for the serious computing professional who 
wanted a detailed understanding of computers. 

 A majority of the readers for this book do not plan to become computer 
architects. Th e performance and energy effi  ciency of future soft ware systems will 
be dramatically aff ected, however, by how well soft ware designers understand the 
basic hardware techniques at work in a system. Th us, compiler writers, operating 
system designers, database programmers, and most other soft ware engineers need 
a fi rm grounding in the principles presented in this book. Similarly, hardware 
designers must understand clearly the eff ects of their work on soft ware applications. 

 Th us, we knew that this book had to be much more than a subset of the material 
in  Computer Architecture , and the material was extensively revised to match the 
diff erent audience. We were so happy with the result that the subsequent editions of 
 Computer Architecture  were revised to remove most of the introductory material; 
hence, there is much less overlap today than with the fi rst editions of both books. 

   Changes for the Fifth Edition 
 We had six major goals for the fi ft h edition of  Computer Organization and Design:  
demonstrate the importance of understanding hardware with a running example; 
highlight major themes across the topics using margin icons that are introduced 
early; update examples to refl ect changeover from PC era to PostPC era; spread the 
material on I/O throughout the book rather than isolating it into a single chapter; 
update the technical content to refl ect changes in the industry since the publication 
of the fourth edition in 2009; and put appendices and optional sections online 
instead of including a CD to lower costs and to make this edition viable as an 
electronic book. 

 Before discussing the goals in detail, let’s look at the table on the next page. It 
shows the hardware and soft ware paths through the material. Chapters 1, 4, 5, and 
6 are found on both paths, no matter what the experience or the focus. Chapter 1 
discusses the importance of energy and how it motivates the switch from single 
core to multicore microprocessors and introduces the eight great ideas in computer 
architecture. Chapter 2 is likely to be review material for the hardware-oriented, 
but it is essential reading for the soft ware-oriented, especially for those readers 
interested in learning more about compilers and object-oriented programming 
languages. Chapter  3 is for readers interested in constructing a datapath or in 
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Chapter or Appendix Sections Software focus Hardware focus

1. Computer Abstractions
and Technology

1.1 to 1.11

      1.12 (History)

3. Arithmetic for Computers

3.1 to 3.5

      3.11 (History)

4. The Processor

4.1 (Overview)

4.2 (Logic Conventions)

4.3 to 4.4 (Simple Implementation)

E. RISC Instruction-Set Architectures       E.1 to E.17

2. Instructions: Language
of the Computer

2.1 to 2.14

      2.15 (Compilers & Java)

2.16 to 2.20

      2.21 (History)

4.5 (Pipelining Overview)

4.6 (Pipelined Datapath)

4.7 to 4.9 (Hazards, Exceptions)

4.10 to 4.12 (Parallel, Real Stuff)

      4.16 (History)

B. The Basics of Logic Design B.1 to B.13

D. Mapping Control to Hardware       D.1 to D.6

A. Assemblers, Linkers, and
the SPIM Simulator

 C.1 to C.13

Read carefully

Review or read

Read if have time

Read for culture

Reference

      4.13 (Verilog Pipeline Control)

5. Large and Fast: Exploiting
Memory Hierarchy

5.1 to 5.10

      5.17 (History)

4.14 to 4.15 (Fallacies)

6. Parallel Process from Client
to Cloud

6.1 to 6.8

      6.9 (Networks)

6.10 to 6.14

      6.15 (History)

3.6 to 3.8 (Subword Parallelism)

3.9 to 3.10 (Fallacies)

5.13 to 5.16

C. Graphics Processor Units

      A.1 to A.11

      5.12 (Verilog Cache Controller)

      5.11 (Redundant Arrays of
Inexpensive Disks)
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learning more about fl oating-point arithmetic. Some will skip parts of Chapter 3, 
either because they don’t need them or because they off er a review. However, we 
introduce the running example of matrix multiply in this chapter, showing how 
subword parallels off ers a fourfold improvement, so don’t skip sections 3.6 to 3.8. 
Chapter 4 explains pipelined processors. Sections 4.1, 4.5, and 4.10 give overviews 
and Section 4.12 gives the next performance boost for matrix multiply for those with 
a soft ware focus. Th ose with a hardware focus, however, will fi nd that this chapter 
presents core material; they may also, depending on their background, want to read 
Appendix C on logic design fi rst. Th e last chapter on multicores, multiprocessors, 
and clusters, is   mostly new content and should be read by everyone. It was 
signifi cantly reorganized in this edition to make the fl ow of ideas more natural 
and to include much more depth on GPUs, warehouse scale computers, and the 
hardware-soft ware interface of network interface cards that are key to clusters.       

 Th e fi rst of the six goals for this fi rth edition was to demonstrate the importance 
of understanding modern hardware to get good performance and energy effi  ciency 
with a concrete example. As mentioned above, we start with subword parallelism 
in Chapter 3 to improve matrix multiply by a factor of 4. We double performance 
in Chapter 4 by unrolling the loop to demonstrate the value of instruction level 
parallelism. Chapter 5 doubles performance again by optimizing for caches using 
blocking. Finally, Chapter 6 demonstrates a speedup of 14 from 16 processors by 
using thread-level parallelism. All four optimizations in total add just 24 lines of C 
code to our initial matrix multiply example. 

 Th e second goal was to help readers separate the forest from the trees by 
identifying eight great ideas of computer architecture early and then pointing out 
all the places they occur throughout the rest of the book. We use (hopefully) easy 
to remember margin icons and highlight the corresponding word in the text to 
remind readers of these eight themes. Th ere are nearly 100 citations in the book. 
No chapter has less than seven examples of great ideas, and no idea is cited less than 
fi ve times. Performance via parallelism, pipelining, and prediction are the three 
most popular great ideas, followed closely by Moore’s Law. Th e processor chapter 
(4) is the one with the most examples, which is not a surprise since it probably 
received the most attention from computer architects. Th e one great idea found in 
every chapter is performance via parallelism, which is a pleasant observation given 
the recent emphasis in parallelism in the fi eld and in editions of this book. 

 Th e third goal was to recognize the generation change in computing from the 
PC era to the PostPC era by this edition with our examples and material. Th us, 
Chapter 1 dives into the guts of a tablet computer rather than a PC, and Chapter 6 
describes the computing infrastructure of the cloud. We also feature the ARM, 
which is the instruction set of choice in the personal mobile devices of the PostPC 
era, as well as the x86 instruction set that dominated the PC Era and (so far) 
dominates cloud computing. 

 Th e fourth goal was to spread the I/O material throughout the book rather 
than have it in its own chapter, much as we spread parallelism throughout all the 
chapters in the fourth edition. Hence, I/O material in this edition can be found in 
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Sections 1.4, 4.9, 5.2, 5.5, 5.11, and 6.9. Th e thought is that readers (and instructors) 
are more likely to cover I/O if it’s not segregated to its own chapter. 

 Th is is a fast-moving fi eld, and, as is always the case for our new editions, an 
important goal is to update the technical content. Th e running example is the ARM 
Cortex A8 and the Intel Core i7, refl ecting our PostPC Era. Other highlights include 
an overview the new 64-bit instruction set of ARMv8, a tutorial on GPUs that 
explains their unique terminology, more depth on the warehouse scale computers 
that make up the cloud, and a deep dive into 10 Gigabyte Ethernet cards. 

 To keep the main book short and compatible with electronic books, we placed 
the optional material as online appendices instead of on a companion CD as in 
prior editions. 

 Finally, we updated all the exercises in the book. 
 While some elements changed, we have preserved useful book elements from 

prior editions. To make the book work better as a reference, we still place defi nitions 
of new terms in the margins at their fi rst occurrence. Th e book element called 
“Understanding Program Performance” sections helps readers understand the 
performance of their programs and how to improve it, just as the “Hardware/Soft ware 
Interface” book element helped readers understand the tradeoff s at this interface. 
“Th e Big Picture” section remains so that the reader sees the forest despite all the 
trees. “Check Yourself ” sections help readers to confi rm their comprehension of the 
material on the fi rst time through with answers provided at the end of each chapter. 
Th is edition still includes the green MIPS reference card, which was inspired by the 
“Green Card” of the IBM System/360. Th is card has been updated and should be a 
handy reference when writing MIPS assembly language programs. 

   Changes for the Fifth Edition 
 We have collected a great deal of material to help instructors teach courses using 
this book. Solutions to exercises, fi gures from the book, lecture slides, and other 
materials are available to adopters from the publisher. Check the publisher’s Web 
site for more information: 

   textbooks.elsevier.com/9780124077263    

   Concluding Remarks 
 If you read the following acknowledgments section, you will see that we went to 
great lengths to correct mistakes. Since a book goes through many printings, we 
have the opportunity to make even more corrections. If you uncover any remaining, 
resilient bugs, please contact the publisher by electronic mail at   cod5bugs@mkp.
com   or by low-tech mail using the address found on the copyright page. 

 Th is edition is the second break in the long-standing collaboration between 
Hennessy and Patterson, which started in 1989. Th e demands of running one of 
the world’s great universities meant that President Hennessy could no longer make 
the substantial commitment to create a new edition. Th e remaining author felt 

http://textbooks.elsevier.com/
mailto:cod5bugs@mkp.com
mailto:cod5bugs@mkp.com
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once again like a tightrope walker without a safety net. Hence, the people in the 
acknowledgments and Berkeley colleagues played an even larger role in shaping 
the contents of this book. Nevertheless, this time around there is only one author 
to blame for the new material in what you are about to read. 

   Acknowledgments for the Fifth Edition 
 With every edition of this book, we are very fortunate to receive help from many 
readers, reviewers, and contributors. Each of these people has helped to make this 
book better. 

 Chapter 6 was so extensively revised that we did a separate review for ideas and 
contents, and I made changes based on the feedback from every reviewer. I’d like to 
thank  Christos Kozyrakis  of Stanford University for suggesting using the network 
interface for clusters to demonstrate the hardware-soft ware interface of I/O and 
for suggestions on organizing the rest of the chapter;  Mario Flagsilk  of Stanford 
University for providing details, diagrams, and performance measurements of the 
NetFPGA NIC; and the following for suggestions on how to improve the chapter: 
 David Kaeli  of Northeastern University,  Partha Ranganathan  of HP Labs, 
 David Wood  of the University of Wisconsin, and my Berkeley colleagues  Siamak 
Faridani ,  Shoaib Kamil ,  Yunsup Lee ,  Zhangxi Tan , and  Andrew Waterman . 

 Special thanks goes to  Rimas Avizenis  of UC Berkeley, who developed the 
various versions of matrix multiply and supplied the performance numbers as well. 
As I worked with his father while I was a graduate student at UCLA, it was a nice 
symmetry to work with Rimas at UCB. 

 I also wish to thank my longtime collaborator  Randy Katz  of UC Berkeley, who 
helped develop the concept of great ideas in computer architecture as part of the 
extensive revision of an undergraduate class that we did together. 

 I’d like to thank  David Kirk ,  John Nickolls , and their colleagues at NVIDIA 
(Michael Garland, John Montrym, Doug Voorhies, Lars Nyland, Erik Lindholm, 
Paulius Micikevicius, Massimiliano Fatica, Stuart Oberman, and Vasily Volkov) 
for writing the fi rst in-depth appendix on GPUs. I’d like to express again my 
appreciation to  Jim Larus , recently named Dean of the School of Computer and 
Communications Science at EPFL, for his willingness in contributing his expertise 
on assembly language programming, as well as for welcoming readers of this book 
with regard to using the simulator he developed and maintains. 

 I am also very grateful to  Jason Bakos  of the University of South Carolina, 
who updated and created new exercises for this edition, working from originals 
prepared for the fourth edition by  Perry Alexander  (Th e University of Kansas); 
 Javier Bruguera  (Universidade de Santiago de Compostela);  Matthew Farrens  
(University of California, Davis);  David Kaeli  (Northeastern University);  Nicole 
Kaiyan  (University of Adelaide);  John Oliver  (Cal Poly, San Luis Obispo);  Milos 
Prvulovic  (Georgia Tech); and  Jichuan Chang ,  Jacob Leverich ,  Kevin Lim , and 
 Partha Ranganathan  (all from Hewlett-Packard). 

 Additional thanks goes to  Jason Bakos  for developing the new lecture slides. 
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Kaeli (Northeastern University), Christos Kozyrakis (Stanford University), 
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Lu Peng (LSU), Milos Prvulovic (Georgia Tech), Partha Ranganathan (HP 
Labs), David Wood (University of Wisconsin), Craig Zilles (University of Illinois 
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University), Perry Alexander (Th e University of Kansas), Hakan Aydin (George 
Mason University), Hussein Badr (State University of New York at Stony Brook), 
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University), Miodrag Bolic (University of Ottawa), John Bonomo (Westminster 
College), Jeff  Braun (Montana Tech), Tom Briggs (Shippensburg University), Scott 
Burgess (Humboldt State University), Fazli Can (Bilkent University), Warren R. 
Carithers (Rochester Institute of Technology), Bruce Carlton (Mesa Community 
College), Nicholas Carter (University of Illinois at Urbana-Champaign), Anthony 
Cocchi (Th e City University of New York), Don Cooley (Utah State University), 
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Ferguson (Northwest Missouri State University), Rhonda Kay Gaede (Th e University 
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 1.1 Introduction

Welcome to this book! We’re delighted to have this opportunity to convey the 
excitement of the world of computer systems. Th is is not a dry and dreary fi eld, 
where progress is glacial and where new ideas atrophy from neglect. No! Computers 
are the product of the incredibly vibrant information technology industry, all 
aspects of which are responsible for almost 10% of the gross national product of 
the United States, and whose economy has become dependent in part on the rapid 
improvements in information technology promised by Moore’s Law. Th is unusual 
industry embraces innovation at a breath-taking rate. In the last 30 years, there have 
been a number of new computers whose introduction appeared to revolutionize 
the computing industry; these revolutions were cut short only because someone 
else built an even better computer.

Th is race to innovate has led to unprecedented progress since the inception 
of electronic computing in the late 1940s. Had the transportation industry kept 
pace with the computer industry, for example, today we could travel from New 
York to London in a second for a penny. Take just a moment to contemplate how 
such an improvement would change society—living in Tahiti while working in San 
Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can 
appreciate the implications of such a change.
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Computers have led to a third revolution for civilization, with the information 
revolution taking its place alongside the agricultural and the industrial revolutions. 
Th e resulting multiplication of humankind’s intellectual strength and reach 
naturally has aff ected our everyday lives profoundly and changed the ways in which 
the search for new knowledge is carried out. Th ere is now a new vein of scientifi c 
investigation, with computational scientists joining theoretical and experimental 
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and 
physics, among others.

Th e computer revolution continues. Each time the cost of computing improves 
by another factor of 10, the opportunities for computers multiply. Applications that 
were economically infeasible suddenly become practical. In the recent past, the 
following applications were “computer science fi ction.”

■ Computers in automobiles: Until microprocessors improved dramatically 
in price and performance in the early 1980s, computer control of cars was 
ludicrous. Today, computers reduce pollution, improve fuel effi  ciency via 
engine controls, and increase safety through blind spot warnings, lane 
departure warnings, moving object detection, and air bag infl ation to protect 
occupants in a crash.

■ Cell phones: Who would have dreamed that advances in computer 
systems would lead to more than half of the planet having mobile phones, 
allowing person-to-person communication to almost anyone anywhere in 
the world?

■ Human genome project: Th e cost of computer equipment to map and analyze 
human DNA sequences was hundreds of millions of dollars. It’s unlikely that 
anyone would have considered this project had the computer costs been 10 
to 100 times higher, as they would have been 15 to 25 years earlier. Moreover, 
costs continue to drop; you will soon be able to acquire your own genome, 
allowing medical care to be tailored to you.

■ World Wide Web: Not in existence at the time of the fi rst edition of this book, 
the web has transformed our society. For many, the web has replaced libraries 
and newspapers.

■ Search engines: As the content of the web grew in size and in value, fi nding 
relevant information became increasingly important. Today, many people 
rely on search engines for such a large part of their lives that it would be a 
hardship to go without them.

Clearly, advances in this technology now aff ect almost every aspect of our 
society. Hardware advances have allowed programmers to create wonderfully 
useful soft ware, which explains why computers are omnipresent. Today’s science 
fi ction suggests tomorrow’s killer applications: already on their way are glasses that 
augment reality, the cashless society, and cars that can drive themselves.
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Classes of Computing Applications and Their 
Characteristics
Although a common set of hardware technologies (see Sections 1.4 and 1.5) is used 
in computers ranging from smart home appliances to cell phones to the largest 
supercomputers, these diff erent applications have diff erent design requirements 
and employ the core hardware technologies in diff erent ways. Broadly speaking, 
computers are used in three diff erent classes of applications.

Personal computers (PCs) are possibly the best known form of computing, 
which readers of this book have likely used extensively. Personal computers 
emphasize delivery of good performance to single users at low cost and usually 
execute third-party soft ware. Th is class of computing drove the evolution of many 
computing technologies, which is only about 35 years old!

Servers are the modern form of what were once much larger computers, and 
are usually accessed only via a network. Servers are oriented to carrying large 
workloads, which may consist of either single complex applications—usually a 
scientifi c or engineering application—or handling many small jobs, such as would 
occur in building a large web server. Th ese applications are usually based on 
soft ware from another source (such as a database or simulation system), but are 
oft en modifi ed or customized for a particular function. Servers are built from the 
same basic technology as desktop computers, but provide for greater computing, 
storage, and input/output capacity. In general, servers also place a greater emphasis 
on dependability, since a crash is usually more costly than it would be on a single-
user PC.

Servers span the widest range in cost and capability. At the low end, a server 
may be little more than a desktop computer without a screen or keyboard and 
cost a thousand dollars. Th ese low-end servers are typically used for fi le storage, 
small business applications, or simple web serving (see Section 6.10). At the other 
extreme are supercomputers, which at the present consist of tens of thousands of 
processors and many terabytes of memory, and cost tens to hundreds of millions 
of dollars. Supercomputers are usually used for high-end scientifi c and engineering 
calculations, such as weather forecasting, oil exploration, protein structure 
determination, and other large-scale problems. Although such supercomputers 
represent the peak of computing capability, they represent a relatively small fraction 
of the servers and a relatively small fraction of the overall computer market in 
terms of total revenue.

Embedded computers are the largest class of computers and span the widest 
range of applications and performance. Embedded computers include the 
microprocessors found in your car, the computers in a television set, and the 
networks of processors that control a modern airplane or cargo ship. Embedded 
computing systems are designed to run one application or one set of related 
applications that are normally integrated with the hardware and delivered as a 
single system; thus, despite the large number of embedded computers, most users 
never really see that they are using a computer!

personal computer 
(PC) A computer 
designed for use by 
an individual, usually 
incorporating a graphics 
display, a keyboard, and a 
mouse.

server A computer 
used for running 
larger programs for 
multiple users, oft en 
simultaneously, and 
typically accessed only via 
a network.

supercomputer A class 
of computers with the 
highest performance and 
cost; they are confi gured 
as servers and typically 
cost tens to hundreds of 
millions of dollars.

terabyte (TB) Originally 
1,099,511,627,776 
(240) bytes, although 
communications and 
secondary storage 
systems developers 
started using the term to 
mean 1,000,000,000,000 
(1012) bytes. To reduce 
confusion, we now use the 
term tebibyte (TiB) for 
240 bytes, defi ning terabyte 
(TB) to mean 1012 bytes. 
Figure 1.1 shows the full 
range of decimal and 
binary values and names.

embedded computer 
A computer inside another 
device used for running 
one predetermined 
application or collection of 
soft ware.
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Embedded applications oft en have unique application requirements that 
combine a minimum performance with stringent limitations on cost or power. For 
example, consider a music player: the processor need only be as fast as necessary 
to handle its limited function, and beyond that, minimizing cost and power are the 
most important objectives. Despite their low cost, embedded computers oft en have 
lower tolerance for failure, since the results can vary from upsetting (when your 
new television crashes) to devastating (such as might occur when the computer in a 
plane or cargo ship crashes). In consumer-oriented embedded applications, such as 
a digital home appliance, dependability is achieved primarily through simplicity—
the emphasis is on doing one function as perfectly as possible. In large embedded 
systems, techniques of redundancy from the server world are oft en employed. 
Although this book focuses on general-purpose computers, most concepts apply 
directly, or with slight modifi cations, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more 
detail on a particular subject that may be of interest. Disinterested readers may skip 
over an elaboration, since the subsequent material will never depend on the contents 
of the elaboration.

Many embedded processors are designed using processor cores, a version of a 
processor written in a hardware description language, such as Verilog or VHDL (see 
Chapter 4). The core allows a designer to integrate other application-specifi c hardware 
with the processor core for fabrication on a single chip.

Welcome to the PostPC Era
Th e continuing march of technology brings about generational changes in 
computer hardware that shake up the entire information technology industry. 
Since the last edition of the book we have undergone such a change, as signifi cant 
in the past as the switch starting 30 years ago to personal computers. Replacing the 

FIGURE 1.1 The 2X vs. 10Y bytes ambiguity was resolved by adding a binary notation for 
all the common size terms. In the last column we note how much larger the binary term is than its 
corresponding decimal term, which is compounded as we head down the chart. Th ese prefi xes work for bits 
as well as bytes, so gigabit (Gb) is 109 bits while gibibits (Gib) is 230 bits.

Decimal 
term Abbreviation Value

Binary 
term Abbreviation Value % Larger

kilobyte KB 103 kibibyte KiB 210 2%

megabyte MB 106 mebibyte MiB 220 5%

gigabyte GB 109 gibibyte GiB 230 7%

terabyte TB 1012 tebibyte TiB 240 10%

petabyte PB 1015 pebibyte PiB 250 13%

exabyte EB 1018 exbibyte EiB 260 15%

zettabyte ZB 1021 zebibyte ZiB 270 18%

yottabyte YB 1024 yobibyte YiB 280 21%
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FIGURE 1.2 The number manufactured per year of tablets and smart phones, which 
refl ect the PostPC era, versus personal computers and traditional cell phones. Smart phones 
represent the recent growth in the cell phone industry, and they passed PCs in 2011. Tablets are the fastest 
growing category, nearly doubling between 2011 and 2012. Recent PCs and traditional cell phone categories 
are relatively fl at or declining.  

PC is the personal mobile device (PMD). PMDs are battery operated with wireless 
connectivity to the Internet and typically cost hundreds of dollars, and, like PCs, 
users can download soft ware (“apps”) to run on them. Unlike PCs, they no longer 
have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen 
or even speech input. Today’s PMD is a smart phone or a tablet computer, but 
tomorrow it may include electronic glasses. Figure 1.2 shows the rapid growth time 
of tablets and smart phones versus that of PCs and traditional cell phones.

Taking over from the traditional server is Cloud Computing, which relies upon 
giant datacenters that are now known as Warehouse Scale Computers (WSCs). 
Companies like Amazon and Google build these WSCs containing 100,000 servers 
and then let companies rent portions of them so that they can provide soft ware 
services to PMDs without having to build WSCs of their own. Indeed, Soft ware as 
a Service (SaaS) deployed via the cloud is revolutionizing the soft ware industry just 
as PMDs and WSCs are revolutionizing the hardware industry. Today’s soft ware 
developers will oft en have a portion of their application that runs on the PMD and 
a portion that runs in the Cloud.

What You Can Learn in This Book
Successful programmers have always been concerned about the performance of 
their programs, because getting results to the user quickly is critical in creating 
successful soft ware. In the 1960s and 1970s, a primary constraint on computer 
performance was the size of the computer’s memory. Th us, programmers oft en 
followed a simple credo: minimize memory space to make programs fast. In the 

Personal mobile 
devices (PMDs) are 
small wireless devices to 
connect to the Internet; 
they rely on batteries for 
power, and soft ware is 
installed by downloading 
apps. Conventional 
examples are smart 
phones and tablets. 

Cloud Computing  refers 
to large collections of 
servers that provide services 
over the Internet; some 
providers rent dynamically 
varying numbers of servers 
as a utility.

Soft ware as a Service 
(SaaS) delivers soft ware 
and data as a service over 
the Internet, usually via 
a thin program such as a 
browser that runs on local 
client devices, instead of 
binary code that must be 
installed, and runs wholly 
on that device. Examples 
include web search and 
social networking.
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last decade, advances in computer design and memory technology have greatly 
reduced the importance of small memory size in most applications other than 
those in embedded computing systems.

Programmers interested in performance now need to understand the issues 
that have replaced the simple memory model of the 1960s: the parallel nature 
of processors and the hierarchical nature of memories. Moreover, as we explain 
in Section 1.7, today’s programmers need to worry about energy effi  ciency of 
their programs running either on the PMD or in the Cloud, which also requires 
understanding what is below your code. Programmers who seek to build 
competitive versions of soft ware will therefore need to increase their knowledge of 
computer organization.

We are honored to have the opportunity to explain what’s inside this revolutionary 
machine, unraveling the soft ware below your program and the hardware under the 
covers of your computer. By the time you complete this book, we believe you will 
be able to answer the following questions:

■ How are programs written in a high-level language, such as C or Java, 
translated into the language of the hardware, and how does the hardware 
execute the resulting program? Comprehending these concepts forms the 
basis of understanding the aspects of both the hardware and soft ware that 
aff ect program performance.

■ What is the interface between the soft ware and the hardware, and how does 
soft ware instruct the hardware to perform needed functions? Th ese concepts 
are vital to understanding how to write many kinds of soft ware.

■ What determines the performance of a program, and how can a programmer 
improve the performance? As we will see, this depends on the original 
program, the soft ware translation of that program into the computer’s 
language, and the eff ectiveness of the hardware in executing the program.

■ What techniques can be used by hardware designers to improve performance? 
Th is book will introduce the basic concepts of modern computer design. Th e 
interested reader will fi nd much more material on this topic in our advanced 
book, Computer Architecture: A Quantitative Approach.

■ What techniques can be used by hardware designers to improve energy 
effi  ciency? What can the programmer do to help or hinder energy effi  ciency?

■ What are the reasons for and the consequences of the recent switch from 
sequential processing to parallel processing? Th is book gives the motivation, 
describes the current hardware mechanisms to support parallelism, and 
surveys the new generation of  “multicore” microprocessors (see Chapter 6).

■ Since the fi rst commercial computer in 1951, what great ideas did computer 
architects come up with that lay the foundation of modern computing?

multicore 
microprocessor 
A microprocessor 
containing multiple 
processors (“cores”) in a 
single integrated circuit.
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Without understanding the answers to these questions, improving the 
performance of your program on a modern computer or evaluating what features 
might make one computer better than another for a particular application will be 
a complex process of trial and error, rather than a scientifi c procedure driven by 
insight and analysis.

Th is fi rst chapter lays the foundation for the rest of the book. It introduces the 
basic ideas and defi nitions, places the major components of soft ware and hardware 
in perspective, shows how to evaluate performance and energy, introduces 
integrated circuits (the technology that fuels the computer revolution), and explains 
the shift  to multicores.

In this chapter and later ones, you will likely see many new words, or words 
that you may have heard but are not sure what they mean. Don’t panic! Yes, there 
is a lot of special terminology used in describing modern computers, but the 
terminology actually helps, since it enables us to describe precisely a function or 
capability. In addition, computer designers (including your authors) love using 
acronyms, which are easy to understand once you know what the letters stand for! 
To help you remember and locate terms, we have included a highlighted defi nition 
of every term in the margins the fi rst time it appears in the text. Aft er a short 
time of working with the terminology, you will be fl uent, and your friends will 
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM, 
PCIe, SATA, and many others.

To reinforce how the soft ware and hardware systems used to run a program will 
aff ect performance, we use a special section, Understanding Program Performance, 
throughout the book to summarize important insights into program performance. 
Th e fi rst one appears below.

Th e performance of a program depends on a combination of the eff ectiveness of the 
algorithms used in the program, the soft ware systems used to create and translate 
the program into machine instructions, and the eff ectiveness of the computer in 
executing those instructions, which may include input/output (I/O) operations. 
Th is table summarizes how the hardware and soft ware aff ect performance.

Hardware or software 
component How this component affects performance

Where is this 
topic covered?

Algorithm Determines both the number of source-level 
statements and the number of I/O operations 
executed

Other books!

Programming language, 
compiler, and architecture

Determines the number of computer instructions 
for each source-level statement

Chapters 2 and 3

Processor and memory 
system

Determines how fast instructions can be executed Chapters 4, 5, and 6

I/O system (hardware and 
operating system)

Determines how fast I/O operations may be 
executed

Chapters 4, 5, and 6

acronym A word 
constructed by taking the 
initial letters of a string 
of words. For example: 
RAM is an acronym for 
Random Access Memory, 
and CPU is an acronym 
for Central Processing 
Unit.

Understanding 
Program 
Performance
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To demonstrate the impact of the ideas in this book, we improve the performance 
of a C program that multiplies a matrix times a vector in a sequence of 
chapters. Each step leverages understanding how the underlying hardware 
really works in a modern microprocessor to improve performance by a factor 
of 200!

■ In the category of data level parallelism, in Chapter 3 we use subword 
parallelism via C intrinsics to increase performance by a factor of 3.8.

■ In the category of instruction level parallelism, in Chapter 4 we use loop 
unrolling to exploit multiple instruction issue and out-of-order execution 
hardware to increase performance by another factor of 2.3.

■ In the category of memory hierarchy optimization, in Chapter 5 we use 
cache blocking to increase performance on large matrices by another factor 
of 2.5.

■ In the category of thread level parallelism, in Chapter 6 we use parallel for 
loops in OpenMP to exploit multicore hardware to increase performance by 
another factor of 14.

Check Yourself sections are designed to help readers assess whether they 
comprehend the major concepts introduced in a chapter and understand the 
implications of those concepts. Some Check Yourself questions have simple answers; 
others are for discussion among a group. Answers to the specifi c questions can 
be found at the end of the chapter. Check Yourself questions appear only at the 
end of a section, making it easy to skip them if you are sure you understand the 
material.

1. Th e number of embedded processors sold every year greatly outnumbers 
the number of PC and even PostPC processors. Can you confi rm or deny 
this insight based on your own experience? Try to count the number of 
embedded processors in your home. How does it compare with the number 
of conventional computers in your home?

2. As mentioned earlier, both the soft ware and hardware aff ect the performance 
of a program. Can you think of examples where each of the following is the 
right place to look for a performance bottleneck?

■ Th e algorithm chosen
■ Th e programming language or compiler
■ Th e operating system
■ Th e processor
■ Th e I/O system and devices

Check 
Yourself
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 1.2  Eight Great Ideas in Computer 
Architecture

We now introduce eight great ideas that computer architects have been invented in 
the last 60 years of computer design. Th ese ideas are so powerful they have lasted 
long aft er the fi rst computer that used them, with newer architects demonstrating 
their admiration by imitating their predecessors. Th ese great ideas are themes that 
we will weave through this and subsequent chapters as examples arise. To point 
out their infl uence, in this section we introduce icons and highlighted terms that 
represent the great ideas and we use them to identify the nearly 100 sections of the 
book that feature use of the great ideas.

Design for Moore’s Law
Th e one constant for computer designers is rapid change, which is driven largely by 
Moore’s Law. It states that integrated circuit resources double every 18–24 months. 
Moore’s Law resulted from a 1965 prediction of such growth in IC capacity made 
by Gordon Moore, one of the founders of Intel. As computer designs can take years, 
the resources available per chip can easily double or quadruple between the start 
and fi nish of the project. Like a skeet shooter, computer architects must anticipate 
where the technology will be when the design fi nishes rather than design for where 
it starts. We use an “up and to the right” Moore’s Law graph to represent designing 
for rapid change.

Use Abstraction to Simplify Design
Both computer architects and programmers had to invent techniques to make 
themselves more productive, for otherwise design time would lengthen as 
dramatically as resources grew by Moore’s Law. A major productivity technique for 
hardware and soft ware is to use abstractions to represent the design at diff erent 
levels of representation; lower-level details are hidden to off er a simpler model at 
higher levels. We’ll use the abstract painting icon to represent this second great 
idea.

Make the Common Case Fast
Making the common case fast will tend to enhance performance better than 
optimizing the rare case. Ironically, the common case is oft en simpler than the 
rare case and hence is oft en easier to enhance. Th is common sense advice implies 
that you know what the common case is, which is only possible with careful 
experimentation and measurement (see Section 1.6). We use a sports car as the 
icon for making the common case fast, as the most common trip has one or two 
passengers, and it’s surely easier to make a fast sports car than a fast minivan!
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Performance via Parallelism
Since the dawn of computing, computer architects have off ered designs that get 
more performance by performing operations in parallel. We’ll see many examples 
of parallelism in this book. We use multiple jet engines of a plane as our icon for 
parallel performance.

Performance via Pipelining
A particular pattern of parallelism is so prevalent in computer architecture that 
it merits its own name: pipelining. For example, before fi re engines, a “bucket 
brigade” would respond to a fi re, which many cowboy movies show in response to 
a dastardly act by the villain. Th e townsfolk form a human chain to carry a water 
source to fi re, as they could much more quickly move buckets up the chain instead 
of individuals running back and forth. Our pipeline icon is a sequence of pipes, 
with each section representing one stage of the pipeline.

Performance via Prediction
Following the saying that it can be better to ask for forgiveness than to ask for 
permission, the fi nal great idea is prediction. In some cases it can be faster on 
average to guess and start working rather than wait until you know for sure, 
assuming that the mechanism to recover from a misprediction is not too expensive 
and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as 
our prediction icon.

Hierarchy of Memories
Programmers want memory to be fast, large, and cheap, as memory speed oft en 
shapes performance, capacity limits the size of problems that can be solved, and the 
cost of memory today is oft en the majority of computer cost. Architects have found 
that they can address these confl icting demands with a hierarchy of memories, with 
the fastest, smallest, and most expensive memory per bit at the top of the hierarchy 
and the slowest, largest, and cheapest per bit at the bottom. As we shall see in 
Chapter 5, caches give the programmer the illusion that main memory is nearly 
as fast as the top of the hierarchy and nearly as big and cheap as the bottom of 
the hierarchy. We use a layered triangle icon to represent the memory hierarchy. 
Th e shape indicates speed, cost, and size: the closer to the top, the faster and more 
expensive per bit the memory; the wider the base of the layer, the bigger the memory.

Dependability via Redundancy
Computers not only need to be fast; they need to be dependable. Since any physical 
device can fail, we make systems dependable by including redundant components that 
can take over when a failure occurs and to help detect failures. We use the tractor-trailer 
as our icon, since the dual tires on each side of its rear axels allow the truck to continue 
driving even when one tire fails. (Presumably, the truck driver heads immediately to a 
repair facility so the fl at tire can be fi xed, thereby restoring redundancy!)



 1.3 Below Your Program 13

 1.3 Below Your Program

A typical application, such as a word processor or a large database system, may 
consist of millions of lines of code and rely on sophisticated soft ware libraries that 
implement complex functions in support of the application. As we will see, the 
hardware in a computer can only execute extremely simple low-level instructions. 
To go from a complex application to the simple instructions involves several layers 
of soft ware that interpret or translate high-level operations into simple computer 
instructions, an example of the great idea of abstraction.

Figure 1.3 shows that these layers of soft ware are organized primarily in a 
hierarchical fashion, with applications being the outermost ring and a variety of 
systems soft ware sitting between the hardware and applications soft ware.

Th ere are many types of systems soft ware, but two types of systems soft ware 
are central to every computer system today: an operating system and a compiler. 
An operating system interfaces between a user’s program and the hardware 
and provides a variety of services and supervisory functions. Among the most 
important functions are:

■ Handling basic input and output operations

■ Allocating storage and memory

■ Providing for protected sharing of the computer among multiple applications 
using it simultaneously.

Examples of operating systems in use today are Linux, iOS, and Windows.

In Paris they simply 
stared when I spoke to 
them in French; I never 
did succeed in making 
those idiots understand 
their own language.
Mark Twain, Th e 
Innocents Abroad, 1869

systems soft ware 
Soft ware that provides 
services that are 
commonly useful, 
including operating 
systems, compilers, 
loaders, and assemblers.

operating system 
Supervising program that 
manages the resources of 
a computer for the benefi t 
of the programs that run 
on that computer.

Applications software 

Sys
tems software 

Hardware

FIGURE 1.3 A simplifi ed view of hardware and software as hierarchical layers, shown as 
concentric circles with hardware in the center and applications software outermost. In 
complex applications, there are oft en multiple layers of application soft ware as well. For example, a database 
system may run on top of the systems soft ware hosting an application, which in turn runs on top of the 
database.
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Compilers perform another vital function: the translation of a program written 
in a high-level language, such as C, C��, Java, or Visual Basic into instructions 
that the hardware can execute. Given the sophistication of modern programming 
languages and the simplicity of the instructions executed by the hardware, the 
translation from a high-level language program to hardware instructions is 
complex. We give a brief overview of the process here and then go into more depth 
in Chapter 2 and in Appendix A.

From a High-Level Language to the Language of Hardware
To actually speak to electronic hardware, you need to send electrical signals. Th e 
easiest signals for computers to understand are on and off , and so the computer 
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit 
how much can be written, the two letters of the computer alphabet do not limit 
what computers can do. Th e two symbols for these two letters are the numbers 0 
and 1, and we commonly think of the computer language as numbers in base 2, or 
binary numbers. We refer to each “letter” as a binary digit or bit. Computers are 
slaves to our commands, which are called instructions. Instructions, which are just 
collections of bits that the computer understands and obeys, can be thought of as 
numbers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 2 explains why we use numbers 
for instructions and data; we don’t want to steal that chapter’s thunder, but using 
numbers for both instructions and data is a foundation of computing.

Th e fi rst programmers communicated to computers in binary numbers, but this 
was so tedious that they quickly invented new notations that were closer to the way 
humans think. At fi rst, these notations were translated to binary by hand, but this 
process was still tiresome. Using the computer to help program the computer, the 
pioneers invented programs to translate from symbolic notation to binary. Th e fi rst of 
these programs was named an assembler. Th is program translates a symbolic version 
of an instruction into the binary version. For example, the programmer would write

add A,B

and the assembler would translate this notation into

1000110010100000

Th is instruction tells the computer to add the two numbers A and B. Th e name coined 
for this symbolic language, still used today, is assembly language. In contrast, the 
binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the 
notations a scientist might like to use to simulate fl uid fl ow or that an accountant 
might use to balance the books. Assembly language requires the programmer 
to write one line for every instruction that the computer will follow, forcing the 
programmer to think like the computer.

compiler A program 
that translates high-level 
language statements 
into assembly language 
statements.

binary digit Also called 
a bit. One of the two 
numbers in base 2 (0 or 1) 
that are the components 
of information.

instruction A command 
that computer hardware 
understands and obeys.

assembler A program 
that translates a symbolic 
version of instructions 
into the binary version.

assembly language 
A symbolic representation 
of machine instructions.

machine language 
A binary representation of 
machine instructions.



Th e recognition that a program could be written to translate a more powerful 
language into computer instructions was one of the great breakthroughs in the 
early days of computing. Programmers today owe their productivity—and their 
sanity—to the creation of high-level programming languages and compilers 
that translate programs in such languages into instructions. Figure 1.4 shows the 
relationships among these programs and languages, which are more examples of 
the power of abstraction.

high-level 
programming 
language A portable 
language such as C, C��, 
Java, or Visual Basic that 
is composed of words 
and algebraic notation 
that can be translated by 
a compiler into assembly 
language.

FIGURE 1.4 C program compiled into assembly language and then assembled into binary 
machine language. Although the translation from high-level language to binary machine language is 
shown in two steps, some compilers cut out the middleman and produce binary machine language directly. 
Th ese languages and this program are examined in more detail in Chapter 2.
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swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}

swap:
      multi $2, $5,4
      add   $2, $4,$2
      lw    $15, 0($2)
      lw    $16, 4($2)
      sw    $16, 0($2)
      sw    $15, 4($2)
      jr    $31

00000000101000100000000100011000
00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Assembler

Compiler

Binary machine
language
program
(for MIPS)

Assembly
language
program
(for MIPS)

High-level
language
program
(in C)
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A compiler enables a programmer to write this high-level language expression:

A + B

Th e compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary 
instructions that tell the computer to add the two numbers A and B.

High-level programming languages off er several important benefi ts. First, they 
allow the programmer to think in a more natural language, using English words 
and algebraic notation, resulting in programs that look much more like text than 
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to be 
designed according to their intended use. Hence, Fortran was designed for scientifi c 
computation, Cobol for business data processing, Lisp for symbol manipulation, 
and so on. Th ere are also domain-specifi c languages for even narrower groups of 
users, such as those interested in simulation of fl uids, for example.

Th e second advantage of programming languages is improved programmer 
productivity. One of the few areas of widespread agreement in soft ware development 
is that it takes less time to develop programs when they are written in languages 
that require fewer lines to express an idea. Conciseness is a clear advantage of high-
level languages over assembly language.

Th e fi nal advantage is that programming languages allow programs to be 
independent of the computer on which they were developed, since compilers and 
assemblers can translate high-level language programs to the binary instructions of 
any computer. Th ese three advantages are so strong that today little programming 
is done in assembly language.

 1.4 Under the Covers

Now that we have looked below your program to uncover the underlying soft ware, 
let’s open the covers of your computer to learn about the underlying hardware. Th e 
underlying hardware in any computer performs the same basic functions: inputting 
data, outputting data, processing data, and storing data. How these functions are 
performed is the primary topic of this book, and subsequent chapters deal with 
diff erent parts of these four tasks.

When we come to an important point in this book, a point so important that 
we hope you will remember it forever, we emphasize it by identifying it as a Big 
Picture item. We have about a dozen Big Pictures in this book, the fi rst being the 
fi ve components of a computer that perform the tasks of inputting, outputting, 
processing, and storing data.

Two key components of computers are input devices, such as the microphone, 
and output devices, such as the speaker. As the names suggest, input feeds the 

input device 
A mechanism through 
which the computer is 
fed information, such as a 
keyboard.

output device 
A mechanism that 
conveys the result of a 
computation to a user, 
such as a display, or to 
another computer.
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FIGURE 1.5 The organization of a computer, showing the fi ve classic components. Th e 
processor gets instructions and data from memory. Input writes data to memory, and output reads data from 
memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.

Th e fi ve classic components of a computer are input, output, memory, 
datapath, and control, with the last two sometimes combined and called 
the processor. Figure 1.5 shows the standard organization of a computer. 
Th is organization is independent of hardware technology: you can place 
every piece of every computer, past and present, into one of these fi ve 
categories. To help you keep all this in perspective, the fi ve components of 
a computer are shown on the front page of each of the following chapters, 
with the portion of interest to that chapter highlighted.

The BIG
Picture

computer, and output is the result of computation sent to the user. Some devices, 
such as wireless networks, provide both input and output to the computer.

Chapters 5 and 6 describe input/output (I/O) devices in more detail, but let’s 
take an introductory tour through the computer hardware, starting with the 
external I/O devices.
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Through the Looking Glass
Th e most fascinating I/O device is probably the graphics display. Most personal 
mobile devices use liquid crystal displays (LCDs) to get a thin, low-power display. 
Th e LCD is not the source of light; instead, it controls the transmission of light. 
A typical LCD includes rod-shaped molecules in a liquid that form a twisting 
helix that bends light entering the display, from either a light source behind the 
display or less oft en from refl ected light. Th e rods straighten out when a current is 
applied and no longer bend the light. Since the liquid crystal material is between 
two screens polarized at 90 degrees, the light cannot pass through unless it is bent. 
Today, most LCD displays use an active matrix that has a tiny transistor switch at 
each pixel to precisely control current and make sharper images. A red-green-blue 
mask associated with each dot on the display determines the intensity of the three-
color components in the fi nal image; in a color active matrix LCD, there are three 
transistor switches at each point.

Th e image is composed of a matrix of picture elements, or pixels, which can 
be represented as a matrix of bits, called a bit map. Depending on the size of the 
screen and the resolution, the display matrix in a typical tablet ranges in size from 
1024 � 768 to 2048 � 1536. A color display might use 8 bits for each of the three 
colors (red, blue, and green), for 24 bits per pixel, permitting millions of diff erent 
colors to be displayed.

Th e computer hardware support for graphics consists mainly of a raster refresh 
buff er, or frame buff er, to store the bit map. Th e image to be represented onscreen 
is stored in the frame buff er, and the bit pattern per pixel is read out to the graphics 
display at the refresh rate. Figure 1.6 shows a frame buff er with a simplifi ed design 
of just 4 bits per pixel.

Th e goal of the bit map is to faithfully represent what is on the screen. Th e 
challenges in graphics systems arise because the human eye is very good at detecting 
even subtle changes on the screen.

liquid crystal display 
A display technology 
using a thin layer of liquid 
polymers that can be used 
to transmit or block light 
according to whether a 
charge is applied.

pixel Th e smallest 
individual picture 
element. Screens are 
composed of hundreds 
of thousands to millions 
of pixels, organized in a 
matrix.

X0 X1

Y0

Frame buffer

Raster scan CRT display

0
011

1
101

Y1

X0 X1

Y0

Y1

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of the 
corresponding coordinate for the raster scan CRT display on the right. Pixel (X0, Y0) contains 
the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X1, Y1).

active matrix display 
A liquid crystal display 
using a transistor to 
control the transmission 
of light at each individual 
pixel.

Th rough computer 
displays I have landed 
an airplane on the 
deck of a moving 
carrier, observed a 
nuclear particle hit a 
potential well, fl own 
in a rocket at nearly 
the speed of light and 
watched a computer 
reveal its innermost 
workings.
Ivan Sutherland, the 
“father” of computer 
graphics, Scientifi c 
American, 1984
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Touchscreen
While PCs also use LCD displays, the tablets and smartphones of the PostPC era 
have replaced the keyboard and mouse with touch sensitive displays, which has 
the wonderful user interface advantage of users pointing directly what they are 
interested in rather than indirectly with a mouse.

While there are a variety of ways to implement a touch screen, many tablets 
today use capacitive sensing. Since people are electrical conductors, if an insulator 
like glass is covered with a transparent conductor, touching distorts the electrostatic 
fi eld of the screen, which results in a change in capacitance. Th is technology can 
allow multiple touches simultaneously, which allows gestures that can lead to 
attractive user interfaces.

Opening the Box
Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly, 
of the fi ve classic components of the computer, I/O dominates this reading device. 
Th e list of I/O devices includes a capacitive multitouch LCD display, front facing 
camera, rear facing camera, microphone, headphone jack, speakers, accelerometer, 
gyroscope, Wi-Fi network, and Bluetooth network. Th e datapath, control, and 
memory are a tiny portion of the components.

Th e small rectangles in Figure 1.8 contain the devices that drive our advancing 
technology, called integrated circuits and nicknamed chips. Th e A5 package seen 
in the middle of in Figure 1.8 contains two ARM processors that operate with a 
clock rate of 1 GHz. Th e processor is the active part of the computer, following the 
instructions of a program to the letter. It adds numbers, tests numbers, signals I/O 
devices to activate, and so on. Occasionally, people call the processor the CPU, for 
the more bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a 
microprocessor. Th e processor logically comprises two main components: datapath 
and control, the respective brawn and brain of the processor. Th e datapath performs 
the arithmetic operations, and control tells the datapath, memory, and I/O devices 
what to do according to the wishes of the instructions of the program. Chapter 4 
explains the datapath and control for a higher-performance design.

Th e A5 package in Figure 1.8 also includes two memory chips, each with 
2 gibibits of capacity, thereby supplying 512 MiB. Th e memory is where the 
programs are kept when they are running; it also contains the data needed by the 
running programs. Th e memory is built from DRAM chips. DRAM stands for 
dynamic random access memory. Multiple DRAMs are used together to contain 
the instructions and data of a program. In contrast to sequential access memories, 
such as magnetic tapes, the RAM portion of the term DRAM means that memory 
accesses take basically the same amount of time no matter what portion of the 
memory is read.

Descending into the depths of any component of the hardware reveals insights 
into the computer. Inside the processor is another type of memory—cache memory. 

integrated circuit Also 
called a chip. A device 
combining dozens to 
millions of transistors.

central processor unit 
(CPU) Also called 
processor. Th e active part 
of the computer, which 
contains the datapath and 
control and which adds 
numbers, tests numbers, 
signals I/O devices to 
activate, and so on.

datapath Th e 
component of the 
processor that performs 
arithmetic operations

control Th e component 
of the processor that 
commands the datapath, 
memory, and I/O 
devices according to 
the instructions of the 
program.

memory Th e storage 
area in which programs 
are kept when they are 
running and that contains 
the data needed by the 
running programs.

dynamic random access 
memory (DRAM) 
Memory built as an 
integrated circuit; it 
provides random access to 
any location. Access times 
are 50 nanoseconds and 
cost per gigabyte in 2012 
was $5 to $10.
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FIGURE 1.7 Components of the Apple iPad 2 A1395. Th e metal back of the iPad (with the reversed 
Apple logo in the middle) is in the center. At the top is the capacitive multitouch screen and LCD display. To 
the far right is the 3.8 V, 25 watt-hour, polymer battery, which consists of three Li-ion cell cases and off ers 
10 hours of battery life. To the far left  is the metal frame that attaches the LCD to the back of the iPad. Th e 
small components surrounding the metal back in the center are what we think of as the computer; they 
are oft en L-shaped to fi t compactly inside the case next to the battery. Figure 1.8 shows a close-up of the 
L-shaped board to the lower left  of the metal case, which is the logic printed circuit board that contains the 
processor and the memory. Th e tiny rectangle below the logic board contains a chip that provides wireless 
communication: Wi-Fi, Bluetooth, and FM tuner. It fi ts into a small slot in the lower left  corner of the logic 
board. Near the upper left  corner of the case is another L-shaped component, which is a front-facing camera 
assembly that includes the camera, headphone jack, and microphone. Near the right upper corner of the case 
is the board containing the volume control and silent/screen rotation lock button along with a gyroscope and 
accelerometer. Th ese last two chips combine to allow the iPad to recognize 6-axis motion. Th e tiny rectangle 
next to it is the rear-facing camera. Near the bottom right of the case is the L-shaped speaker assembly. Th e 
cable at the bottom is the connector between the logic board and the camera/volume control board. Th e 
board between the cable and the speaker assembly is the controller for the capacitive touchscreen. (Courtesy 
iFixit, www.ifi xit.com)

FIGURE 1.8 Th e logic board of Apple iPad 2 in Figure 1.7. Th e photo highlights fi ve integrated circuits. 
Th e large integrated circuit in the middle is the Apple A5 chip, which contains a dual ARM processor cores 
that run at 1 GHz as well as 512 MB of main memory inside the package. Figure 1.9 shows a photograph of 
the processor chip inside the A5 package. Th e similar sized chip to the left  is the 32 GB fl ash memory chip 
for non-volatile storage. Th ere is an empty space between the two chips where a second fl ash chip can be 
installed to double storage capacity of the iPad. Th e chips to the right of the A5 include power controller and 
I/O controller chips. (Courtesy iFixit, www.ifi xit.com)

http://www.ifixit.com
http://www.ifixit.com
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FIGURE 1.9 Th e processor integrated circuit inside the A5 package. Th e size of chip is 12.1 by 10.1 mm, and 
it was manufactured originally in a 45-nm process (see Section 1.5). It has two identical ARM processors or 
cores in the middle left  of the chip and a PowerVR graphical processor unit (GPU) with four datapaths in the 
upper left  quadrant. To the left  and bottom side of the ARM cores are interfaces to main memory (DRAM). 
(Courtesy Chipworks, www.chipworks.com)

Cache memory consists of a small, fast memory that acts as a buff er for the DRAM 
memory. (Th e nontechnical defi nition of cache is a safe place for hiding things.) 
Cache is built using a diff erent memory technology, static random access memory 
(SRAM). SRAM is faster but less dense, and hence more expensive, than DRAM 
(see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

cache memory A small, 
fast memory that acts as a 
buff er for a slower, larger 
memory.

static random access 
memory (SRAM) Also 
memory built as an 
integrated circuit, but 
faster and less dense than 
DRAM.

http://www.chipworks.com
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As mentioned above, one of the great ideas to improve design is abstraction. 
One of the most important abstractions is the interface between the hardware 
and the lowest-level soft ware. Because of its importance, it is given a special 
name: the instruction set architecture, or simply architecture, of a computer. 
Th e instruction set architecture includes anything programmers need to know to 
make a binary machine language program work correctly, including instructions, 
I/O devices, and so on. Typically, the operating system will encapsulate the 
details of doing I/O, allocating memory, and other low-level system functions 
so that application programmers do not need to worry about such details. Th e 
combination of the basic instruction set and the operating system interface 
provided for application programmers is called the application binary interface 
(ABI).

An instruction set architecture allows computer designers to talk about 
functions independently from the hardware that performs them. For example, 
we can talk about the functions of a digital clock (keeping time, displaying the 
time, setting the alarm) independently from the clock hardware (quartz crystal, 
LED displays, plastic buttons). Computer designers distinguish architecture from 
an implementation of an architecture along the same lines: an implementation is 
hardware that obeys the architecture abstraction. Th ese ideas bring us to another 
Big Picture.

instruction set 
architecture Also 
called architecture. An 
abstract interface between 
the hardware and the 
lowest-level soft ware 
that encompasses all the 
information necessary to 
write a machine language 
program that will run 
correctly, including 
instructions, registers, 
memory access, I/O, and 
so on.

application binary 
interface (ABI) Th e user 
portion of the instruction 
set plus the operating 
system interfaces used by 
application programmers. 
It defi nes a standard for 
binary portability across 
computers.

implementation 
Hardware that obeys the 
architecture abstraction.

Both hardware and soft ware consist of hierarchical layers using abstraction, 
with each lower layer hiding details from the level above. One key interface 
between the levels of abstraction is the instruction set architecture—the 
interface between the hardware and low-level soft ware. Th is abstract 
interface enables many implementations of varying cost and performance 
to run identical soft ware.

The BIG
Picture

A Safe Place for Data
Th us far, we have seen how to input data, compute using the data, and display 
data. If we were to lose power to the computer, however, everything would be lost 
because the memory inside the computer is volatile—that is, when it loses power, 
it forgets. In contrast, a DVD disk doesn’t forget the movie when you turn off  the 
power to the DVD player, and is thus a nonvolatile memory technology.

volatile memory 
Storage, such as DRAM, 
that retains data only if it 
is receiving power.

nonvolatile memory 
A form of memory that 
retains data even in the 
absence of a power source 
and that is used to store 
programs between runs. 
A DVD disk is nonvolatile.
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To distinguish between the volatile memory used to hold data and programs 
while they are running and this nonvolatile memory used to store data and 
programs between runs, the term main memory or primary memory is used for 
the former, and secondary memory for the latter. Secondary memory forms the 
next lower layer of the memory hierarchy. DRAMs have dominated main memory 
since 1975, but magnetic disks dominated secondary memory starting even earlier. 
Because of their size and form factor, personal Mobile Devices use fl ash memory, 
a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip 
containing the fl ash memory of the iPad 2. While slower than DRAM, it is much 
cheaper than DRAM in addition to being nonvolatile. Although costing more per 
bit than disks, it is smaller, it comes in much smaller capacities, it is more rugged, 
and it is more power effi  cient than disks. Hence, fl ash memory is the standard 
secondary memory for PMDs. Alas, unlike disks and DRAM, fl ash memory bits 
wear out aft er 100,000 to 1,000,000 writes. Th us, fi le systems must keep track of 
the number of writes and have a strategy to avoid wearing out storage, such as by 
moving popular data. Chapter 5 describes disks and fl ash memory in more detail.

Communicating with Other Computers
We’ve explained how we can input, compute, display, and save data, but there is 
still one missing item found in today’s computers: computer networks. Just as the 
processor shown in Figure 1.5 is connected to memory and I/O devices, networks 
interconnect whole computers, allowing computer users to extend the power of 
computing by including communication. Networks have become so popular that 
they are the backbone of current computer systems; a new personal mobile device 
or server without a network interface would be ridiculed. Networked computers 
have several major advantages:

■ Communication: Information is exchanged between computers at high 
speeds.

■ Resource sharing : Rather than each computer having its own I/O devices, 
computers on the network can share I/O devices.

■ Nonlocal access: By connecting computers over long distances, users need not 
be near the computer they are using.

Networks vary in length and performance, with the cost of communication 
increasing according to both the speed of communication and the distance that 
information travels. Perhaps the most popular type of network is Ethernet. It can 
be up to a kilometer long and transfer at up to 40 gigabits per second. Its length and 
speed make Ethernet useful to connect computers on the same fl oor of a building; 

main memory Also 
called primary memory. 
Memory used to hold 
programs while they are 
running; typically consists 
of DRAM in today’s 
computers.

secondary memory  
Nonvolatile memory 
used to store programs 
and data between runs; 
typically consists of fl ash 
memory in PMDs and 
magnetic disks in servers.

magnetic disk Also 
called hard disk. A form 
of nonvolatile secondary 
memory composed of 
rotating platters coated 
with a magnetic recording 
material. Because they 
are rotating mechanical 
devices, access times are 
about 5 to 20 milliseconds 
and cost per gigabyte in 
2012 was $0.05 to $0.10.

fl ash memory 
A nonvolatile semi-
conductor memory. It 
is cheaper and slower 
than DRAM but more 
expensive per bit and 
faster than magnetic disks. 
Access times are about 5 
to 50 microseconds and 
cost per gigabyte in 2012 
was $0.75 to $1.00.
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hence, it is an example of what is generically called a local area network. Local area 
networks are interconnected with switches that can also provide routing services 
and security. Wide area networks cross continents and are the backbone of the 
Internet, which supports the web. Th ey are typically based on optical fi bers and are 
leased from telecommunication companies.

Networks have changed the face of computing in the last 30 years, both by 
becoming much more ubiquitous and by making dramatic increases in performance. 
In the 1970s, very few individuals had access to electronic mail, the Internet and 
web did not exist, and physically mailing magnetic tapes was the primary way to 
transfer large amounts of data between two locations. Local area networks were 
almost nonexistent, and the few existing wide area networks had limited capacity 
and restricted access.

As networking technology improved, it became much cheaper and had a much 
higher capacity. For example, the fi rst standardized local area network technology, 
developed about 30 years ago, was a version of Ethernet that had a maximum capacity 
(also called bandwidth) of 10 million bits per second, typically shared by tens of, if 
not a hundred, computers. Today, local area network technology off ers a capacity 
of from 1 to 40 gigabits per second, usually shared by at most a few computers. 
Optical communications technology has allowed similar growth in the capacity of 
wide area networks, from hundreds of kilobits to gigabits and from hundreds of 
computers connected to a worldwide network to millions of computers connected. 
Th is combination of dramatic rise in deployment of networking combined with 
increases in capacity have made network technology central to the information 
revolution of the last 30 years.

For the last decade another innovation in networking is reshaping the way 
computers communicate. Wireless technology is widespread, which enabled 
the PostPC Era. Th e ability to make a radio in the same low-cost semiconductor 
technology (CMOS) used for memory and microprocessors enabled a signifi cant 
improvement in price, leading to an explosion in deployment. Currently available 
wireless technologies, called by the IEEE standard name 802.11, allow for transmission 
rates from 1 to nearly 100 million bits per second. Wireless technology is quite a bit 
diff erent from wire-based networks, since all users in an immediate area share the 
airwaves.

■ Semiconductor DRAM memory, fl ash memory, and disk storage diff er 
signifi cantly. For each technology, list its volatility, approximate relative 
access time, and approximate relative cost compared to DRAM.

 1.5  Technologies for Building Processors 
and Memory

Processors and memory have improved at an incredible rate, because computer 
designers have long embraced the latest in electronic technology to try to win the 
race to design a better computer. Figure 1.10 shows the technologies that have 

local area network 
(LAN) A network 
designed to carry data 
within a geographically 
confi ned area, typically 
within a single building.

wide area network 
(WAN) A network 
extended over hundreds 
of kilometers that can 
span a continent.

Check 
Yourself



FIGURE 1.10 Relative performance per unit cost of technologies used in computers over 
time. Source: Computer Museum, Boston, with 2013 extrapolated by the authors. See  Section 1.12.
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FIGURE 1.11 Growth of capacity per DRAM chip over time. Th e y-axis is measured in kibibits (210 bits). Th e DRAM industry 
quadrupled capacity almost every three years, a 60% increase per year, for 20 years. In recent years, the rate has slowed down and is somewhat 
closer to doubling every two years to three years.
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been used over time, with an estimate of the relative performance per unit cost for 
each technology. Since this technology shapes what computers will be able to do 
and how quickly they will evolve, we believe all computer professionals should be 
familiar with the basics of integrated circuits.

A transistor is simply an on/off  switch controlled by electricity. Th e integrated 
circuit (IC) combined dozens to hundreds of transistors into a single chip. When 
Gordon Moore predicted the continuous doubling of resources, he was predicting 
the growth rate of the number of transistors per chip. To describe the tremendous 
increase in the number of transistors from hundreds to millions, the adjective very 
large scale is added to the term, creating the abbreviation VLSI, for very large-scale 
integrated circuit.

Th is rate of increasing integration has been remarkably stable. Figure 1.11 shows 
the growth in DRAM capacity since 1977. For decades, the industry has consistently 
quadrupled capacity every 3 years, resulting in an increase in excess of 16,000 times!

To understand how manufacture integrated circuits, we start at the beginning. 
Th e manufacture of a chip begins with silicon, a substance found in sand. Because 
silicon does not conduct electricity well, it is called a semiconductor. With a special 
chemical process, it is possible to add materials to silicon that allow tiny areas to 
transform into one of three devices:

■ Excellent conductors of electricity (using either microscopic copper or 
aluminum wire)

transistor An on/off  
switch controlled by an 
electric signal.

very large-scale 
integrated (VLSI) 
circuit A device 
containing hundreds of 
thousands to millions of 
transistors.

silicon  A natural 
element that is a 
semiconductor.

semiconductor 
A substance that does not 
conduct electricity well.

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 1
1965 35
1975 Integrated circuit

Very large-scale integrated circuit
Ultra large-scale integrated circuit

Transistor
900

1995 2,400,000
2013 250,000,000,000
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■ Excellent insulators from electricity (like plastic sheathing or glass)

■ Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of 
combinations of conductors, insulators, and switches manufactured in a single 
small package.

Th e manufacturing process for integrated circuits is critical to the cost of the 
chips and hence important to computer designers. Figure 1.12 shows that process. 
Th e process starts with a silicon crystal ingot, which looks like a giant sausage. 
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot 
is fi nely sliced into wafers no more than 0.1 inches thick. Th ese wafers then go 
through a series of processing steps, during which patterns of chemicals are placed 
on each wafer, creating the transistors, conductors, and insulators discussed earlier. 
Today’s integrated circuits contain only one layer of transistors but may have from 
two to eight levels of metal conductor, separated by layers of insulators.

silicon crystal ingot 
A rod composed of a 
silicon crystal that is 
between 8 and 12 inches 
in diameter and about 12 
to 24 inches long.

wafer A slice from a 
silicon ingot no more than 
0.1 inches thick, used to 
create chips.

Slicer

Dicer

20 to 40
processing steps

Bond die to
package

Silicon ingot

Wafer
tester

Part
tester

Ship to
customers

Tested dies Tested
wafer

Blank
wafers

Packaged dies

Patterned wafers

Tested packaged dies

FIGURE 1.12 The chip manufacturing process. Aft er being sliced from the silicon ingot, blank 
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). Th ese patterned wafers are 
then tested with a wafer tester, and a map of the good parts is made. Th en, the wafers are diced into dies (see 
Figure 1.9). In this fi gure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.) 
Th e yield of good dies in this case was 17/20, or 85%. Th ese good dies are then bonded into packages and 
tested one more time before shipping the packaged parts to customers. One bad packaged part was found 
in this fi nal test.

A single microscopic fl aw in the wafer itself or in one of the dozens of patterning 
steps can result in that area of the wafer failing. Th ese defects, as they are called, 
make it virtually impossible to manufacture a perfect wafer. Th e simplest way to 
cope with imperfection is to place many independent components on a single 
wafer. Th e patterned wafer is then chopped up, or diced, into these components, 

defect A microscopic 
fl aw in a wafer or in 
patterning steps that can 
result in the failure of the 
die containing that defect.



FIGURE 1.13 A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel). Th e number of 
dies on this 300 mm (12 inch) wafer at 100% yield is 280, each 20.7 by 10.5 mm. Th e several dozen partially 
rounded chips at the boundaries of the wafer are useless; they are included because it’s easier to create the 
masks used to pattern the silicon. Th is die uses a 32-nanometer technology, which means that the smallest 
features are approximately 32 nm in size, although they are typically somewhat smaller than the actual feature 
size, which refers to the size of the transistors as “drawn” versus the fi nal manufactured size.
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called dies and more informally known as chips. Figure 1.13 shows a photograph 
of a wafer containing microprocessors before they have been diced; earlier, Figure 
1.9 shows an individual microprocessor die.

Dicing enables you to discard only those dies that were unlucky enough to 
contain the fl aws, rather than the whole wafer. Th is concept is quantifi ed by the 
yield of a process, which is defi ned as the percentage of good dies from the total 
number of dies on the wafer.

Th e cost of an integrated circuit rises quickly as the die size increases, due both 
to the lower yield and the smaller number of dies that fi t on a wafer. To reduce the 
cost, using the next generation process shrinks a large die as it uses smaller sizes for 
both transistors and wires. Th is improves the yield and the die count per wafer. A 
32-nanometer (nm) process was typical in 2012, which means essentially that the 
smallest feature size on the die is 32 nm.

die Th e individual 
rectangular sections that 
are cut from a wafer, more 
informally known as 
chips.

yield Th e percentage of 
good dies from the total 
number of dies on the 
wafer.
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Once you’ve found good dies, they are connected to the input/output pins of a 
package, using a process called bonding. Th ese packaged parts are tested a fi nal time, 
since mistakes can occur in packaging, and then they are shipped to customers.

Elaboration: The cost of an integrated circuit can be expressed in three simple 
equations:

Cost per die
Cost per wafer

Dies per wafer yield

Dies per waffer
Wafer area
Die area

Yield
Defects per area Die are

�

1

1( ( aa/2))2

The fi rst equation is straightforward to derive. The second is an approximation, 
since it does not subtract the area near the border of the round wafer that cannot 
accommodate the rectangular dies (see Figure 1.13). The fi nal equation is based on 
empirical observations of yields at integrated circuit factories, with the exponent related 
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are 
generally not linear in the die area.

A key factor in determining the cost of an integrated circuit is volume. Which of 
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular 
design, increasing the yield.

2. It is less work to design a high-volume part than a low-volume part.

3. Th e masks used to make the chip are expensive, so the cost per chip is lower 
for higher volumes.

4. Engineering development costs are high and largely independent of volume; 
thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and 
therefore have higher yield per wafer.

 1.6 Performance

Assessing the performance of computers can be quite challenging. Th e scale and 
intricacy of modern soft ware systems, together with the wide range of performance 
improvement techniques employed by hardware designers, have made performance 
assessment much more diffi  cult.

When trying to choose among diff erent computers, performance is an important 
attribute. Accurately measuring and comparing diff erent computers is critical to 

Check 
Yourself



Airplane
Passenger 
capacity

Cruising range 
(miles)

Cruising speed 
(m.p.h.)

Passenger throughput 
 m.p.h.)

Boeing 777 375 4630 0610 228,750
Boeing 747 470

132
146

4150 0610 286,700
BAC/Sud Concorde 4000 1350 178,200
Douglas DC-8-50 8720 0544  79,424

(passengers ×  m.p.h.)

FIGURE 1.14 The capacity, range, and speed for a number of commercial airplanes. Th e last 
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising 
speed (ignoring range and takeoff  and landing times).
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purchasers and therefore to designers. Th e people selling computers know this as 
well. Oft en, salespeople would like you to see their computer in the best possible 
light, whether or not this light accurately refl ects the needs of the purchaser’s 
application. Hence, understanding how best to measure performance and the 
limitations of performance measurements is important in selecting a computer.

Th e rest of this section describes diff erent ways in which performance can be 
determined; then, we describe the metrics for measuring performance from the 
viewpoint of both a computer user and a designer. We also look at how these metrics 
are related and present the classical processor performance equation, which we will 
use throughout the text.

Defi ning Performance
When we say one computer has better performance than another, what do we 
mean? Although this question might seem simple, an analogy with passenger 
airplanes shows how subtle the question of performance can be. Figure 1.14 
lists some typical passenger airplanes, together with their cruising speed, range, 
and capacity. If we wanted to know which of the planes in this table had the best 
performance, we would fi rst need to defi ne performance. For example, considering 
diff erent measures of performance, we see that the plane with the highest cruising 
speed was the Concorde (retired from service in 2003), the plane with the longest 
range is the DC-8, and the plane with the largest capacity is the 747.

Let’s suppose we defi ne performance in terms of speed. Th is still leaves two 
possible defi nitions. You could defi ne the fastest plane as the one with the highest 
cruising speed, taking a single passenger from one point to another in the least time. 
If you were interested in transporting 450 passengers from one point to another, 
however, the 747 would clearly be the fastest, as the last column of the fi gure shows. 
Similarly, we can defi ne computer performance in several diff erent ways.

If you were running a program on two diff erent desktop computers, you’d say 
that the faster one is the desktop computer that gets the job done fi rst. If you were 
running a datacenter that had several servers running jobs submitted by many 
users, you’d say that the faster computer was the one that completed the most 
jobs during a day. As an individual computer user, you are interested in reducing 
response time—the time between the start and completion of a task—also referred 

response time Also 
called execution time. 
Th e total time required 
for the computer to 
complete a task, including 
disk accesses, memory 
accesses, I/O activities, 
operating system 
overhead, CPU execution 
time, and so on.
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to as execution time. Datacenter managers are oft en interested in increasing 
throughput or bandwidth—the total amount of work done in a given time. Hence, 
in most cases, we will need diff erent performance metrics as well as diff erent sets 
of applications to benchmark personal mobile devices, which are more focused on 
response time, versus servers, which are more focused on throughput.

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease 
response time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors 
for separate tasks—for example, searching the web

Decreasing response time almost always improves throughput. Hence, in case 
1, both response time and throughput are improved. In case 2, no one task gets 
work done faster, so only throughput increases.

If, however, the demand for processing in the second case was almost 
as large as the throughput, the system might force requests to queue up. In 
this case, increasing the throughput could also improve response time, since 
it would reduce the waiting time in the queue. Th us, in many real computer 
systems, changing either execution time or throughput oft en aff ects the other.

In discussing the performance of computers, we will be primarily concerned with 
response time for the fi rst few chapters. To maximize performance, we want to 
minimize response time or execution time for some task. Th us, we can relate 
performance and execution time for a computer X:

Performance
Execution timeX

X
�

1

Th is means that for two computers X and Y, if the performance of X is greater than 
the performance of Y, we have

Performance Performance

Execution time Execution time

X Y

X Y

�

�
1 1

EExecution time Execution timeY X�

Th at is, the execution time on Y is longer than that on X, if X is faster than Y.

throughput Also called 
bandwidth. Another 
measure of performance, 
it is the number of tasks 
completed per unit time.

EXAMPLE

ANSWER



In discussing a computer design, we oft en want to relate the performance of two 
diff erent computers quantitatively. We will use the phrase “X is n times faster than 
Y”—or equivalently “X is n times as fast as Y”—to mean

Performance
Performance

X

Y
� n

If X is n times as fast as Y, then the execution time on Y is n times as long as it is 
on X:

Performance
Performance

Execution time
Execution time

X

Y

Y

X
� � n

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same 
program in 15 seconds, how much faster is A than B?

We know that A is n times as fast as B if
Performance
Performance

Execution time
Execution time

A

B

B

A
� � n

Th us the performance ratio is
15
10

1 5� .

and A is therefore 1.5 times as fast as B.

In the above example, we could also say that computer B is 1.5 times slower than 
computer A, since

Performance
Performance

A

B
� 1 5.

means that
Performance PerformanceA

B1 5.
�

EXAMPLE

ANSWER
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For simplicity, we will normally use the terminology as fast as when we try to 
compare computers quantitatively. Because performance and execution time are 
reciprocals, increasing performance requires decreasing execution time. To avoid 
the potential confusion between the terms increasing and decreasing, we usually 
say “improve performance” or “improve execution time” when we mean “increase 
performance” and “decrease execution time.”

Measuring Performance
Time is the measure of computer performance: the computer that performs the 
same amount of work in the least time is the fastest. Program execution time is 
measured in seconds per program. However, time can be defi ned in diff erent ways, 
depending on what we count. Th e most straightforward defi nition of time is called 
wall clock time, response time, or elapsed time. Th ese terms mean the total time 
to complete a task, including disk accesses, memory accesses, input/output (I/O) 
activities, operating system overhead—everything.

Computers are oft en shared, however, and a processor may work on several 
programs simultaneously. In such cases, the system may try to optimize throughput 
rather than attempt to minimize the elapsed time for one program. Hence, we 
oft en want to distinguish between the elapsed time and the time over which the 
processor is working on our behalf. CPU execution time or simply CPU time, 
which recognizes this distinction, is the time the CPU spends computing for this 
task and does not include time spent waiting for I/O or running other programs. 
(Remember, though, that the response time experienced by the user will be the 
elapsed time of the program, not the CPU time.) CPU time can be further divided 
into the CPU time spent in the program, called user CPU time, and the CPU time 
spent in the operating system performing tasks on behalf of the program, called 
system CPU time. Diff erentiating between system and user CPU time is diffi  cult to 
do accurately, because it is oft en hard to assign responsibility for operating system 
activities to one user program rather than another and because of the functionality 
diff erences among operating systems.

For consistency, we maintain a distinction between performance based on 
elapsed time and that based on CPU execution time. We will use the term system 
performance to refer to elapsed time on an unloaded system and CPU performance 
to refer to user CPU time. We will focus on CPU performance in this chapter, 
although our discussions of how to summarize performance can be applied to 
either elapsed time or CPU time measurements.

Diff erent applications are sensitive to diff erent aspects of the performance of a 
computer system. Many applications, especially those running on servers, depend 
as much on I/O performance, which, in turn, relies on both hardware and soft ware. 
Total elapsed time measured by a wall clock is the measurement of interest. In 

CPU execution 
time Also called CPU 
time. Th e actual time the 
CPU spends computing 
for a specifi c task.

user CPU time Th e 
CPU time spent in a 
program itself.

system CPU time Th e 
CPU time spent in 
the operating system 
performing tasks on 
behalf of the program.

Understanding 
Program 

Performance



some application environments, the user may care about throughput, response 
time, or a complex combination of the two (e.g., maximum throughput with a 
worst-case response time). To improve the performance of a program, one must 
have a clear defi nition of what performance metric matters and then proceed to 
look for performance bottlenecks by measuring program execution and looking 
for the likely bottlenecks. In the following chapters, we will describe how to search 
for bottlenecks and improve performance in various parts of the system.

Although as computer users we care about time, when we examine the details 
of a computer it’s convenient to think about performance in other metrics. In 
particular, computer designers may want to think about a computer by using a 
measure that relates to how fast the hardware can perform basic functions. Almost 
all computers are constructed using a clock that determines when events take 
place in the hardware. Th ese discrete time intervals are called clock cycles (or 
ticks, clock ticks, clock periods, clocks, cycles). Designers refer to the length of a 
clock period both as the time for a complete clock cycle (e.g., 250 picoseconds, or 
250 ps) and as the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the 
clock period. In the next subsection, we will formalize the relationship between the 
clock cycles of the hardware designer and the seconds of the computer user.

1. Suppose we know that an application that uses both personal mobile 
devices and the Cloud is limited by network performance. For the following 
changes, state whether only the throughput improves, both response time 
and throughput improve, or neither improves.

a. An extra network channel is added between the PMD and the Cloud, 
increasing the total network throughput and reducing the delay to obtain 
network access (since there are now two channels).

b. Th e networking soft ware is improved, thereby reducing the network 
communication delay, but not increasing throughput.

c. More memory is added to the computer.

2. Computer C’s performance is 4 times as fast as the performance of computer 
B, which runs a given application in 28 seconds. How long will computer C 
take to run that application?

CPU Performance and Its Factors
Users and designers oft en examine performance using diff erent metrics. If we could 
relate these diff erent metrics, we could determine the eff ect of a design change 
on the performance as experienced by the user. Since we are confi ning ourselves 
to CPU performance at this point, the bottom-line performance measure is CPU 

clock cycle Also called 
tick, clock tick, clock 
period, clock, or cycle. 
Th e time for one clock 
period, usually of the 
processor clock, which 
runs at a constant rate.

clock period Th e length 
of each clock cycle.

Check 
Yourself
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execution time. A simple formula relates the most basic metrics (clock cycles and 
clock cycle time) to CPU time:

CPU execution time
for a program

CPU clock cycles
for a progrram Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses,
CPU execution time

for a program
CPU clock cycles for a pro

�
ggram

Clock rate

Th is formula makes it clear that the hardware designer can improve performance 
by reducing the number of clock cycles required for a program or the length of 
the clock cycle. As we will see in later chapters, the designer oft en faces a trade-off  
between the number of clock cycles needed for a program and the length of each 
cycle. Many techniques that decrease the number of clock cycles may also increase 
the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz 
clock. We are trying to help a computer designer build a computer, B, which will 
run this program in 6 seconds. Th e designer has determined that a substantial 
increase in the clock rate is possible, but this increase will aff ect the rest of the 
CPU design, causing computer B to require 1.2 times as many clock cycles as 
computer A for this program. What clock rate should we tell the designer to 
target?

Let’s fi rst fi nd the number of clock cycles required for the program on A:

CPU time
CPU clock cycles

Clock rate

 seconds
CPU clock

A
A

A

10
  cycles
cycles

second

CPU clock cycles  seconds

A

A

2 10

10 2 1

9

00 20 109 9cycles
second

 cycles

EXAMPLE
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CPU time for B can be found using this equation:

CPU time CPU clock cycles
Clock rate

 seconds

B
A

B

1 2

6 1 2 20

.

. 10

1 2 20 10
6

9

9

 cycles
Clock rate

Clock rate  cycles
 seco

B

B
.

nnds
 cycles

second
 cycles

second
 GHz0 2 20 10 4 10 4

9 9.

To run the program in 6 seconds, B must have twice the clock rate of A.

Instruction Performance
Th e performance equations above did not include any reference to the number of 
instructions needed for the program. However, since the compiler clearly generated 
instructions to execute, and the computer had to execute the instructions to run 
the program, the execution time must depend on the number of instructions in a 
program. One way to think about execution time is that it equals the number of 
instructions executed multiplied by the average time per instruction. Th erefore, the 
number of clock cycles required for a program can be written as

CPU clock cycles Instructions for a program
Average clock ccycles

per instruction

Th e term clock cycles per instruction, which is the average number of clock 
cycles each instruction takes to execute, is oft en abbreviated as CPI. Since diff erent 
instructions may take diff erent amounts of time depending on what they do, CPI is 
an average of all the instructions executed in the program. CPI provides one way of 
comparing two diff erent implementations of the same instruction set architecture, 
since the number of instructions executed for a program will, of course, be the 
same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architecture. 
Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, 
and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same 
program. Which computer is faster for this program and by how much?

clock cycles 
per instruction 
(CPI) Average number 
of clock cycles per 
instruction for a program 
or program fragment.

EXAMPLE

 1.6 Performance 35



36 Chapter 1 Computer Abstractions and Technology

We know that each computer executes the same number of instructions for 
the program; let’s call this number I. First, fi nd the number of processor clock 
cycles for each computer:

CPU clock cycles
CPU clock cycles

A

B

�

�

I
I
×

×

2 0
1 2

.
.

Now we can compute the CPU time for each computer:
CPU time CPU clock cycles Clock cycle time

 ps
A A

I 2 0 250. 5500 I  ps

Likewise, for B:
CPU time  ps  psB II 1 2 500 600.

Clearly, computer A is faster. Th e amount faster is given by the ratio of the 
execution times:

CPU performance
CPU performance

Execution time
Execution 

A

B

B
ttime

ps
psA

600
500

1 2
I
I

.

We can conclude that computer A is 1.2 times as fast as computer B for this 
program.

The Classic CPU Performance Equation
We can now write this basic performance equation in terms of instruction count 
(the number of instructions executed by the program), CPI, and clock cycle time:

CPU time Instruction count CPI Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

CPU time Instruction count CPI
Clock rate

Th ese formulas are particularly useful because they separate the three key factors 
that aff ect performance. We can use these formulas to compare two diff erent 
implementations or to evaluate a design alternative if we know its impact on these 
three parameters.

ANSWER

instruction count Th e 
number of instructions 
executed by the program.



Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a 
particular computer. Th e hardware designers have supplied the following facts:

CPI for each instruction class

 A B C

CPI 1 2 3

For a particular high-level language statement, the compiler writer is 
considering two code sequences that require the following instruction counts:

Instruction counts for each instruction class

Code sequence A B C

1 2 1 2

2 4 1 1

Which code sequence executes the most instructions? Which will be faster? 
What is the CPI for each sequence?

Sequence 1 executes 2 � 1 � 2 � 5 instructions. Sequence 2 executes 4 � 1 � 
1 � 6 instructions. Th erefore, sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count 
and CPI to fi nd the total number of clock cycles for each sequence:

CPU clock cycles CPI C( )i i
i

n

1
∑

Th is yields

CPU clock cycles  cycles1 2 1 1 2 2 3 2 2 6 10( ) ( ) ( )

CPU clock cycles  cycles2 4 1 1 2 1 3 4 2 3 9( ) ( ) ( )

So code sequence 2 is faster, even though it executes one extra instruction. Since 
code sequence 2 takes fewer overall clock cycles but has more instructions, it 
must have a lower CPI. Th e CPI values can be computed by

CPI CPU clock cycles
Instruction count

CPI CPU clock cycles

�

�1
11

1

2
2

10
5

2 0
Instruction count

CPI CPU clock cycles
Instruct

� �

�

.

iion count2

9
6

1 5� � .

EXAMPLE

ANSWER
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Figure 1.15 shows the basic measurements at diff erent levels in the 
computer and what is being measured in each case. We can see how these 
factors are combined to yield execution time measured in seconds per 
program:

Time Seconds/Program Instructions
Program

Clock cycles
Instruuction

Seconds
Clock cycle

Always bear in mind that the only complete and reliable measure of 
computer performance is time. For example, changing the instruction set 
to lower the instruction count may lead to an organization with a slower 
clock cycle time or higher CPI that off sets the improvement in instruction 
count. Similarly, because CPI depends on type of instructions executed, 
the code that executes the fewest number of instructions may not be the 
fastest.

The BIG
Picture

Components of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time Seconds per clock cycle

FIGURE 1.15 The basic components of performance and how each is measured.

How can we determine the value of these factors in the performance equation? 
We can measure the CPU execution time by running the program, and the clock 
cycle time is usually published as part of the documentation for a computer. Th e 
instruction count and CPI can be more diffi  cult to obtain. Of course, if we know 
the clock rate and CPU execution time, we need only one of the instruction count 
or the CPI to determine the other.

We can measure the instruction count by using soft ware tools that profi le the 
execution or by using a simulator of the architecture. Alternatively, we can use 
hardware counters, which are included in most processors, to record a variety of 
measurements, including the number of instructions executed, the average CPI, 
and oft en, the sources of performance loss. Since the instruction count depends 
on the architecture, but not on the exact implementation, we can measure the 
instruction count without knowing all the details of the implementation. Th e CPI, 
however, depends on a wide variety of design details in the computer, including 
both the memory system and the processor structure (as we will see in Chapter 4 
and Chapter 5), as well as on the mix of instruction types executed in an application. 
Th us, CPI varies by application, as well as among implementations with the same 
instruction set.



Th e above example shows the danger of using only one factor (instruction count) 
to assess performance. When comparing two computers, you must look at all three 
components, which combine to form execution time. If some of the factors are 
identical, like the clock rate in the above example, performance can be determined 
by comparing all the nonidentical factors. Since CPI varies by instruction mix, 
both instruction count and CPI must be compared, even if clock rates are identical. 
Several exercises at the end of this chapter ask you to evaluate a series of computer 
and compiler enhancements that aff ect clock rate, CPI, and instruction count. In 

 Section 1.10, we’ll examine a common performance measurement that does not 
incorporate all the terms and can thus be misleading.

Th e performance of a program depends on the algorithm, the language, the 
compiler, the architecture, and the actual hardware. Th e following table summarizes 
how these components aff ect the factors in the CPU performance equation.

Hardware 
or software 
component Affects what? How?

Algorithm Instruction count, 
possibly CPI

The algorithm determines the number of source program 
instructions executed and hence the number of processor 
instructions executed. The algorithm may also affect the CPI, 
by favoring slower or faster instructions. For example, if the 
algorithm uses more divides, it will tend to have a higher CPI.

Programming 
language

Instruction count, 
CPI

The programming language certainly affects the instruction 
count, since statements in the language are translated to 
processor instructions, which determine instruction count. The 
language may also affect the CPI because of its features; for 
example, a language with heavy support for data abstraction 
(e.g., Java) will require indirect calls, which will use higher CPI 
instructions.

Compiler Instruction count, 
CPI

The effi ciency of the compiler affects both the instruction 
count and average cycles per instruction, since the compiler 
determines the translation of the source language instructions 
into computer instructions. The compiler’s role can be very 
complex and affect the CPI in complex ways.

Instruction set 
architecture

Instruction count, 
clock rate, CPI

The instruction set architecture affects all three aspects of 
CPU performance, since it affects the instructions needed for a 
function, the cost in cycles of each instruction, and the overall 
clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we’ll see in 
Chapter 4, some processors fetch and execute multiple instructions per clock cycle. To 
refl ect that approach, some designers invert CPI to talk about IPC, or instructions per 
clock cycle. If a processor executes on average 2 instructions per clock cycle, then it has 
an IPC of 2 and hence a CPI of 0.5.

instruction mix 
A measure of the dynamic 
frequency of instructions 
across one or many 
programs.

Understanding 
Program 
Performance
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FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over eight generations 
and 25 years. Th e Pentium 4 made a dramatic jump in clock rate and power but less so in performance. Th e 
Prescott thermal problems led to the abandonment of the Pentium 4 line. Th e Core 2 line reverts to a simpler 
pipeline with lower clock rates and multiple processors per chip. Th e Core i5 pipelines follow in its footsteps.

Elaboration: Although clock cycle time has traditionally been fi xed, to save energy 
or temporarily boost performance, today’s processors can vary their clock rates, so we 
would need to use the average clock rate for a program. For example, the Intel Core i7 
will temporarily increase clock rate by about 10% until the chip gets too warm. Intel calls 
this Turbo mode.

A given application written in Java runs 15 seconds on a desktop processor. A new 
Java compiler is released that requires only 0.6 as many instructions as the old 
compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the 
application to run using this new compiler? Pick the right answer from the three 
choices below:

a. 15 0 6
1 1

8 2.
.

.  sec

b. 15 � 0.6 � 1.1 � 9.9 sec

c. 15 1 1
0 6

27 5.
.

.  sec

 1.7 The Power Wall

Figure 1.16 shows the increase in clock rate and power of eight generations of Intel 
microprocessors over 30 years. Both clock rate and power increased rapidly for 
decades, and then fl attened off  recently. Th e reason they grew together is that they 
are correlated, and the reason for their recent slowing is that we have run into the 
practical power limit for cooling commodity microprocessors.

Check 
Yourself



Although power provides a limit to what we can cool, in the PostPC Era the 
really critical resource is energy. Battery life can trump performance in the personal 
mobile device, and the architects of warehouse scale computers try to reduce the 
costs of powering and cooling 100,000 servers as the costs are high at this scale. Just 
as measuring time in seconds is a safer measure of program performance than a 
rate like MIPS (see Section 1.10), the energy metric joules is a better measure than 
a power rate like watts, which is just joules/second.

Th e dominant technology for integrated circuits is called CMOS (complementary 
metal oxide semiconductor). For CMOS, the primary source of energy consumption 
is so-called dynamic energy—that is, energy that is consumed when transistors 
switch states from 0 to 1 and vice versa. Th e dynamic energy depends on the 
capacitive loading of each transistor and the voltage applied:

Energy Capacitive load Voltage∝  � 2

Th is equation is the energy of a pulse during the logic transition of 0 → 1 → 0 or 
1 → 0 → 1. Th e energy of a single transition is then

Energy Capacitive load Voltage∝ 1 2 2/ � �

Th e power required per transistor is just the product of energy of a transition and 
the frequency of transitions:

Power Capacitive load Voltage Frequency switched∝ 1 2 2/  � � �

Frequency switched is a function of the clock rate. Th e capacitive load per transistor 
is a function of both the number of transistors connected to an output (called the 
fanout) and the technology, which determines the capacitance of both wires and 
transistors.

With regard to Figure 1.16, how could clock rates grow by a factor of 1000 
while power grew by only a factor of 30? Energy and thus power can be reduced by 
lowering the voltage, which occurred with each new generation of technology, and 
power is a function of the voltage squared. Typically, the voltage was reduced about 
15% per generation. In 20 years, voltages have gone from 5 V to 1 V, which is why 
the increase in power is only 30 times.

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive 
load of the more complex older processor. Further, assume that it has adjustable 
voltage so that it can reduce voltage 15% compared to processor B, which 
results in a 15% shrink in frequency. What is the impact on dynamic power?

EXAMPLE
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Power
Power

Capacitive load Voltage Fnew

old

〈 〉 〈 〉 〈0 85 0 85 2. . rrequency switched
Capacitive load Voltage Frequency

0 85
2

. 〉
  switched

Th us the power ratio is

0 85 0 524. .�

Hence, the new processor uses about half the power of the old processor.

Th e problem today is that further lowering of the voltage appears to make the 
transistors too leaky, like water faucets that cannot be completely shut off . Even 
today about 40% of the power consumption in server chips is due to leakage. If 
transistors started leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large 
devices to increase cooling, and they turn off  parts of the chip that are not used in 
a given clock cycle. Although there are many more expensive ways to cool chips 
and thereby raise their power to, say, 300 watts, these techniques are generally 
too expensive for personal computers and even servers, not to mention personal 
mobile devices.

Since computer designers slammed into a power wall, they needed a new way 
forward. Th ey chose a diff erent path from the way they designed microprocessors 
for their fi rst 30 years.

Elaboration: Although dynamic energy is the primary source of energy consumption 
in CMOS, static energy consumption occurs because of leakage current that fl ows even 
when a transistor is off. In servers, leakage is typically responsible for 40% of the energy 
consumption. Thus, increasing the number of transistors increases power dissipation, 
even if the transistors are always off. A variety of design techniques and technology 
innovations are being deployed to control leakage, but it’s hard to lower voltage further.

Elaboration: Power is a challenge for integrated circuits for two reasons. First, power 
must be brought in and distributed around the chip; modern microprocessors use 
hundreds of pins just for power and ground! Similarly, multiple levels of chip interconnect 
are used solely for power and ground distribution to portions of the chip. Second, power 
is dissipated as heat and must be removed. Server chips can burn more than 100 watts, 
and cooling the chip and the surrounding system is a major expense in Warehouse Scale 
Computers (see Chapter 6).

ANSWER
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 1.8  The Sea Change: The Switch from 
Uniprocessors to Multiprocessors

Th e power limit has forced a dramatic change in the design of microprocessors. 
Figure 1.17 shows the improvement in response time of programs for desktop 
microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per 
year to a factor of 1.2 per year.

Rather than continuing to decrease the response time of a single program 
running on the single processor, as of 2006 all desktop and server companies are 
shipping microprocessors with multiple processors per chip, where the benefi t is 
oft en more on throughput than on response time. To reduce confusion between the 
words processor and microprocessor, companies refer to processors as “cores,” and 
such microprocessors are generically called multicore microprocessors. Hence, a 
“quadcore” microprocessor is a chip that contains four processors or four cores.

In the past, programmers could rely on innovations in hardware, architecture, 
and compilers to double performance of their programs every 18 months without 
having to change a line of code. Today, for programmers to get signifi cant 
improvement in response time, they need to rewrite their programs to take 
advantage of multiple processors. Moreover, to get the historic benefi t of running 
faster on new microprocessors, programmers will have to continue to improve 
performance of their code as the number of cores increases.

To reinforce how the soft ware and hardware systems work hand in hand, we use 
a special section, Hardware/Soft ware Interface, throughout the book, with the fi rst 
one appearing below. Th ese elements summarize important insights at this critical 
interface.

Parallelism has always been critical to performance in computing, but it was 
oft en hidden. Chapter 4 will explain pipelining, an elegant technique that runs 
programs faster by overlapping the execution of instructions. Th is is one example of 
instruction-level parallelism, where the parallel nature of the hardware is abstracted 
away so the programmer and compiler can think of the hardware as executing 
instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to explicitly 
rewrite their programs to be parallel had been the “third rail” of computer 
architecture, for companies in the past that depended on such a change in behavior 
failed (see  Section 6.15). From this historical perspective, it’s startling that the 
whole IT industry has bet its future that programmers will fi nally successfully 
switch to explicitly parallel programming.

Up to now, most 
soft ware has been like 
music written for a 
solo performer; with 
the current generation 
of chips we’re getting a 
little experience with 
duets and quartets and 
other small ensembles; 
but scoring a work for 
large orchestra and 
chorus is a diff erent 
kind of challenge.
Brian Hayes, Computing 
in a Parallel Universe, 
2007.

Hardware/ 
Software 
Interface
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 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz 
AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A
Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz 
 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz 

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

 Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)

31,999

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0)

 34,967

FIGURE 1.17 Growth in processor performance since the mid-1980s. Th is chart plots performance relative to the VAX 11/780 
as measured by the SPECint benchmarks (see Section 1.10). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. Th e increase in growth to about 52% since then is attributable to more advanced architectural and 
organizational ideas. Th e higher annual performance improvement of 52% since the mid-1980s meant performance was about a factor of seven 
higher in 2002 than it would have been had it stayed at 25%. Since 2002, the limits of power, available instruction-level parallelism, and long 
memory latency have slowed uniprocessor performance recently, to about 22% per year.

Why has it been so hard for programmers to write explicitly parallel programs? 
Th e fi rst reason is that parallel programming is by defi nition performance 
programming, which increases the diffi  culty of programming. Not only does the 
program need to be correct, solve an important problem, and provide a useful 
interface to the people or other programs that invoke it, the program must also be 
fast. Otherwise, if you don’t need performance, just write a sequential program.

Th e second reason is that fast for parallel hardware means that the programmer 
must divide an application so that each processor has roughly the same amount to 
do at the same time, and that the overhead of scheduling and coordination doesn’t 
fritter away the potential performance benefi ts of parallelism.

As an analogy, suppose the task was to write a newspaper story. Eight reporters 
working on the same story could potentially write a story eight times faster. To achieve 
this increased speed, one would need to break up the task so that each reporter had 
something to do at the same time. Th us, we must schedule the sub-tasks. If anything 
went wrong and just one reporter took longer than the seven others did, then the 
benefi ts of having eight writers would be diminished. Th us, we must balance the 
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load evenly to get the desired speedup. Another danger would be if reporters had to 
spend a lot of time talking to each other to write their sections. You would also fall 
short if one part of the story, such as the conclusion, couldn’t be written until all of 
the other parts were completed. Th us, care must be taken to reduce communication 
and synchronization overhead. For both this analogy and parallel programming, the 
challenges include scheduling, load balancing, time for synchronization, and overhead 
for communication between the parties. As you might guess, the challenge is stiff er with 
more reporters for a newspaper story and more processors for parallel programming.

To refl ect this sea change in the industry, the next fi ve chapters in this edition of the 
book each have a section on the implications of the parallel revolution to that chapter:

■ Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually 
independent parallel tasks need to coordinate at times, such as to say when 
they have completed their work. Th is chapter explains the instructions used 
by multicore processors to synchronize tasks.

■ Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Subword 
Parallelism. Perhaps the simplest form of parallelism to build involves 
computing on elements in parallel, such as when multiplying two vectors. 
Subword parallelism takes advantage of the resources supplied by Moore’s 
Law to provider wider arithmetic units that can operate on many operands 
simultaneously.

■ Chapter 4, Section 4.10: Parallelism via Instructions. Given the diffi  culty of 
explicitly parallel programming, tremendous eff ort was invested in the 1990s 
in having the hardware and the compiler uncover implicit parallelism, initially 
via pipelining. Th is chapter describes some of these aggressive techniques, 
including fetching and executing multiple instructions simultaneously and 
guessing on the outcomes of decisions, and executing instructions speculatively 
using prediction.

■ Chapter 5, Section 5.10: Parallelism and Memory Hierarchies: Cache 
Coherence. One way to lower the cost of communication is to have all 
processors use the same address space, so that any processor can read or 
write any data. Given that all processors today use caches to keep a temporary 
copy of the data in faster memory near the processor, it’s easy to imagine that 
parallel programming would be even more diffi  cult if the caches associated 
with each processor had inconsistent values of the shared data. Th is chapter 
describes the mechanisms that keep the data in all caches consistent.

■ Chapter 5,  Section 5.11: Parallelism and Memory Hierarchy: Redundant 
Arrays of Inexpensive Disks. Th is section describes how using many disks 
in conjunction can off er much higher throughput, which was the original 
inspiration of Redundant Arrays of Inexpensive Disks (RAID). Th e real 
popularity of RAID proved to be to the much greater dependability off ered 
by including a modest number of redundant disks. Th e section explains the 
diff erences in performance, cost, and dependability between the diff erent 
RAID levels.
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In addition to these sections, there is a full chapter on parallel processing. Chapter 6 
goes into more detail on the challenges of parallel programming; presents the 
two contrasting approaches to communication of shared addressing and explicit 
message passing; describes a restricted model of parallelism that is easier to 
program; discusses the diffi  culty of benchmarking parallel processors; introduces 
a new simple performance model for multicore microprocessors; and, fi nally, 
describes and evaluates four examples of multicore microprocessors using this 
model.

As mentioned above, Chapters 3 to 6 use matrix vector multiply as a running 
example to show how each type of parallelism can signifi cantly increase performance. 

 Appendix C describes an increasingly popular hardware component that 
is included with desktop computers, the graphics processing unit (GPU). Invented 
to accelerate graphics, GPUs are becoming programming platforms in their 
own right. As you might expect, given these times, GPUs rely on parallelism.

 Appendix C describes the NVIDIA GPU and highlights parts of its parallel 
programming environment. 

 1.9  Real Stuff: Benchmarking the 
Intel Core i7

Each chapter has a section entitled “Real Stuff ” that ties the concepts in the book 
with a computer you may use every day. Th ese sections cover the technology 
underlying modern computers. For this fi rst “Real Stuff ” section, we look at 
how integrated circuits are manufactured and how performance and power are 
measured, with the Intel Core i7 as the example.

SPEC CPU Benchmark
A computer user who runs the same programs day in and day out would be the 
perfect candidate to evaluate a new computer. Th e set of programs run would form 
a workload. To evaluate two computer systems, a user would simply compare 
the execution time of the workload on the two computers. Most users, however, 
are not in this situation. Instead, they must rely on other methods that measure 
the performance of a candidate computer, hoping that the methods will refl ect 
how well the computer will perform with the user’s workload. Th is alternative is 
usually followed by evaluating the computer using a set of benchmarks—programs 
specifi cally chosen to measure performance. Th e benchmarks form a workload that 
the user hopes will predict the performance of the actual workload. As we noted 
above, to make the common case fast, you fi rst need to know accurately which case 
is common, so benchmarks play a critical role in computer architecture.

SPEC (System Performance Evaluation Cooperative) is an eff ort funded and 
supported by a number of computer vendors to create standard sets of benchmarks 
for modern computer systems. In 1989, SPEC originally created a benchmark 

I thought [computers] 
would be a universally 
applicable idea, like 
a book is. But I didn’t 
think it would develop 
as fast as it did, because 
I didn’t envision we’d 
be able to get as many 
parts on a chip as 
we fi nally got. Th e 
transistor came along 
unexpectedly. It all 
happened much faster 
than we expected.
J. Presper Eckert, 
coinventor of ENIAC, 
speaking in 1991

workload A set of 
programs run on a 
computer that is either 
the actual collection of 
applications run by a user 
or constructed from real 
programs to approximate 
such a mix. A typical 
workload specifi es both 
the programs and the 
relative frequencies.

benchmark A program 
selected for use in 
comparing computer 
performance.



set focusing on processor performance (now called SPEC89), which has evolved 
through fi ve generations. Th e latest is SPEC CPU2006, which consists of a set of 12 
integer benchmarks (CINT2006) and 17 fl oating-point benchmarks (CFP2006). 
Th e integer benchmarks vary from part of a C compiler to a chess program to a 
quantum computer simulation. Th e fl oating-point benchmarks include structured 
grid codes for fi nite element modeling, particle method codes for molecular 
dynamics, and sparse linear algebra codes for fl uid dynamics.

Figure 1.18 describes the SPEC integer benchmarks and their execution time 
on the Intel Core i7 and shows the factors that explain execution time: instruction 
count, CPI, and clock cycle time. Note that CPI varies by more than a factor of 5.

To simplify the marketing of computers, SPEC decided to report a single number 
to summarize all 12 integer benchmarks. Dividing the execution time of a reference 
processor by the execution time of the measured computer normalizes the execution 
time measurements; this normalization yields a measure, called the SPECratio, which 
has the advantage that bigger numeric results indicate faster performance. Th at is, 
the SPECratio is the inverse of execution time. A CINT2006 or CFP2006 summary 
measurement is obtained by taking the geometric mean of the SPECratios.

Elaboration: When comparing two computers using SPECratios, use the geometric 
mean so that it gives the same relative answer no matter what computer is used to 
normalize the results. If we averaged the normalized execution time values with an 
arithmetic mean, the results would vary depending on the computer we choose as the 
reference.
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FIGURE 1.18 SPECINTC2006 benchmarks running on a 2.66 GHz Intel Core i7 920. As the equation on page 35 explains, 
execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and clock cycle time in 
nanoseconds. SPECratio is simply the reference time, which is supplied by SPEC, divided by the measured execution time. Th e single number 
quoted as SPECINTC2006 is the geometric mean of the SPECratios.

Description Name
Instruction
Count x 109 CPI

Clock cycle time
(seconds x 10–9)

Execution
T ime  

(seconds)

Reference
Time  

(seconds) SPECratio

Interpreted string processing perl  2252    0.60    0.376  508  9770   19.2 

Block-sorting bzip2  2390   0.70   0.376  629  9650   15.4 
compression

GNU C compiler gcc  794   1.20   0.376  358  8050   22.5 

Combinatorial optimization mcf  221   2.66   0.376  221  9120   41.2 

Go game (AI) go  1274   1.10   0.376  527  10490   19.9 

Search gene sequence hmmer  2616   0.60   0.376  590  9330   15.8 

Chess game (AI) sjeng  1948   0.80   0.376  586  12100   20.7 

Quantum computer libquantum               659   0.44   0.376  109  20720   190.0 

simulation

Video compression h264avc  3793   0.50   0.376  713  22130   31.0 

Discrete event  omnetpp  367   2.10   0.376  290  6250   21.5 
simulation library

Games/path finding  astar  1250   1.00   0.376  470  7020   14.9 

XML parsing xalancbmk  1045   0.70   0.376  275  6900   25.1 

Geometric mean       –                          –                     –                     –   –    25.7 –
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The formula for the geometric mean is

Execution time ratioi
i

n
n

�1
∏

where Execution time ratio
i
 is the execution time, normalized to the reference computer, 

for the ith program of a total of n in the workload, and

a a a ai n
i

n

 means the product 1 2
1

…∏

SPEC Power Benchmark
Given the increasing importance of energy and power, SPEC added a benchmark 
to measure power. It reports power consumption of servers at diff erent workload 
levels, divided into 10% increments, over a period of time. Figure 1.19 shows the 
results for a server using Intel Nehalem processors similar to the above.

FIGURE 1.19 SPECpower_ssj2008 running on a dual socket 2.66 GHz Intel Xeon X5650 
with 16 GB of DRAM and one 100 GB SSD disk.

Target Load %
Performance  

(ssj_ops)
Average Power  

(watts)

 100% 865,618 258

 90% 786,688 242

 80% 698,051 224

 70% 607,826 204

 60% 521,391 185

 50% 436,757 170

 40% 345,919 157

 30% 262,071 146

 20% 176,061 135

 10% 86,784 121

 0% 0 80

  Overall Sum  4,787,166 1922

   ∑ssj_ops / ∑power =  2490

SPECpower started with another SPEC benchmark for Java business applications 
(SPECJBB2005), which exercises the processors, caches, and main memory as well 
as the Java virtual machine, compiler, garbage collector, and pieces of the operating 
system. Performance is measured in throughput, and the units are business 
operations per second. Once again, to simplify the marketing of computers, SPEC 
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boils these numbers down to a single number, called “overall ssj_ops per watt.” Th e 
formula for this single summarizing metric is

overall ssj_ops per watt ssj_ops power�
�

i
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where ssj_opsi is performance at each 10% increment and poweri is power 
consumed at each performance level.

  Fallacies and Pitfalls

Th e purpose of a section on fallacies and pitfalls, which will be found in every 
chapter, is to explain some commonly held misconceptions that you might 
encounter. We call them fallacies. When discussing a fallacy, we try to give a 
counterexample. We also discuss pitfalls, or easily made mistakes. Oft en pitfalls are 
generalizations of principles that are only true in a limited context. Th e purpose 
of these sections is to help you avoid making these mistakes in the computers you 
may design or use. Cost/performance fallacies and pitfalls have ensnared many a 
computer architect, including us. Accordingly, this section suff ers no shortage of 
relevant examples. We start with a pitfall that traps many designers and reveals an 
important relationship in computer design.

Pitfall: Expecting the improvement of one aspect of a computer to increase overall 
performance by an amount proportional to the size of the improvement.

Th e great idea of making the common case fast has a demoralizing corollary 
that has plagued designers of both hardware and soft ware. It reminds us that the 
opportunity for improvement is aff ected by how much time the event consumes.

A simple design problem illustrates it well. Suppose a program runs in 100 
seconds on a computer, with multiply operations responsible for 80 seconds of this 
time. How much do I have to improve the speed of multiplication if I want my 
program to run fi ve times faster?

Th e execution time of the program aft er making the improvement is given by 
the following simple equation known as Amdahl’s Law:

Execution time after improvement
Execution time affected byy improvement

Amount of improvement
Execution time unaffectted

For this problem:

Execution time after improvement  seconds  secon80 100 80
n

( dds)

Science must begin 
with myths, and the 
criticism of myths.
Sir Karl Popper, Th e 
Philosophy of Science, 
1957

Amdahl’s Law 
A rule stating that 
the performance 
enhancement possible 
with a given improvement 
is limited by the amount 
that the improved feature 
is used. It is a quantitative 
version of the law of 
diminishing returns.

1.10
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Since we want the performance to be fi ve times faster, the new execution time 
should be 20 seconds, giving

20 80 20

0 80

 seconds  seconds  seconds

 seconds
n

n

Th at is, there is no amount by which we can enhance-multiply to achieve a fi vefold 
increase in performance, if multiply accounts for only 80% of the workload. Th e 
performance enhancement possible with a given improvement is limited by the amount 
that the improved feature is used. In everyday life this concept also yields what we call 
the law of diminishing returns.

We can use Amdahl’s Law to estimate performance improvements when we 
know the time consumed for some function and its potential speedup. Amdahl’s 
Law, together with the CPU performance equation, is a handy tool for evaluating 
potential enhancements. Amdahl’s Law is explored in more detail in the exercises.

Amdahl’s Law is also used to argue for practical limits to the number of parallel 
processors. We examine this argument in the Fallacies and Pitfalls section of 
Chapter 6.

Fallacy: Computers at low utilization use little power.
Power effi  ciency matters at low utilizations because server workloads vary. 
Utilization of servers in Google’s warehouse scale computer, for example, is 
between 10% and 50% most of the time and at 100% less than 1% of the time. Even 
given fi ve years to learn how to run the SPECpower benchmark well, the specially 
confi gured computer with the best results in 2012 still uses 33% of the peak power 
at 10% of the load. Systems in the fi eld that are not confi gured for the SPECpower 
benchmark are surely worse.

Since servers’ workloads vary but use a large fraction of peak power, Luiz 
Barroso and Urs Hölzle [2007] argue that we should redesign hardware to achieve 
“energy-proportional computing.” If future servers used, say, 10% of peak power at 
10% workload, we could reduce the electricity bill of datacenters and become good 
corporate citizens in an era of increasing concern about CO2 emissions.

Fallacy: Designing for performance and designing for energy effi  ciency are 
unrelated goals.

Since energy is power over time, it is oft en the case that hardware or soft ware 
optimizations that take less time save energy overall even if the optimization takes 
a bit more energy when it is used. One reason is that all of the rest of the computer is 
consuming energy while the program is running, so even if the optimized portion 
uses a little more energy, the reduced time can save the energy of the whole system.

Pitfall: Using a subset of the performance equation as a performance metric.
We have already warned about the danger of predicting performance based on 
simply one of clock rate, instruction count, or CPI. Another common mistake 
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is to use only two of the three factors to compare performance. Although using 
two of the three factors may be valid in a limited context, the concept is also 
easily misused. Indeed, nearly all proposed alternatives to the use of time as the 
performance metric have led eventually to misleading claims, distorted results, or 
incorrect interpretations.

One alternative to time is MIPS (million instructions per second). For a given 
program, MIPS is simply

MIPS Instruction count
Execution time 106

Since MIPS is an instruction execution rate, MIPS specifi es performance inversely 
to execution time; faster computers have a higher MIPS rating. Th e good news 
about MIPS is that it is easy to understand, and faster computers mean bigger 
MIPS, which matches intuition.

Th ere are three problems with using MIPS as a measure for comparing computers. 
First, MIPS specifi es the instruction execution rate but does not take into account 
the capabilities of the instructions. We cannot compare computers with diff erent 
instruction sets using MIPS, since the instruction counts will certainly diff er. 
Second, MIPS varies between programs on the same computer; thus, a computer 
cannot have a single MIPS rating. For example, by substituting for execution time, 
we see the relationship between MIPS, clock rate, and CPI:

MIPS Instruction count
Instruction count CPI

Clock rate
106

CClock rate
CPI 106

Th e CPI varied by a factor of 5 for SPEC CPU2006 on an Intel Core i7 computer 
in Figure 1.18, so MIPS does as well. Finally, and most importantly, if a new 
program executes more instructions but each instruction is faster, MIPS can vary 
independently from performance!

Consider the following performance measurements for a program:

Measurement Computer A Computer B

Instruction count 10 billion 8 billion

Clock rate 4 GHz 4 GHz

CPI 1.0 1.1

a. Which computer has the higher MIPS rating?

b. Which computer is faster?

million instructions 
per second (MIPS) 
A measurement of 
program execution speed 
based on the number of 
millions of instructions. 
MIPS is computed as the 
instruction count divided 
by the product of the 
execution time and 106.

Check 
Yourself
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 1.11 Concluding Remarks

Although it is diffi  cult to predict exactly what level of cost/performance computers 
will have in the future, it’s a safe bet that they will be much better than they are 
today. To participate in these advances, computer designers and programmers 
must understand a wider variety of issues.

Both hardware and soft ware designers construct computer systems in hierarchical 
layers, with each lower layer hiding details from the level above. Th is great idea 
of abstraction is fundamental to understanding today’s computer systems, but it 
does not mean that designers can limit themselves to knowing a single abstraction. 
Perhaps the most important example of abstraction is the interface between 
hardware and low-level soft ware, called the instruction set architecture. Maintaining 
the instruction set architecture as a constant enables many implementations of 
that architecture—presumably varying in cost and performance—to run identical 
soft ware. On the downside, the architecture may preclude introducing innovations 
that require the interface to change.

Th ere is a reliable method of determining and reporting performance by using 
the execution time of real programs as the metric. Th is execution time is related to 
other important measurements we can make by the following equation:

Seconds
Program

Instructions
Program

Clock cycles
Instruction

Seconds
Clock cycle

We will use this equation and its constituent factors many times. Remember, 
though, that individually the factors do not determine performance: only the 
product, which equals execution time, is a reliable measure of performance.

Execution time is the only valid and unimpeachable measure of 
performance. Many other metrics have been proposed and found wanting. 
Sometimes these metrics are fl awed from the start by not refl ecting 
execution time; other times a metric that is valid in a limited context 
is extended and used beyond that context or without the additional 
clarifi cation needed to make it valid.

The BIG
Picture

Where … the ENIAC 
is equipped with 
18,000 vacuum tubes 
and weighs 30 tons, 
computers in the 
future may have 1,000 
vacuum tubes and 
perhaps weigh just 1½ 
tons.
Popular Mechanics, 
March 1949
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Th e key hardware technology for modern processors is silicon. Equal in 
importance to an understanding of integrated circuit technology is an understanding 
of the expected rates of technological change, as predicted by Moore’s Law. While 
silicon fuels the rapid advance of hardware, new ideas in the organization of 
computers have improved price/performance. Two of the key ideas are exploiting 
parallelism in the program, typically today via multiple processors, and exploiting 
locality of accesses to a memory hierarchy, typically via caches.

Energy effi  ciency has replaced die area as the most critical resource of 
microprocessor design. Conserving power while trying to increase performance 
has forced the hardware industry to switch to multicore microprocessors, thereby 
forcing the soft ware industry to switch to programming parallel hardware. 
Parallelism is now required for performance.

Computer designs have always been measured by cost and performance, as well 
as other important factors such as energy, dependability, cost of ownership, and 
scalability. Although this chapter has focused on cost, performance, and energy, 
the best designs will strike the appropriate balance for a given market among all 
the factors.

Road Map for This Book
At the bottom of these abstractions are the fi ve classic components of a computer: 
datapath, control, memory, input, and output (refer to Figure 1.5). Th ese fi ve 
components also serve as the framework for the rest of the chapters in this book:

■ Datapath: Chapter 3, Chapter 4, Chapter 6, and  Appendix C

■ Control: Chapter 4, Chapter 6, and  Appendix C

■ Memory: Chapter 5

■ Input: Chapters 5 and 6

■ Output: Chapters 5 and 6

As mentioned above, Chapter 4 describes how processors exploit implicit 
parallelism, Chapter 6 describes the explicitly parallel multicore microprocessors 
that are at the heart of the parallel revolution, and  Appendix C describes 
the highly parallel graphics processor chip. Chapter 5 describes how a memory 
hierarchy exploits locality. Chapter 2 describes instruction sets—the interface 
between compilers and the computer—and emphasizes the role of compilers and 
programming languages in using the features of the instruction set. Appendix A 
provides a reference for the instruction set of Chapter 2. Chapter 3 describes how 
computers handle arithmetic data. Appendix B introduces logic design. 
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1.12   Historical Perspective and Further 
Reading

For each chapter in the text, a section devoted to a historical perspective can be 
found online on a site that accompanies this book. We may trace the development 
of an idea through a series of computers or describe some important projects, and 
we provide references in case you are interested in probing further.

Th e historical perspective for this chapter provides a background for some of the 
key ideas presented in this opening chapter. Its purpose is to give you the human 
story behind the technological advances and to place achievements in their historical 
context. By understanding the past, you may be better able to understand the forces 
that will shape computing in the future. Each Historical Perspective section online 
ends with suggestions for further reading, which are also collected separately online 
under the section “Further Reading.” Th e rest of  Section 1.12 is found online.

 1.13 Exercises

Th e relative time ratings of exercises are shown in square brackets aft er each 
exercise number. On average, an exercise rated [10] will take you twice as long as 
one rated [5]. Sections of the text that should be read before attempting an exercise 
will be given in angled brackets; for example, <§1.4> means you should have read 
Section 1.4, Under the Covers, to help you solve this exercise.

1.1 [2] <§1.1> Aside from the smart cell phones used by a billion people, list and 
describe four other types of computers.

1.2 [5] <§1.2> Th e eight great ideas in computer architecture are similar to ideas 
from other fi elds.  Match the eight ideas from computer architecture, “Design for 
Moore’s Law”, “Use Abstraction to Simplify Design”, “Make the Common Case 
Fast”, “Performance via Parallelism”, “Performance via Pipelining”, “Performance 
via Prediction”, “Hierarchy of Memories”, and “Dependability via Redundancy” to 
the following ideas from other fi elds:

a. Assembly lines in automobile manufacturing

b. Suspension bridge cables

c. Aircraft  and marine navigation systems that incorporate wind information

d. Express elevators in buildings

An active fi eld of 
science is like an 
immense anthill; the 
individual almost 
vanishes into the mass 
of minds tumbling over 
each other, carrying 
information from place 
to place, passing it 
around at the speed of 
light.
Lewis Th omas, “Natural 
Science,” in Th e Lives of 
a Cell, 1974
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e. Library reserve desk
f. Increasing the gate area on a CMOS transistor to decrease its switching time
g. Adding electromagnetic aircraft  catapults (which are electrically-powered 
as opposed to current steam-powered models), allowed by the increased power 
generation off ered by the new reactor technology
h. Building self-driving cars whose control systems partially rely on existing sensor 
systems already installed into the base vehicle, such as lane departure systems and 
smart cruise control systems

1.3 [2] <§1.3> Describe the steps that transform a program written in a high-level 
language such as C into a representation that is directly executed by a computer 
processor.

1.4 [2] <§1.4> Assume a color display using 8 bits for each of the primary colors 
(red, green, blue) per pixel and a frame size of 1280 × 1024.
a. What is the minimum size in bytes of the frame buff er to store a frame?
b. How long would it take, at a minimum, for the frame to be sent over a 100 
Mbit/s network?

1.5 [4] <§1.6> Consider three diff erent processors P1, P2, and P3 executing 
the same instruction set.  P1 has a 3 GHz clock rate and a CPI of 1.5.  P2 has a 
2.5 GHz clock rate and a CPI of 1.0.  P3 has a 4.0 GHz clock rate and has a CPI 
of 2.2.
a. Which processor has the highest performance expressed in instructions per second?
b. If the processors each execute a program in 10 seconds, fi nd the number of 
cycles and the number of instructions.
c. We are trying to reduce the execution time by 30% but this leads to an increase 
of 20% in the CPI. What clock rate should we have to get this time reduction?

1.6 [20] <§1.6> Consider two diff erent implementations of the same instruction 
set architecture.  Th e instructions can be divided into four classes according to 
their CPI (class A, B, C, and D). P1 with a clock rate of 2.5 GHz and CPIs of 1, 2, 3, 
and 3, and P2 with a clock rate of 3 GHz and CPIs of 2, 2, 2, and 2.
Given a program with a dynamic instruction count of 1.0E6 instructions divided 
into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D, 
which implementation is faster?
a. What is the global CPI for each implementation?
b. Find the clock cycles required in both cases.
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1.7 [15] <§1.6> Compilers can have a profound impact on the performance 
of an application. Assume that for a program, compiler A results in a dynamic 
instruction count of 1.0E9 and has an execution time of 1.1 s, while compiler B 
results in a dynamic instruction count of 1.2E9 and an execution time of 1.5 s.

a. Find the average CPI for each program given that the processor has a clock cycle 
time of 1 ns.

b. Assume the compiled programs run on two diff erent processors. If the execution 
times on the two processors are the same, how much faster is the clock of the 
processor running compiler A’s code versus the clock of the processor running 
compiler B’s code?

c. A new compiler is developed that uses only 6.0E8 instructions and has an 
average CPI of 1.1. What is the speedup of using this new compiler versus using 
compiler A or B on the original processor?

1.8 Th e Pentium 4 Prescott processor, released in 2004, had a clock rate of 3.6 
GHz and voltage of 1.25 V.  Assume that, on average, it consumed 10 W of static 
power and 90 W of dynamic power.

Th e Core i5 Ivy Bridge, released in 2012, had a clock rate of 3.4 GHz and voltage 
of 0.9 V.  Assume that, on average, it consumed 30 W of static power and 40 W of 
dynamic power.

1.8.1 [5] <§1.7> For each processor fi nd the average capacitive loads.

1.8.2 [5] <§1.7> Find the percentage of the total dissipated power comprised by 
static power and the ratio of static power to dynamic power for each technology.

1.8.3 [15] <§1.7> If the total dissipated power is to be reduced by 10%, how much 
should the voltage be reduced to maintain the same leakage current?  Note:  power 
is defi ned as the product of voltage and current.

1.9 Assume for arithmetic, load/store, and branch instructions, a processor has 
CPIs of 1, 12, and 5, respectively.  Also assume that on a single processor a program 
requires the execution of 2.56E9 arithmetic instructions, 1.28E9 load/store 
instructions, and 256 million branch instructions.  Assume that each processor has 
a 2 GHz clock frequency.

Assume that, as the program is parallelized to run over multiple cores, the number 
of arithmetic and load/store instructions per processor is divided by 0.7 x p (where 
p is the number of processors) but the number of branch instructions per processor 
remains the same.

1.9.1 [5] <§1.7> Find the total execution time for this program on 1, 2, 4, and 8 
processors, and show the relative speedup of the 2, 4, and 8 processor result relative 
to the single processor result. 
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1.9.2 [10] <§§1.6, 1.8> If the CPI of the arithmetic instructions was doubled, 
what would the impact be on the execution time of the program on 1, 2, 4, or 8 
processors?

1.9.3 [10] <§§1.6, 1.8> To what should the CPI of load/store instructions be 
reduced in order for a single processor to match the performance of four processors 
using the original CPI values?

1.10 Assume a 15 cm diameter wafer has a cost of 12, contains 84 dies, and has 
0.020 defects/cm2. Assume a 20 cm diameter wafer has a cost of 15, contains 100 
dies, and has 0.031 defects/cm2.

1.10.1 [10] <§1.5> Find the yield for both wafers.

1.10.2 [5] <§1.5> Find the cost per die for both wafers.

1.10.3 [5] <§1.5> If the number of dies per wafer is increased by 10% and the 
defects per area unit increases by 15%, fi nd the die area and yield.

1.10.4 [5] <§1.5> Assume a fabrication process improves the yield from 0.92 to 
0.95.  Find the defects per area unit for each version of the technology given a die 
area of 200 mm2.

1.11 Th e results of the SPEC CPU2006 bzip2 benchmark running on an AMD 
Barcelona has an instruction count of 2.389E12, an execution time of 750 s, and a 
reference time of 9650 s.

1.11.1 [5] <§§1.6, 1.9> Find the CPI if the clock cycle time is 0.333 ns.

1.11.2 [5] <§1.9> Find the SPECratio.

1.11.3 [5] <§§1.6, 1.9> Find the increase in CPU time if the number of instructions 
of the benchmark is increased by 10% without aff ecting the CPI.

1.11.4 [5] <§§1.6, 1.9> Find the increase in CPU time if the number of instructions 
of the benchmark is increased by 10% and the CPI is increased by 5%.

1.11.5 [5] <§§1.6, 1.9> Find the change in the SPECratio for this change.

1.11.6 [10] <§1.6> Suppose that we are developing a new version of the AMD 
Barcelona processor with a 4 GHz clock rate. We have added some additional 
instructions to the instruction set in such a way that the number of instructions 
has been reduced by 15%.  Th e execution time is reduced to 700 s and the new 
SPECratio is 13.7.  Find the new CPI.

1.11.7 [10] <§1.6> Th is CPI value is larger than obtained in 1.11.1 as the clock 
rate was increased from 3 GHz to 4 GHz. Determine whether the increase in the 
CPI is similar to that of the clock rate. If they are dissimilar, why?

1.11.8 [5] <§1.6> By how much has the CPU time been reduced?
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1.11.9 [10] <§1.6> For a second benchmark, libquantum, assume an execution 
time of 960 ns, CPI of 1.61, and clock rate of 3 GHz.  If the execution time is 
reduced by an additional 10% without aff ecting to the CPI and with a clock rate of 
4 GHz, determine the number of instructions.

1.11.10 [10] <§1.6> Determine the clock rate required to give a further 10% 
reduction in CPU time while maintaining the number of instructions and with the 
CPI unchanged.

1.11.11 [10] <§1.6> Determine the clock rate if the CPI is reduced by 15% and 
the CPU time by 20% while the number of instructions is unchanged.

1.12 Section 1.10 cites as a pitfall the utilization of a subset of the performance 
equation as a performance metric. To illustrate this, consider the following two 
processors. P1 has a clock rate of 4 GHz, average CPI of 0.9, and requires the 
execution of 5.0E9 instructions.  P2 has a clock rate of 3 GHz, an average CPI of 
0.75, and requires the execution of 1.0E9 instructions.
1.12.1 [5] <§§1.6, 1.10> One usual fallacy is to consider the computer with the 
largest clock rate as having the largest performance. Check if this is true for P1 and 
P2.
1.12.2 [10] <§§1.6, 1.10> Another fallacy is to consider that the processor executing 
the largest number of instructions will need a larger CPU time. Considering that 
processor P1 is executing a sequence of 1.0E9 instructions and that the CPI of 
processors P1 and P2 do not change, determine the number of instructions that P2 
can execute in the same time that P1 needs to execute 1.0E9 instructions.
1.12.3 [10] <§§1.6, 1.10> A common fallacy is to use MIPS (millions of 
instructions per second) to compare the performance of two diff erent processors, 
and consider that the processor with the largest MIPS has the largest performance. 
Check if this is true for P1 and P2.
1.12.4 [10] <§1.10> Another common performance fi gure is MFLOPS (millions 
of fl oating-point operations per second), defi ned as
MFLOPS = No. FP operations / (execution time × 1E6)
but this fi gure has the same problems as MIPS. Assume that 40% of the instructions 
executed on both P1 and P2 are fl oating-point instructions.  Find the MFLOPS 
fi gures for the programs.

1.13 Another pitfall cited in Section 1.10 is expecting to improve the overall 
performance of a computer by improving only one aspect of the computer. Consider 
a computer running a program that requires 250 s, with 70 s spent executing FP 
instructions, 85 s executed L/S instructions, and 40 s spent executing branch 
instructions.

1.13.1 [5] <§1.10> By how much is the total time reduced if the time for FP 
operations is reduced by 20%?



 1.13 Exercises 59

1.13.2 [5] <§1.10> By how much is the time for INT operations reduced if the 
total time is reduced by 20%?

1.13.3 [5] <§1.10> Can the total time can be reduced by 20% by reducing only 
the time for branch instructions?

1.14 Assume a program requires the execution of 50 × 106 FP instructions, 
110 × 106 INT instructions, 80 × 106 L/S instructions, and 16 × 106 branch 
instructions.  Th e CPI for each type of instruction is 1, 1, 4, and 2, respectively.  
Assume that the processor has a 2 GHz clock rate.

1.14.1 [10] <§1.10> By how much must we improve the CPI of FP instructions if 
we want the program to run two times faster?

1.14.2 [10] <§1.10> By how much must we improve the CPI of L/S instructions 
if we want the program to run two times faster?

1.14.3 [5] <§1.10> By how much is the execution time of the program improved 
if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and 
Branch is reduced by 30%?

1.15 [5] <§1.8> When a program is adapted to run on multiple processors in 
a multiprocessor system, the execution time on each processor is comprised of 
computing time and the overhead time required for locked critical sections and/or 
to send data from one processor to another.

Assume a program requires t = 100 s of execution time on one processor.  When run 
p processors, each processor requires t/p s, as well as an additional 4 s of overhead, 
irrespective of the number of processors.  Compute the per-processor execution 
time for 2, 4, 8, 16, 32, 64, and 128 processors.  For each case, list the corresponding 
speedup relative to a single processor and the ratio between actual speedup versus 
ideal speedup (speedup if there was no overhead). 

§1.1, page 10: Discussion questions: many answers are acceptable.
§1.4, page 24: DRAM memory: volatile, short access time of 50 to 70 nanoseconds, 
and cost per GB is $5 to $10. Disk memory: nonvolatile, access times are 100,000 
to 400,000 times slower than DRAM, and cost per GB is 100 times cheaper than 
DRAM. Flash memory: nonvolatile, access times are 100 to 1000 times slower than 
DRAM, and cost per GB is 7 to 10 times cheaper than DRAM.
§1.5, page 28: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because 
high volume can make the extra investment to reduce die size by, say, 10% a good 
economic decision, but it doesn’t have to be true.
§1.6, page 33: 1. a: both, b: latency, c: neither. 7 seconds.
§1.6, page 40: b.
§1.10, page 51: a. Computer A has the higher MIPS rating. b. Computer B is faster.

Answers to 
Check Yourself
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 2.1 Introduction

To command a computer’s hardware, you must speak its language. Th e words of a 
computer’s language are called instructions, and its vocabulary is called an instruction 
set. In this chapter, you will see the instruction set of a real computer, both in the form 
written by people and in the form read by the computer. We introduce instructions in 
a top-down fashion. Starting from a notation that looks like a restricted programming 
language, we refi ne it step-by-step until you see the real language of a real computer. 
Chapter 3 continues our downward descent, unveiling the hardware for arithmetic 
and the representation of fl oating-point numbers.

You might think that the languages of computers would be as diverse as those of 
people, but in reality computer languages are quite similar, more like regional dialects 
than like independent languages. Hence, once you learn one, it is easy to pick up others.

Th e chosen instruction set comes from MIPS Technologies, and is an elegant 
example of the instruction sets designed since the 1980s. To demonstrate how 
easy it is to pick up other instruction sets, we will take a quick look at three other 
popular instruction sets.

1. ARMv7 is similar to MIPS. More than 9 billion chips with ARM processors 
were manufactured in 2011, making it the most popular instruction set in 
the world.

2. Th e second example is the Intel x86, which powers both the PC and the 
cloud of the PostPC Era.

3. Th e third example is ARMv8, which extends the address size of the ARMv7 
from 32 bits to 64 bits. Ironically, as we shall see, this 2013 instruction set is 
closer to MIPS than it is to ARMv7.

Th is similarity of instruction sets occurs because all computers are constructed 
from hardware technologies based on similar underlying principles and because 
there are a few basic operations that all computers must provide. Moreover, 
computer designers have a common goal: to fi nd a language that makes it easy 
to build the hardware and the compiler while maximizing performance and 
minimizing cost and energy. Th is goal is time honored; the following quote 
was written before you could buy a computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction 
sets] that are in abstract adequate to control and cause the execution of any 
sequence of operations . . . . Th e really decisive considerations from the present 
point of view, in selecting an [instruction set], are more of a practical nature: 
simplicity of the equipment demanded by the [instruction set], and the clarity of 
its application to the actually important problems together with the speed of its 
handling of those problems.

Burks, Goldstine, and von Neumann, 1947

instruction set Th e 
vocabulary of commands 
understood by a given 
architecture.
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Th e “simplicity of the equipment” is as valuable a consideration for today’s 
computers as it was for those of the 1950s. Th e goal of this chapter is to teach 
an instruction set that follows this advice, showing both how it is represented 
in hardware and the relationship between high-level programming languages 
and this more primitive one. Our examples are in the C programming language; 

 Section 2.15 shows how these would change for an object-oriented language 
like Java.

By learning how to represent instructions, you will also discover the secret of 
computing: the stored-program concept. Moreover, you will exercise your “foreign 
language” skills by writing programs in the language of the computer and running 
them on the simulator that comes with this book. You will also see the impact of 
programming languages and compiler optimization on performance. We conclude 
with a look at the historical evolution of instruction sets and an overview of other 
computer dialects.

We reveal our fi rst instruction set a piece at a time, giving the rationale along 
with the computer structures. Th is top-down, step-by-step tutorial weaves the 
components with their explanations, making the computer’s language more 
palatable. Figure 2.1 gives a sneak preview of the instruction set covered in this 
chapter.

 2.2 Operations of the Computer Hardware

Every computer must be able to perform arithmetic. Th e MIPS assembly language 
notation

add a, b, c

instructs a computer to add the two variables b and c and to put their sum in a.
Th is notation is rigid in that each MIPS arithmetic instruction performs only 

one operation and must always have exactly three variables. For example, suppose 
we want to place the sum of four variables b, c, d, and e into variable a. (In this 
section we are being deliberately vague about what a “variable” is; in the next 
section we’ll explain in detail.)

Th e following sequence of instructions adds the four variables:

add a, b, c    # The sum of b and c is placed in a
add a, a, d    # The sum of b, c, and d is now in a
add a, a, e    # The sum of b, c, d, and e is now in a

Th us, it takes three instructions to sum the four variables.
Th e words to the right of the sharp symbol (#) on each line above are comments 

for the human reader, so the computer ignores them. Note that unlike other 
programming languages, each line of this language can contain at most one 

stored-program 
concept Th e idea that 
instructions and data of 
many types can be stored 
in memory as numbers, 
leading to the stored-
program computer.

Th ere must certainly 
be instructions 
for performing 
the fundamental 
arithmetic operations.
Burks, Goldstine, and 
von Neumann, 1947
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MIPS operands

Name Example Comments

32 registers
$s0–$s7, $t0–$t9, $zero, 
$a0–$a3, $v0–$v1, $gp, $fp, 
$sp, $ra, $at

Fast locations for data. In MIPS, data must be in registers to perform arithmetic, 
register $zero always equals 0, and register $at is reserved by the assembler to 
handle large constants.

230 memory 
words

Memory[0], Memory[4], . . . , 
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so 
sequential word addresses differ by 4. Memory holds data structures, arrays, and 
spilled registers. 

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add  $s1,$s2,$s3 $s1 = $s2 + $s3 Three register operands
subtract sub  $s1,$s2,$s3 $s1 = $s2 – $s3 Three register operands
add immediate addi $s1,$s2,20 $s1 = $s2 + 20 Used to add constants

Data 
transfer

load word lw  $s1,20($s2) $s1 = Memory[$s2 + 20] Word from memory to register
store word sw  $s1,20($s2) Memory[$s2 + 20] = $s1 Word from register to memory
load half lh  $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register

load half unsigned lhu  $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register

store half sh  $s1,20($s2) Memory[$s2 + 20] = $s1 Halfword register to memory

load byte lb  $s1,20($s2) $s1 = Memory[$s2 + 20] Byte from memory to register

load byte unsigned lbu  $s1,20($s2) $s1 = Memory[$s2 + 20] Byte from memory to register

store byte sb  $s1,20($s2) Memory[$s2 + 20] = $s1 Byte from register to memory

load linked word ll  $s1,20($s2) $s1 = Memory[$s2 + 20] Load word as 1st half of atomic swap 

store condition. word sc  $s1,20($s2) Memory[$s2+20]=$s1;$s1=0 or 1 Store word as 2nd half of atomic swap 

load upper immed. lui  $s1,20 $s1 = 20 * 216 Loads constant in upper 16 bits

Logical

and and   $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND

or or    $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR

nor nor   $s1,$s2,$s3 $s1 = ~ ($s2 | $s3) Three reg. operands; bit-by-bit NOR

and immediate andi  $s1,$s2,20 $s1 = $s2 & 20 Bit-by-bit AND reg with constant

or immediate ori   $s1,$s2,20 $s1 = $s2 | 20 Bit-by-bit OR reg with constant

shift left logical sll  $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl  $s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Conditional 
branch

branch on equal beq  $s1,$s2,25 if ($s1 == $s2) go to 
PC + 4 + 100

Equal test; PC-relative branch

branch on not equal bne  $s1,$s2,25 if ($s1!=  $s2) go to 
PC + 4 + 100

Not equal test; PC-relative 

set on less than slt  $s1,$s2,$s3 if ($s2 < $s3)  $s1 = 1; 
else $s1 = 0

Compare less than; for beq, bne

set on less than 
unsigned

sltu  $s1,$s2,$s3 if ($s2 < $s3)  $s1 = 1; 
else $s1 = 0

Compare less than unsigned

set less than 
immediate 

slti $s1,$s2,20 if ($s2 < 20) $s1 = 1; 
else $s1 = 0

Compare less than constant

set less than 
immediate unsigned

sltiu $s1,$s2,20 if ($s2 < 20) $s1 = 1; 
else $s1 = 0

Compare less than constant 
unsigned

Unconditional 

jump

jump j   2500 go to 10000 Jump to target address
jump register jr   $ra go to $ra For switch, procedure return
jump and link jal  2500 $ra = PC + 4; go to 10000 For procedure call

FIGURE 2.1 MIPS assembly language revealed in this chapter.  Th is information is also found in Column 1 of the MIPS Reference 
Data Card at the front of this book.
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instruction. Another diff erence from C is that comments always terminate at the 
end of a line.

Th e natural number of operands for an operation like addition is three: the 
two numbers being added together and a place to put the sum. Requiring every 
instruction to have exactly three operands, no more and no less, conforms to the 
philosophy of keeping the hardware simple: hardware for a variable number of 
operands is more complicated than hardware for a fi xed number. Th is situation 
illustrates the fi rst of three underlying principles of hardware design:

Design Principle 1: Simplicity favors regularity.
We can now show, in the two examples that follow, the relationship of programs 

written in higher-level programming languages to programs in this more primitive 
notation.

Compiling Two C Assignment Statements into MIPS

Th is segment of a C program contains the fi ve variables a, b, c, d, and e. Since 
Java evolved from C, this example and the next few work for either high-level 
programming language:

a = b + c;
d = a – e;

Th e translation from C to MIPS assembly language instructions is performed 
by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result 
in one destination operand. Hence, the two simple statements above compile 
directly into these two MIPS assembly language instructions:

add a, b, c
sub d, a, e

Compiling a Complex C Assignment into MIPS

A somewhat complex statement contains the fi ve variables f, g, h, i, and j:

f = (g + h) – (i + j);

What might a C compiler produce?

EXAMPLE

ANSWER

EXAMPLE
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Th e compiler must break this statement into several assembly instructions, 
since only one operation is performed per MIPS instruction. Th e fi rst MIPS 
instruction calculates the sum of g and h. We must place the result somewhere, 
so the compiler creates a temporary variable, called t0:

add t0,g,h # temporary variable t0 contains g + h

Although the next operation is subtract, we need to calculate the sum of i and 
j before we can subtract. Th us, the second instruction places the sum of i and 
j in another temporary variable created by the compiler, called t1:

add t1,i,j # temporary variable t1 contains i + j

Finally, the subtract instruction subtracts the second sum from the fi rst and 
places the diff erence in the variable f, completing the compiled code:

sub f,t0,t1 # f gets t0 – t1, which is (g + h) – (i + j)

For a given function, which programming language likely takes the most lines of 
code? Put the three representations below in order.

1. Java

2. C

3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a 
software interpreter. The instruction set of this interpreter is called Java bytecodes 
(see  Section 2.15), which is quite different from the MIPS instruction set. To get 
performance close to the equivalent C program, Java systems today typically compile 
Java bytecodes into the native instruction sets like MIPS. Because this compilation is 
normally done much later than for C programs, such Java compilers are often called Just 
In Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers 
in the start-up process, and Section 2.13 shows the performance consequences of 
compiling versus interpreting Java programs.

 2.3 Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions 
are restricted; they must be from a limited number of special locations built directly 
in hardware called registers. Registers are primitives used in hardware design that 
are also visible to the programmer when the computer is completed, so you can 
think of registers as the bricks of computer construction. Th e size of a register in 
the MIPS architecture is 32 bits; groups of 32 bits occur so frequently that they are 
given the name word in the MIPS architecture.

ANSWER

Check 
Yourself

word Th e natural unit 
of access in a computer, 
usually a group of 32 bits; 
corresponds to the size 
of a register in the MIPS 
architecture.
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One major diff erence between the variables of a programming language and 
registers is the limited number of registers, typically 32 on current computers, 
like MIPS. (See  Section 2.21 for the history of the number of registers.) Th us, 
continuing in our top-down, stepwise evolution of the symbolic representation of 
the MIPS language, in this section we have added the restriction that the three 
operands of MIPS arithmetic instructions must each be chosen from one of the 32 
32-bit registers.

Th e reason for the limit of 32 registers may be found in the second of our three 
underlying design principles of hardware technology:

Design Principle 2: Smaller is faster.
A very large number of registers may increase the clock cycle time simply because 
it takes electronic signals longer when they must travel farther.

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be 
faster than 32. Yet, the truth behind such observations causes computer designers 
to take them seriously. In this case, the designer must balance the craving of 
programs for more registers with the designer’s desire to keep the clock cycle fast. 
Another reason for not using more than 32 is the number of bits it would take in 
the instruction format, as Section 2.5 demonstrates.

Chapter 4 shows the central role that registers play in hardware construction; 
as we shall see in this chapter, eff ective use of registers is critical to program 
performance.

Although we could simply write instructions using numbers for registers, from 
0 to 31, the MIPS convention is to use two-character names following a dollar sign 
to represent a register. Section 2.8 will explain the reasons behind these names. For 
now, we will use $s0, $s1, . . . for registers that correspond to variables in C and 
Java programs and $t0, $t1, . . . for temporary registers needed to compile the 
program into MIPS instructions.

Compiling a C Assignment Using Registers

It is the compiler’s job to associate program variables with registers. Take, for 
instance, the assignment statement from our earlier example:

f = (g + h) – (i + j);

Th e variables f, g, h, i, and j are assigned to the registers $s0, $s1, $s2, 
$s3, and $s4, respectively. What is the compiled MIPS code?

EXAMPLE
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Th e compiled program is very similar to the prior example, except we replace 
the variables with the register names mentioned above plus two temporary 
registers, $t0 and $t1, which correspond to the temporary variables above:

add $t0,$s1,$s2 # register $t0 contains g + h
add $t1,$s3,$s4 # register $t1 contains i + j
sub $s0,$t0,$t1 # f gets $t0 – $t1, which is (g + h)–(i + j)

Memory Operands
Programming languages have simple variables that contain single data elements, 
as in these examples, but they also have more complex data structures—arrays and 
structures. Th ese complex data structures can contain many more data elements 
than there are registers in a computer. How can a computer represent and access 
such large structures?

Recall the fi ve components of a computer introduced in Chapter 1 and repeated 
on page 61. Th e processor can keep only a small amount of data in registers, but 
computer memory contains billions of data elements. Hence, data structures 
(arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS 
instructions; thus, MIPS must include instructions that transfer data between 
memory and registers. Such instructions are called data transfer instructions. 
To access a word in memory, the instruction must supply the memory address. 
Memory is just a large, single-dimensional array, with the address acting as the 
index to that array, starting at 0. For example, in Figure 2.2, the address of the third 
data element is 2, and the value of Memory [2] is 10.

ANSWER

data transfer 
instruction A command 
that moves data between 
memory and registers.

address A value used to 
delineate the location of 
a specifi c data element 
within a memory array.

Processor Memory

Address Data

1

101

10

100

0

1

2

3

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these elements 
were words, these addresses would be incorrect, since MIPS actually uses byte addressing, with each word 
representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses.

Th e data transfer instruction that copies data from memory to a register is 
traditionally called load. Th e format of the load instruction is the name of the 
operation followed by the register to be loaded, then a constant and register used to 
access memory. Th e sum of the constant portion of the instruction and the contents 
of the second register forms the memory address. Th e actual MIPS name for this 
instruction is lw, standing for load word.



Compiling an Assignment When an Operand Is in Memory

Let’s assume that A is an array of 100 words and that the compiler has 
associated the variables g and h with the registers $s1 and $s2 as before. 
Let’s also assume that the starting address, or base address, of the array is in 
$s3. Compile this C assignment statement:

g = h + A[8];

Although there is a single operation in this assignment statement, one of 
the operands is in memory, so we must fi rst transfer A[8] to a register. Th e 
address of this array element is the sum of the base of the array A, found in 
register $s3, plus the number to select element 8. Th e data should be placed 
in a temporary register for use in the next instruction. Based on Figure 2.2, the 
fi rst compiled instruction is

lw    $t0,8($s3) # Temporary reg $t0 gets A[8]

(We’ll be making a slight adjustment to this instruction, but we’ll use this 
simplifi ed version for now.) Th e following instruction can operate on the value 
in $t0 (which equals A[8]) since it is in a register. Th e instruction must add 
h (contained in $s2) to A[8] (contained in $t0) and put the sum in the 
register corresponding to g (associated with $s1):

add   $s1,$s2,$t0 # g = h + A[8]

Th e constant in a data transfer instruction (8) is called the off set, and the 
register added to form the address ($s3) is called the base register.

In addition to associating variables with registers, the compiler allocates data 
structures like arrays and structures to locations in memory. Th e compiler can then 
place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in many programs, virtually all architectures today 
address individual bytes. Th erefore, the address of a word matches the address of 
one of the 4 bytes within the word, and addresses of sequential words diff er by 4. 
For example, Figure 2.3 shows the actual MIPS addresses for the words in Figure 
2.2; the byte address of the third word is 8.

In MIPS, words must start at addresses that are multiples of 4. Th is requirement 
is called an alignment restriction, and many architectures have it. (Chapter 4 
suggests why alignment leads to faster data transfers.)

EXAMPLE

ANSWER

Hardware/
Software 
Interface

alignment restriction 
A requirement that data 
be aligned in memory on 
natural boundaries.

 2.3 Operands of the Computer Hardware 69
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Computers divide into those that use the address of the left most or “big end” byte 
as the word address versus those that use the rightmost or “little end” byte. MIPS is 
in the big-endian camp. Since the order matters only if you access the identical data 
both as a word and as four bytes, few need to be aware of the endianess. (Appendix 
A shows the two options to number bytes in a word.)

Byte addressing also aff ects the array index. To get the proper byte address in the 
code above, the off set to be added to the base register $s3 must be 4 � 8, or 32, so 
that the load address will select A[8] and not A[8/4]. (See the related pitfall on 
page 160 of Section 2.19.)

Th e instruction complementary to load is traditionally called store; it copies data 
from a register to memory. Th e format of a store is similar to that of a load: the 
name of the operation, followed by the register to be stored, then off set to select 
the array element, and fi nally the base register. Once again, the MIPS address is 
specifi ed in part by a constant and in part by the contents of a register. Th e actual 
MIPS name is sw, standing for store word.

As the addresses in loads and stores are binary numbers, we can see why the 
DRAM for main memory comes in binary sizes rather than in decimal sizes. Th at 
is, in gebibytes (230) or tebibytes (240), not in gigabytes (109) or terabytes (1012); see 
Figure 1.1.

Hardware/
Software 
Interface

Processor Memory

Byte Address Data

1

101

10

100

0

4

8

12

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words. 
Th e changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word 
addresses are multiples of 4: there are 4 bytes in a word.



Compiling Using Load and Store

Assume variable h is associated with register $s2 and the base address of 
the array A is in $s3. What is the MIPS assembly code for the C assignment 
statement below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the 
operands are in memory, so we need even more MIPS instructions. Th e fi rst 
two instructions are the same as in the prior example, except this time we use 
the proper off set for byte addressing in the load word instruction to select 
A[8], and the add instruction places the sum in $t0:

lw   $t0,32($s3)  # Temporary reg $t0 gets A[8]
add  $t0,$s2,$t0  # Temporary reg $t0 gets h + A[8]

Th e fi nal instruction stores the sum into A[12], using 48 (4 � 12) as the off set 
and register $s3 as the base register.

sw  $t0,48($s3)  # Stores h + A[8] back into A[12]

Load word and store word are the instructions that copy words between 
memory and registers in the MIPS architecture. Other brands of computers use 
other instructions along with load and store to transfer data. An architecture with 
such alternatives is the Intel x86, described in Section 2.17.

Many programs have more variables than computers have registers. Consequently, 
the compiler tries to keep the most frequently used variables in registers and places 
the rest in memory, using loads and stores to move variables between registers and 
memory. Th e process of putting less commonly used variables (or those needed 
later) into memory is called spilling registers.

Th e hardware principle relating size and speed suggests that memory must be 
slower than registers, since there are fewer registers. Th is is indeed the case; data 
accesses are faster if data is in registers instead of memory.

Moreover, data is more useful when in a register. A MIPS arithmetic instruction 
can read two registers, operate on them, and write the result. A MIPS data transfer 
instruction only reads one operand or writes one operand, without operating on it.

Th us, registers take less time to access and have higher throughput than memory, 
making data in registers both faster to access and simpler to use. Accessing registers 
also uses less energy than accessing memory. To achieve highest performance and 
conserve energy, an instruction set architecture must have a suffi  cient number of 
registers, and compilers must use registers effi  ciently.

EXAMPLE

ANSWER
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Constant or Immediate Operands
Many times a program will use a constant in an operation—for example, 
incrementing an index to point to the next element of an array. In fact, more than 
half of the MIPS arithmetic instructions have a constant as an operand when 
running the SPEC CPU2006 benchmarks.

Using only the instructions we have seen so far, we would have to load a constant 
from memory to use one. (Th e constants would have been placed in memory when 
the program was loaded.) For example, to add the constant 4 to register $s3, we 
could use the code

lw $t0, AddrConstant4($s1)   # $t0 = constant 4
add $s3,$s3,$t0              # $s3 = $s3 + $t0 ($t0 == 4)

assuming that $s1 + AddrConstant4 is the memory address of the constant 4.
An alternative that avoids the load instruction is to off er versions of the arithmetic 

instructions in which one operand is a constant. Th is quick add instruction with 
one constant operand is called add immediate or addi. To add 4 to register $s3, 
we just write

addi    $s3,$s3,4            # $s3 = $s3 + 4

Constant operands occur frequently, and by including constants inside 
arithmetic instructions, operations are much faster and use less energy than if 
constants were loaded from memory.

Th e constant zero has another role, which is to simplify the instruction set 
by off ering useful variations. For example, the move operation is just an add 
instruction where one operand is zero. Hence, MIPS dedicates a register $zero 
to be hard-wired to the value zero. (As you might expect, it is register number 0.) 
Using frequency to justify the inclusions of constants is another example of the 
great idea of making the common case fast.

Given the importance of registers, what is the rate of increase in the number of 
registers in a chip over time?

1. Very fast: Th ey increase as fast as Moore’s law, which predicts doubling the 
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the 
computer, there is inertia in instruction set architecture, and so the number 
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a 
64-bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight, 
they are offi cially called MIPS-32 and MIPS-64. In this chapter, we use a subset of 
MIPS-32.  Appendix E shows the differences between MIPS-32 and MIPS-64. Sections 
2.16 and 2.18 show the much more dramatic difference between the 32-bit address 
ARMv7 and its 64-bit successor, ARMv8.

Check 
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Elaboration: The MIPS offset plus base register addressing is an excellent match to 
structures as well as arrays, since the register can point to the beginning of the structure 
and the offset can select the desired element. We’ll see such an example in Section 
2.13.

Elaboration: The register in the data transfer instructions was originally invented to 
hold an index of an array with the offset used for the starting address of an array. Thus, 
the base register is also called the index register. Today’s memories are much larger and 
the software model of data allocation is more sophisticated, so the base address of 
the array is normally passed in a register since it won’t fi t in the offset, as we shall see.

Elaboration: Since MIPS supports negative constants, there is no need for subtract 
immediate in MIPS.

 2.4 Signed and Unsigned Numbers

First, let’s quickly review how a computer represents numbers. Humans are taught 
to think in base 10, but numbers may be represented in any base. For example, 123 
base 10 � 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic 
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are 
called decimal numbers, base 2 numbers are called binary numbers.)

A single digit of a binary number is thus the “atom” of computing, since all 
information is composed of binary digits or bits. Th is fundamental building block 
can be one of two values, which can be thought of as several alternatives: high or 
low, on or off , true or false, or 1 or 0.

Generalizing the point, in any number base, the value of ith digit d is

d i� Base

where i starts at 0 and increases from right to left . Th is representation leads to an 
obvious way to number the bits in the word: simply use the power of the base for 
that bit. We subscript decimal numbers with ten and binary numbers with two. For 
example,

1011two

represents

(1 x 23)   + (0 x 22) + (1 x 21)  + (1 x 20)ten

= (1 x 8)   + (0 x 4)  + (1 x 2)  + (1 x 1)ten

=    8      +    0     +    2     +    1ten

= 11ten

binary digit Also 
called binary bit. One 
of the two numbers 
in base 2, 0 or 1, that 
are the components of 
information.
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We number the bits 0, 1, 2, 3, . . . from right to left  in a word. Th e drawing below 
shows the numbering of bits within a MIPS word and the placement of the number 
1011two:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

(32 bits wide)

Since words are drawn vertically as well as horizontally, left most and rightmost 
may be unclear. Hence, the phrase least signifi cant bit is used to refer to the right-
most bit (bit 0 above) and most signifi cant bit to the left most bit (bit 31).

Th e MIPS word is 32 bits long, so we can represent 232 diff erent 32-bit patterns. 
It is natural to let these combinations represent the numbers from 0 to 232 �1 
(4,294,967,295ten):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = 2ten
 . . .                                        . . .
1111 1111 1111 1111 1111 1111 1111 1101two = 4,294,967,293ten
1111 1111 1111 1111 1111 1111 1111 1110two = 4,294,967,294ten
1111 1111 1111 1111 1111 1111 1111 1111two = 4,294,967,295ten

Th at is, 32-bit binary numbers can be represented in terms of the bit value times a 
power of 2 (here xi means the ith bit of x):

( ) ( ) ( ) ( ) ( )x x x x x31 2 30 2 29 2 1 2 0 231 30 29 1 0…

For reasons we will shortly see, these positive numbers are called unsigned numbers.

Base 2 is not natural to human beings; we have 10 fi ngers and so fi nd base 10 
natural. Why didn’t computers use decimal? In fact, the fi rst commercial computer 
did off er decimal arithmetic. Th e problem was that the computer still used on 
and off  signals, so a decimal digit was simply represented by several binary digits. 
Decimal proved so ineffi  cient that subsequent computers reverted to all binary, 
converting to base 10 only for the relatively infrequent input/output events.

Keep in mind that the binary bit patterns above are simply representatives of 
numbers. Numbers really have an infi nite number of digits, with almost all being 
0 except for a few of the rightmost digits. We just don’t normally show leading 0s.

Hardware can be designed to add, subtract, multiply, and divide these binary 
bit patterns. If the number that is the proper result of such operations cannot be 
represented by these rightmost hardware bits, overfl ow is said to have occurred. 

least signifi cant bit Th e 
rightmost bit in a MIPS 
word.

most signifi cant bit Th e 
left most bit in a MIPS 
word.
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It’s up to the programming language, the operating system, and the program to 
determine what to do if overfl ow occurs.

Computer programs calculate both positive and negative numbers, so we need a 
representation that distinguishes the positive from the negative. Th e most obvious 
solution is to add a separate sign, which conveniently can be represented in a single 
bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it’s 
not obvious where to put the sign bit. To the right? To the left ? Early computers 
tried both. Second, adders for sign and magnitude may need an extra step to set 
the sign because we can’t know in advance what the proper sign will be. Finally, a 
separate sign bit means that sign and magnitude has both a positive and a negative 
zero, which can lead to problems for inattentive programmers. As a result of these 
shortcomings, sign and magnitude representation was soon abandoned.

In the search for a more attractive alternative, the question arose as to what 
would be the result for unsigned numbers if we tried to subtract a large number 
from a small one. Th e answer is that it would try to borrow from a string of leading 
0s, so the result would have a string of leading 1s.

Given that there was no obvious better alternative, the fi nal solution was to pick 
the representation that made the hardware simple: leading 0s mean positive, and 
leading 1s mean negative. Th is convention for representing signed binary numbers 
is called two’s complement representation:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = 2ten
 . . .                                        . . .
0111 1111 1111 1111 1111 1111 1111 1101two = 2,147,483,645ten
0111 1111 1111 1111 1111 1111 1111 1110two = 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = –2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = –2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = –2,147,483,646ten
. . .                                        . . .
1111 1111 1111 1111 1111 1111 1111 1101two = –3ten
1111 1111 1111 1111 1111 1111 1111 1110two = –2ten
1111 1111 1111 1111 1111 1111 1111 1111two = –1ten

Th e positive half of the numbers, from 0 to 2,147,483,647ten (231 �1), use the same 
representation as before. Th e following bit pattern (1000 . . . 0000two) represents the most 
negative number �2,147,483,648ten (�231). It is followed by a declining set of negative 
numbers: �2,147,483,647ten (1000 . . . 0001two) down to �1ten (1111 . . . 1111two).

Two’s complement does have one negative number, �2,147,483,648ten, that 
has no corresponding positive number. Such imbalance was also a worry to the 
inattentive programmer, but sign and magnitude had problems for both the 
programmer and the hardware designer. Consequently, every computer today uses 
two’s complement binary representations for signed numbers.
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Two’s complement representation has the advantage that all negative numbers 
have a 1 in the most signifi cant bit. Consequently, hardware needs to test only 
this bit to see if a number is positive or negative (with the number 0 considered 
positive). Th is bit is oft en called the sign bit. By recognizing the role of the sign bit, 
we can represent positive and negative 32-bit numbers in terms of the bit value 
times a power of 2:

( ) ( ) ( ) ( ) ( )x x x x x31 2 30 2 29 2 1 2 0 231 30 29 1 0+ …

Th e sign bit is multiplied by �231, and the rest of the bits are then multiplied by 
positive versions of their respective base values.

Binary to Decimal Conversion

What is the decimal value of this 32-bit two’s complement number?

1111  1111  1111  1111  1111  1111  1111  1100two

Substituting the number’s bit values into the formula above:

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 0 2 0 2
2 2 2

31 30 29 1 1 0

31 30
…

229 22 0 0
2 147 483 648 2 147 483 644
4

…
, , , , , ,te tn en
ten

We’ll see a shortcut to simplify conversion from negative to positive soon.

Just as an operation on unsigned numbers can overfl ow the capacity of hardware 
to represent the result, so can an operation on two’s complement numbers. Overfl ow 
occurs when the left most retained bit of the binary bit pattern is not the same as the 
infi nite number of digits to the left  (the sign bit is incorrect): a 0 on the left  of the bit 
pattern when the number is negative or a 1 when the number is positive.

Signed versus unsigned applies to loads as well as to arithmetic. Th e function of a 
signed load is to copy the sign repeatedly to fi ll the rest of the register—called sign 
extension—but its purpose is to place a correct representation of the number within 
that register. Unsigned loads simply fi ll with 0s to the left  of the data, since the 
number represented by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot; signed and 
unsigned loads are identical. MIPS does off er two fl avors of byte loads: load byte (lb) 
treats the byte as a signed number and thus sign-extends to fi ll the 24 left -most bits 
of the register, while load byte unsigned (lbu) works with unsigned integers. Since C 
programs almost always use bytes to represent characters rather than consider bytes 
as very short signed integers, lbu is used practically exclusively for byte loads.

EXAMPLE
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Unlike the numbers discussed above, memory addresses naturally start at 0 
and continue to the largest address. Put another way, negative addresses make 
no sense. Th us, programs want to deal sometimes with numbers that can be 
positive or negative and sometimes with numbers that can be only positive. 
Some programming languages refl ect this distinction. C, for example, names the 
former integers (declared as int in the program) and the latter unsigned integers 
(unsigned int). Some C style guides even recommend declaring the former as 
signed int to keep the distinction clear.

Let’s examine two useful shortcuts when working with two’s complement 
numbers. Th e fi rst shortcut is a quick way to negate a two’s complement binary 
number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result. 
Th is shortcut is based on the observation that the sum of a number and its inverted 
representation must be 111 . . . 111two, which represents �1. Since x x 1, 
therefore x x 1 0 or x x1 − . (We use the notation x to mean invert 
every bit in x from 0 to 1 and vice versa.)

Negation Shortcut

Negate 2ten, and then check the result by negating �2ten.

2ten � 0000 0000 0000 0000 0000 0000 0000 0010two

Negating this number by inverting the bits and adding one,

  1111  1111  1111  1111  1111  1111  1111  1101two

 +                                    1two

 =  1111  1111  1111  1111  1111  1111  1111  1110two

 =  –2ten

Going the other direction,

1111 1111 1111 1111 1111 1111 1111 1110two

is fi rst inverted and then incremented:

 0000  0000  0000  0000  0000  0000  0000  0001two

 +                                     1two

 = 0000  0000  0000  0000  0000  0000  0000  0010two

 = 2ten

Hardware/
Software 
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Our next shortcut tells us how to convert a binary number represented in n bits 
to a number represented with more than n bits. For example, the immediate fi eld 
in the load, store, branch, add, and set on less than instructions contains a two’s 
complement 16-bit number, representing �32,768ten (�215) to 32,767ten (215 � 1). 
To add the immediate fi eld to a 32-bit register, the computer must convert that 16-
bit number to its 32-bit equivalent. Th e shortcut is to take the most signifi cant bit 
from the smaller quantity—the sign bit—and replicate it to fi ll the new bits of the 
larger quantity. Th e old nonsign bits are simply copied into the right portion of the 
new word. Th is shortcut is commonly called sign extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2ten and �2ten to 32-bit binary numbers.

Th e 16-bit binary version of the number 2 is

0000 0000 0000 0010two = 2ten

It is converted to a 32-bit number by making 16 copies of the value in the most 
signifi cant bit (0) and placing that in the left -hand half of the word. Th e right 
half gets the old value:

0000 0000 0000 0000 0000 0000 0000 0010two = 2ten

Let’s negate the 16-bit version of 2 using the earlier shortcut. Th us,

0000 0000 0000 0010two

becomes

1111  1111  1111  1101two

+                1two

= 1111  1111  1111  1110two

Creating a 32-bit version of the negative number means copying the sign bit 
16 times and placing it on the left :

1111 1111 1111 1111 1111 1111 1111 1110two = –2ten

Th is trick works because positive two’s complement numbers really have an infi nite 
number of 0s on the left  and negative two’s complement numbers have an infi nite 
number of 1s. Th e binary bit pattern representing a number hides leading bits to fi t 
the width of the hardware; sign extension simply restores some of them.

EXAMPLE

ANSWER



Summary
Th e main point of this section is that we need to represent both positive and 
negative integers within a computer word, and although there are pros and cons to 
any option, the unanimous choice since 1965 has been two’s complement.

Elaboration: For signed decimal numbers, we used “�” to represent negative 
because there are no limits to the size of a decimal number. Given a fi xed word size, 
binary and hexadecimal (see Figure 2.4) bit strings can encode the sign; hence we do 
not normally use “�” or “�” with binary or hexadecimal notation.

What is the decimal value of this 64-bit two’s complement number?

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1000two

1) –4ten

2) –8ten

3) –16ten

4) 18,446,744,073,709,551,609ten

Elaboration: Two’s complement gets its name from the rule that the unsigned sum 
of an n-bit number and its n-bit negative is 2n; hence, the negation or complement of a 
number x is 2n � x, or its “two’s complement.”

A third alternative representation to two’s complement and sign and magnitude is 
called one’s complement. The negative of a one’s complement is found by inverting 
each bit, from 0 to 1 and from 1 to 0, or x. This relation helps explain its name since 
the complement of x is 2n � x � 1. It was also an attempt to be a better solution 
than sign and magnitude, and several early scientifi c computers did use the notation. 
This representation is similar to two’s complement except that it also has two 0s: 
00 . . . 00two is positive 0 and 11 . . . 11two is negative 0. The most negative number, 
10 . . . 000two, represents �2,147,483,647ten, and so the positives and negatives are 
balanced. One’s complement adders did need an extra step to subtract a number, and 
hence two’s complement dominates today.

A fi nal notation, which we will look at when we discuss fl oating point in Chapter 3, 
is to represent the most negative value by 00 . . . 000two and the most positive value 
by 11 . . . 11two, with 0 typically having the value 10 . . . 00two. This is called a biased 

notation, since it biases the number such that the number plus the bias has a non-
negative representation.

Check 
Yourself

one’s complement 
A notation that represents 
the most negative value 
by 10 . . . 000two and the 
most positive value by 
01 . . . 11two, leaving an 
equal number of negatives 
and positives but ending 
up with two zeros, one 
positive (00 . . . 00two) and 
one negative (11 . . . 11two). 
Th e term is also used to 
mean the inversion of 
every bit in a pattern: 0 to 
1 and 1 to 0.

biased notation 
A notation that represents 
the most negative value 
by 00 . . . 000two and the 
most positive value by 11 
. . . 11two, with 0 typically 
having the value 10 . . . 
00two, thereby biasing 
the number such that 
the number plus the 
bias has a non-negative 
representation.
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 2.5  Representing Instructions in the Computer

We are now ready to explain the diff erence between the way humans instruct 
computers and the way computers see instructions.

Instructions are kept in the computer as a series of high and low electronic 
signals and may be represented as numbers. In fact, each piece of an instruction 
can be considered as an individual number, and placing these numbers side by side 
forms the instruction.

Since registers are referred to in instructions, there must be a convention to 
map register names into numbers. In MIPS assembly language, registers $s0 to 
$s7 map onto registers 16 to 23, and registers $t0 to $t7 map onto registers 8 
to 15. Hence, $s0 means register 16, $s1 means register 17, $s2 means register 
18, . . . , $t0 means register 8, $t1 means register 9, and so on. We’ll describe the 
convention for the rest of the 32 registers in the following sections.

Translating a MIPS Assembly Instruction into a Machine Instruction

Let’s do the next step in the refi nement of the MIPS language as an example. 
We’ll show the real MIPS language version of the instruction represented 
symbolically as

add $t0,$s1,$s2

fi rst as a combination of decimal numbers and then of binary numbers.

Th e decimal representation is

0 17 18 8 0 32

Each of these segments of an instruction is called a fi eld. Th e fi rst and 
last fi elds (containing 0 and 32 in this case) in combination tell the MIPS 
computer that this instruction performs addition. Th e second fi eld gives the 
number of the register that is the fi rst source operand of the addition operation 
(17 � $s1), and the third fi eld gives the other source operand for the addition 
(18 � $s2). Th e fourth fi eld contains the number of the register that is to 
receive the sum (8 � $t0). Th e fi ft h fi eld is unused in this instruction, so it is 
set to 0. Th us, this instruction adds register $s1 to register $s2 and places the 
sum in register $t0.

Th is instruction can also be represented as fi elds of binary numbers as 
opposed to decimal:

000000 10001 10010 01000 00000 100000

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

EXAMPLE

ANSWER
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Th is layout of the instruction is called the instruction format. As you can see 
from counting the number of bits, this MIPS instruction takes exactly 32 bits—the 
same size as a data word. In keeping with our design principle that simplicity favors 
regularity, all MIPS instructions are 32 bits long.

To distinguish it from assembly language, we call the numeric version of 
instructions machine language and a sequence of such instructions machine code.

It would appear that you would now be reading and writing long, tedious strings 
of binary numbers. We avoid that tedium by using a higher base than binary that 
converts easily into binary. Since almost all computer data sizes are multiples of 
4, hexadecimal (base 16) numbers are popular. Since base 16 is a power of 2, 
we can trivially convert by replacing each group of four binary digits by a single 
hexadecimal digit, and vice versa. Figure 2.4 converts between hexadecimal and 
binary.

instruction format 
A form of representation 
of an instruction 
composed of fi elds of 
binary numbers.

machine 
language Binary 
representation used for 
communication within a 
computer system.

hexadecimal Numbers 
in base 16.

Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary 

0hex 0000two 4hex 0100two 8hex 1000two chex 1100two

1hex 0001two 5hex 0101two 9hex 1001two dhex 1101two

2hex 0010two 6hex 0110two ahex 1010two ehex 1110two

3hex 0011two 7hex 0111two bhex 1011two fhex 1111two

FIGURE 2.4 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four binary digits, 
and vice versa. If the length of the binary number is not a multiple of 4, go from right to left .

Because we frequently deal with diff erent number bases, to avoid confusion 
we will subscript decimal numbers with ten, binary numbers with two, and 
hexadecimal numbers with hex. (If there is no subscript, the default is base 10.) By 
the way, C and Java use the notation 0xnnnn for hexadecimal numbers.

Binary to Hexadecimal and Back

Convert the following hexadecimal and binary numbers into the other base:

eca8  6420hex

0001  0011 0101  0111 1001  1011  1101  1111two

EXAMPLE
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Using Figure 2.4, the answer is just a table lookup one way:

MIPS Fields
MIPS fi elds are given names to make them easier to discuss:

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Here is the meaning of each name of the fi elds in MIPS instructions:

■ op: Basic operation of the instruction, traditionally called the opcode.

■ rs: Th e fi rst register source operand.

■ rt: Th e second register source operand.

■ rd: Th e register destination operand. It gets the result of the operation.

■ shamt: Shift  amount. (Section 2.6 explains shift  instructions and this term; it 
will not be used until then, and hence the fi eld contains zero in this section.)

■ funct: Function. Th is fi eld, oft en called the function code, selects the specifi c 
variant of the operation in the op fi eld.

A problem occurs when an instruction needs longer fi elds than those shown 
above. For example, the load word instruction must specify two registers and a 
constant. If the address were to use one of the 5-bit fi elds in the format above, the 
constant within the load word instruction would be limited to only 25 or 32. Th is 
constant is used to select elements from arrays or data structures, and it oft en needs 
to be much larger than 32. Th is 5-bit fi eld is too small to be useful.

Hence, we have a confl ict between the desire to keep all instructions the same 
length and the desire to have a single instruction format. Th is leads us to the fi nal 
hardware design principle:

ANSWER

opcode Th e fi eld that 
denotes the operation and 
format of an instruction.

eca8  6420hex

 1110   1100   1010   1000   0110  0100   0010   0000two

And then the other direction: 

 0001   0011 0101    0111 1001  1011    1101   1111two

 

1357 9bdfhex



Design Principle 3: Good design demands good compromises.
Th e compromise chosen by the MIPS designers is to keep all instructions the 

same length, thereby requiring diff erent kinds of instruction formats for diff erent 
kinds of instructions. For example, the format above is called R-type (for register) 
or R-format. A second type of instruction format is called I-type (for immediate) 
or I-format and is used by the immediate and data transfer instructions. Th e fi elds 
of I-format are

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Th e 16-bit address means a load word instruction can load any word within 
a region of �215 or 32,768 bytes (�213 or 8192 words) of the address in the base 
register rs. Similarly, add immediate is limited to constants no larger than �215. 
We see that more than 32 registers would be diffi  cult in this format, as the rs and rt 
fi elds would each need another bit, making it harder to fi t everything in one word.

Let’s look at the load word instruction from page 71:

lw   $t0,32($s3)   # Temporary reg $t0 gets A[8]

Here, 19 (for $s3) is placed in the rs fi eld, 8 (for $t0) is placed in the rt fi eld, and 
32 is placed in the address fi eld. Note that the meaning of the rt fi eld has changed 
for this instruction: in a load word instruction, the rt fi eld specifi es the destination 
register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the complexity 
by keeping the formats similar. For example, the fi rst three fi elds of the R-type and 
I-type formats are the same size and have the same names; the length of the fourth 
fi eld in I-type is equal to the sum of the lengths of the last three fi elds of R-type.

In case you were wondering, the formats are distinguished by the values in the 
fi rst fi eld: each format is assigned a distinct set of values in the fi rst fi eld (op) so that 
the hardware knows whether to treat the last half of the instruction as three fi elds 
(R-type) or as a single fi eld (I-type). Figure 2.5 shows the numbers used in each 
fi eld for the MIPS instructions covered so far.
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Instruction Format op rs rt rd shamt funct address

add R 0 reg reg reg 0 32ten n.a.

sub (subtract) R 0 reg reg reg 0 34ten n.a.

add immediate I 8ten reg reg n.a. n.a. n.a. constant

lw (load word) I 35ten reg reg n.a. n.a. n.a. address

sw (store word) I 43ten reg reg n.a. n.a. n.a. address

FIGURE 2.5 MIPS instruction encoding. In the table above, “reg” means a register number between 0 
and 31, “address” means a 16-bit address, and “n.a.” (not applicable) means this fi eld does not appear in this 
format. Note that add and sub instructions have the same value in the op fi eld; the hardware uses the funct 
fi eld to decide the variant of the operation: add (32) or subtract (34).
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Translating MIPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes 
to what the computer executes. If $t1 has the base of the array A and $s2 
corresponds to h, the assignment statement

A[300] = h + A[300];

is compiled into

lw   $t0,1200($t1) # Temporary reg $t0 gets A[300]
add  $t0,$s2,$t0   # Temporary reg $t0 gets h + A[300]
sw   $t0,1200($t1) # Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions?

For convenience, let’s fi rst represent the machine language instructions using 
decimal numbers. From Figure 2.5, we can determine the three machine 
language instructions:

Op rs rt rd
address/

shamt funct

35 9 8 1200

0 18 8 8 0 32

43 9 8 1200

Th e lw instruction is identifi ed by 35 (see Figure 2.5) in the fi rst fi eld 
(op). Th e base register 9 ($t1) is specifi ed in the second fi eld (rs), and the 
destination register 8 ($t0) is specifi ed in the third fi eld (rt). Th e off set to 
select A[300] (1200 � 300 � 4) is found in the fi nal fi eld (address).

Th e add instruction that follows is specifi ed with 0 in the fi rst fi eld (op) and 
32 in the last fi eld (funct). Th e three register operands (18, 8, and 8) are found 
in the second, third, and fourth fi elds and correspond to $s2, $t0, and $t0.

Th e sw instruction is identifi ed with 43 in the fi rst fi eld. Th e rest of this fi nal 
instruction is identical to the lw instruction.

Since 1200ten � 0000 0100 1011 0000two, the binary equivalent to the decimal 
form is:

EXAMPLE

ANSWER

100011 01001 01000 0000 0100 1011 0000

000000 10010 01000 01000 00000 100000

101011 01001 01000 0000 0100 1011 0000



Note the similarity of the binary representations of the fi rst and last 
instructions. Th e only diff erence is in the third bit from the left , which is 
highlighted here.

Th e desire to keep all instructions the same size is in confl ict with the desire to 
have as many registers as possible. Any increase in the number of registers uses 
up at least one more bit in every register fi eld of the instruction format. Given 
these constraints and the design princple that smaller is faster, most instruction 
sets today have 16 or 32 general purpose registers.

Hardware/
Software 
Interface

MIPS machine language

Name Format Example Comments

add R 0 18 19 17 0 32 add $s1,$s2,$s3
sub R 0 18 19 17 0 34 sub $s1,$s2,$s3
addi I 8 18 17 100 addi $s1,$s2,100
lw I 35 18 17 100 lw $s1,100($s2)
sw I 43 18 17 100 sw $s1,100($s2)
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions are 32 bits long

R-format R op rs rt rd shamt funct Arithmetic instruction format

I-format I op rs rt address Data transfer format

FIGURE 2.6 MIPS architecture revealed through Section 2.5. Th e two MIPS instruction formats so far are R and I. Th e fi rst 16 bits 
are the same: both contain an op fi eld, giving the base operation; an rs fi eld, giving one of the sources; and the rt fi eld, which specifi es the other 
source operand, except for load word, where it specifi es the destination register. R-format divides the last 16 bits into an rd fi eld, specifying 
the destination register; the shamt fi eld, which Section 2.6 explains; and the funct fi eld, which specifi es the specifi c operation of R-format 
instructions. I-format combines the last 16 bits into a single address fi eld.
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Figure 2.6 summarizes the portions of MIPS machine language described in this 
section. As we shall see in Chapter 4, the similarity of the binary representations 
of related instructions simplifi es hardware design. Th ese similarities are another 
example of regularity in the MIPS architecture.
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Today’s computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like 
data.

Th ese principles lead to the stored-program concept; its invention let 
the computing genie out of its bottle. Figure 2.7 shows the power of the 
concept; specifi cally, memory can contain the source code for an editor 
program, the corresponding compiled machine code, the text that the 
compiled program is using, and even the compiler that generated the 
machine code.

One consequence of instructions as numbers is that programs are oft en 
shipped as fi les of binary numbers. Th e commercial implication is that 
computers can inherit ready-made soft ware provided they are compatible 
with an existing instruction set. Such “binary compatibility” oft en leads 
industry to align around a small number of instruction set architectures.

The BIG
Picture

Memory

Accounting program
(machine code)

Processor

Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

Source code in C
for editor program

FIGURE 2.7 The stored-program concept. Stored programs allow a computer that performs 
accounting to become, in the blink of an eye, a computer that helps an author write a book. Th e switch 
happens simply by loading memory with programs and data and then telling the computer to begin executing 
at a given location in memory. Treating instructions in the same way as data greatly simplifi es both the 
memory hardware and the soft ware of computer systems. Specifi cally, the memory technology needed for 
data can also be used for programs, and programs like compilers, for instance, can translate code written in a 
notation far more convenient for humans into code that the computer can understand.
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What MIPS instruction does this represent? Choose from one of the four options 
below.

op rs rt rd shamt funct

0 8 9 10 0 34

1. sub $t0, $t1, $t2

2. add $t2, $t0, $t1

3. sub $t2, $t1, $t0

4. sub $t2, $t0, $t1

 2.6 Logical Operations

Although the fi rst computers operated on full words, it soon became clear that 
it was useful to operate on fi elds of bits within a word or even on individual bits. 
Examining characters within a word, each of which is stored as 8 bits, is one example 
of such an operation (see Section 2.9). It follows that operations were added to 
programming languages and instruction set architectures to simplify, among other 
things, the packing and unpacking of bits into words. Th ese instructions are called 
logical operations. Figure 2.8 shows logical operations in C, Java, and MIPS.

Check 
Yourself

“Contrariwise,” 
continued Tweedledee, 
“if it was so, it might 
be; and if it were so, 
it would be; but as it 
isn’t, it ain’t. Th at’s 
logic.”
Lewis Carroll, 
Alice’s Adventures in 
Wonderland, 1865

FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS 
implements NOT using a NOR with one operand being zero.

Th e fi rst class of such operations is called shift s. Th ey move all the bits in a word 
to the left  or right, fi lling the emptied bits with 0s. For example, if register $s0 
contained

0000 0000 0000 0000 0000 0000 0000 1001two = 9ten

and the instruction to shift  left  by 4 was executed, the new value would be:

0000 0000 0000 0000 0000 0000 1001 0000two = 144ten

Logical operations C operators Java operators MIPS instructions

Shift left << <<  sll
Shift right >> >>>  srl

Bit-by-bit AND & &  and, andi
Bit-by-bit OR | |  or, ori
Bit-by-bit NOT ~ ~  nor
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Th e dual of a shift  left  is a shift  right. Th e actual name of the two MIPS shift  
instructions are called shift  left  logical (sll) and shift  right logical (srl). Th e 
following instruction performs the operation above, assuming that the original 
value was in register $s0 and the result should go in register $t2:

sll  $t2,$s0,4  # reg $t2 = reg $s0 << 4 bits

We delayed explaining the shamt fi eld in the R-format. Used in shift  instructions, 
it stands for shift  amount. Hence, the machine language version of the instruction 
above is

op rs rt rd shamt funct

0 0 16 10 4 0

Th e encoding of sll is 0 in both the op and funct fi elds, rd contains 10 (register 
$t2), rt contains 16 (register $s0), and shamt contains 4. Th e rs fi eld is unused 
and thus is set to 0.

Shift  left  logical provides a bonus benefi t. Shift ing left  by i bits gives the same 
result as multiplying by 2i, just as shift ing a decimal number by i digits is equivalent 
to multiplying by 10i. For example, the above sll shift s by 4, which gives the same 
result as multiplying by 24 or 16. Th e fi rst bit pattern above represents 9, and 9 �16 � 
144, the value of the second bit pattern.

Another useful operation that isolates fi elds is AND. (We capitalize the word to 
avoid confusion between the operation and the English conjunction.) AND is a bit-
by-bit operation that leaves a 1 in the result only if both bits of the operands are 1. 
For example, if register $t2 contains

0000 0000 0000 0000 0000 1101 1100 0000two

and register $t1 contains

0000 0000 0000 0000 0011 1100 0000 0000two

then, aft er executing the MIPS instruction

and $t0,$t1,$t2    # reg $t0 = reg $t1 & reg $t2

the value of register $t0 would be

0000 0000 0000 0000 0000 1100 0000 0000two

As you can see, AND can apply a bit pattern to a set of bits to force 0s where there 
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is traditionally 
called a mask, since the mask “conceals” some bits.

AND A logical bit-
by-bit operation with two 
operands that calculates 
a 1 only if there is a 1 in 
both operands.



To place a value into one of these seas of 0s, there is the dual to AND, called 
OR. It is a bit-by-bit operation that places a 1 in the result if either operand bit is 
a 1. To elaborate, if the registers $t1 and $t2 are unchanged from the preceding 
example, the result of the MIPS instruction

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2

is this value in register $t0:

0000 0000 0000 0000 0011 1101 1100 0000two

Th e fi nal logical operation is a contrarian. NOT takes one operand and places a 1 
in the result if one operand bit is a 0, and vice versa. Using our prior notation, it 
calculates x.

In keeping with the three-operand format, the designers of MIPS decided to 
include the instruction NOR (NOT OR) instead of NOT. If one operand is zero, 
then it is equivalent to NOT: A NOR 0 � NOT (A OR 0) � NOT (A).

If the register $t1 is unchanged from the preceding example and register $t3 
has the value 0, the result of the MIPS instruction

nor $t0,$t1,$t3 # reg $t0 = ~ (reg $t1 | reg $t3)

is this value in register $t0:

1111 1111 1111 1111 1100 0011 1111 1111two

Figure 2.8 above shows the relationship between the C and Java operators and the 
MIPS instructions. Constants are useful in AND and OR logical operations as well 
as in arithmetic operations, so MIPS also provides the instructions and immediate 
(andi) and or immediate (ori). Constants are rare for NOR, since its main use is 
to invert the bits of a single operand; thus, the MIPS instruction set architecture has 
no immediate version of NOR.

Elaboration: The full MIPS instruction set also includes exclusive or (XOR), which 
sets the bit to 1 when two corresponding bits differ, and to 0 when they are the same. C 
allows bit fi elds or fi elds to be defi ned within words, both allowing objects to be packed 
within a word and to match an externally enforced interface such as an I/O device. All 
fi elds must fi t within a single word. Fields are unsigned integers that can be as short as 
1 bit. C compilers insert and extract fi elds using logical instructions in MIPS: and, or, 
sll, and srl.

Elaboration: Logical AND immediate and logical OR immediate put 0s into the upper 
16 bits to form a 32-bit constant, unlike add immediate, which does sign extension.

Which operations can isolate a fi eld in a word?

1. AND

2. A shift  left  followed by a shift  right

OR A logical bit-by-
bit operation with two 
operands that calculates 
a 1 if there is a 1 in either 
operand.

NOT A logical bit-by-
bit operation with one 
operand that inverts the 
bits; that is, it replaces 
every 1 with a 0, and 
every 0 with a 1.

NOR A logical bit-by-
bit operation with two 
operands that calculates 
the NOT of the OR of the 
two operands. Th at is, it 
calculates a 1 only if there 
is a 0 in both operands.

Check 
Yourself
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 2.7 Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make 
decisions. Based on the input data and the values created during computation, 
diff erent instructions execute. Decision making is commonly represented in 
programming languages using the if statement, sometimes combined with go to 
statements and labels. MIPS assembly language includes two decision-making 
instructions, similar to an if statement with a go to. Th e fi rst instruction is

beq register1, register2, L1

Th is instruction means go to the statement labeled L1 if the value in register1 
equals the value in register2. Th e mnemonic beq stands for branch if equal. 
Th e second instruction is

bne register1, register2, L1

It means go to the statement labeled L1 if the value in register1 does not equal 
the value in register2. Th e mnemonic bne stands for branch if not equal. Th ese 
two instructions are traditionally called conditional branches.

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the fi ve 
variables f through j correspond to the fi ve registers $s0 through $s4, what 
is the compiled MIPS code for this C if statement?

if (i == j) f = g + h; else f = g – h;

Figure 2.9 shows a fl owchart of what the MIPS code should do. Th e fi rst 
expression compares for equality, so it would seem that we would want the 
branch if registers are equal instruction (beq). In general, the code will be 
more effi  cient if we test for the opposite condition to branch over the code that 
performs the subsequent then part of the if (the label Else is defi ned below) 
and so we use the branch if registers are not equal instruction (bne):

bne $s3,$s4,Else   # go to Else if i ≠ j

Th e utility of an 
automatic computer lies 
in the possibility of using 
a given sequence of 
instructions repeatedly, 
the number of times it is 
iterated being dependent 
upon the results of 
the computation . . . . 
Th is choice can be 
made to depend upon 
the sign of a number 
(zero being reckoned 
as plus for machine 
purposes). Consequently, 
we introduce an 
[instruction] (the 
conditional transfer 
[instruction]) which 
will, depending on the 
sign of a given number, 
cause the proper one 
of two routines to be 
executed.
Burks, Goldstine, and 
von Neumann, 1947

EXAMPLE

ANSWER
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Th e next assignment statement performs a single operation, and if all the 
operands are allocated to registers, it is just one instruction:

add $s0,$s1,$s2    # f = g + h (skipped if i ≠ j)

We now need to go to the end of the if statement. Th is example introduces 
another kind of branch, oft en called an unconditional branch. Th is instruction 
says that the processor always follows the branch. To distinguish between 
conditional and unconditional branches, the MIPS name for this type of 
instruction is jump, abbreviated as j (the label Exit is defi ned below).

j Exit     # go to Exit

Th e assignment statement in the else portion of the if statement can again be 
compiled into a single instruction. We just need to append the label Else to 
this instruction. We also show the label Exit that is aft er this instruction, 
showing the end of the if-then-else compiled code:

Else:sub $s0,$s1,$s2  # f = g – h (skipped if i = j)
Exit:

Notice that the assembler relieves the compiler and the assembly language 
programmer from the tedium of calculating addresses for branches, just as it does 
for calculating data addresses for loads and stores (see Section 2.12).

f = g + h f = g – h

i = j i ≠ j
i = = j?

Else:

Exit:

FIGURE 2.9 Illustration of the options in the if statement above. Th e left  box corresponds to 
the then part of the if statement, and the right box corresponds to the else part.

conditional branch An 
instruction that requires 
the comparison of two 
values and that allows for 
a subsequent transfer of 
control to a new address 
in the program based 
on the outcome of the 
comparison.
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Compilers frequently create branches and labels where they do not appear in 
the programming language. Avoiding the burden of writing explicit labels and 
branches is one benefi t of writing in high-level programming languages and is a 
reason coding is faster at that level.

Loops
Decisions are important both for choosing between two alternatives—found in if 
statements—and for iterating a computation—found in loops. Th e same assembly 
instructions are the building blocks for both cases.

Compiling a while Loop in C

Here is a traditional loop in C:

while (save[i] == k)
i += 1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the 
array save is in $s6. What is the MIPS assembly code corresponding to this 
C segment?

Th e fi rst step is to load save[i] into a temporary register. Before we can load 
save[i] into a temporary register, we need to have its address. Before we 
can add i to the base of array save to form the address, we must multiply the 
index i by 4 due to the byte addressing problem. Fortunately, we can use shift  
left  logical, since shift ing left  by 2 bits multiplies by 22 or 4 (see page 88 in the 
prior section). We need to add the label Loop to it so that we can branch back 
to that instruction at the end of the loop:

Loop: sll  $t1,$s3,2    # Temp reg $t1 = i * 4

To get the address of save[i], we need to add $t1 and the base of save in $s6:

add $t1,$t1,$s6     # $t1 = address of save[i]

Now we can use that address to load save[i] into a temporary register:

lw $t0,0($t1)       # Temp reg $t0 = save[i]

Th e next instruction performs the loop test, exiting if save[i] ≠ k:

bne $t0,$s5, Exit   # go to Exit if save[i] ≠ k

Hardware/
Software 
Interface

EXAMPLE

ANSWER



Th e next instruction adds 1 to i:

addi $s3,$s3,1      # i = i + 1

Th e end of the loop branches back to the while test at the top of the loop. We 
just add the Exit label aft er it, and we’re done:

j     Loop          # go to Loop
Exit:

(See the exercises for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compiling 
that they are given their own buzzword: a basic block is a sequence of instructions 
without branches, except possibly at the end, and without branch targets or branch 
labels, except possibly at the beginning. One of the fi rst early phases of compilation 
is breaking the program into basic blocks.

Th e test for equality or inequality is probably the most popular test, but sometimes 
it is useful to see if a variable is less than another variable. For example, a for loop 
may want to test to see if the index variable is less than 0. Such comparisons are 
accomplished in MIPS assembly language with an instruction that compares two 
registers and sets a third register to 1 if the fi rst is less than the second; otherwise, 
it is set to 0. Th e MIPS instruction is called set on less than, or slt. For example,

slt    $t0, $s3, $s4   # $t0 = 1 if $s3 < $s4

means that register $t0 is set to 1 if the value in register $s3 is less than the value 
in register $s4; otherwise, register $t0 is set to 0.

Constant operands are popular in comparisons, so there is an immediate version 
of the set on less than instruction. To test if register $s2 is less than the constant 
10, we can just write

slti    $t0,$s2,10     # $t0 = 1 if $s2 < 10

MIPS compilers use the slt, slti, beq, bne, and the fi xed value of 0 (always 
available by reading register $zero) to create all relative conditions: equal, not 
equal, less than, less than or equal, greater than, greater than or equal.

Hardware/
Software 
Interface

basic block A sequence 
of instructions without 
branches (except possibly 
at the end) and without 
branch targets or branch 
labels (except possibly at 
the beginning).

Hardware/
Software 
Interface
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Heeding von Neumann’s warning about the simplicity of the “equipment,” the 
MIPS architecture doesn’t include branch on less than because it is too complicated; 
either it would stretch the clock cycle time or it would take extra clock cycles per 
instruction. Two faster instructions are more useful.

Comparison instructions must deal with the dichotomy between signed and 
unsigned numbers. Sometimes a bit pattern with a 1 in the most signifi cant bit 
represents a negative number and, of course, is less than any positive number, 
which must have a 0 in the most signifi cant bit. With unsigned integers, on the 
other hand, a 1 in the most signifi cant bit represents a number that is larger than 
any that begins with a 0. (We’ll soon take advantage of this dual meaning of the 
most signifi cant bit to reduce the cost of the array bounds checking.)

MIPS off ers two versions of the set on less than comparison to handle these 
alternatives. Set on less than (slt) and set on less than immediate (slti) work with 
signed integers. Unsigned integers are compared using set on less than unsigned 
(sltu) and set on less than immediate unsigned (sltiu).

Signed versus Unsigned Comparison

Suppose register $s0 has the binary number

1111 1111 1111 1111 1111 1111 1111 1111two

and that register $s1 has the binary number

0000 0000 0000 0000 0000 0000 0000 0001two

What are the values of registers $t0 and $t1 aft er these two instructions?

slt      $t0, $s0, $s1 # signed comparison
sltu     $t1, $s0, $s1 # unsigned comparison

Th e value in register $s0 represents �1ten if it is an integer and 4,294,967,295ten 
if it is an unsigned integer. Th e value in register $s1 represents 1ten in either 
case. Th en register $t0 has the value 1, since �1ten �1ten, and register $t1 has 
the value 0, since 4,294,967,295ten �1ten.

Hardware/
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Treating signed numbers as if they were unsigned gives us a low cost way of 
checking if 0 	 x � y, which matches the index out-of-bounds check for arrays. Th e 
key is that negative integers in two’s complement notation look like large numbers 
in unsigned notation; that is, the most signifi cant bit is a sign bit in the former 
notation but a large part of the number in the latter. Th us, an unsigned comparison 
of x � y also checks if x is negative as well as if x is less than y.

Bounds Check Shortcut

Use this shortcut to reduce an index-out-of-bounds check: jump to 
IndexOutOfBounds if $s1 ≥ $t2 or if $s1 is negative.

Th e checking code just uses u to do both checks:

sltu $t0,$s1,$t2 # $t0=0 if $s1>=length or $s1<0
beq  $t0,$zero,IndexOutOfBounds #if bad, goto Error

Case/Switch Statement
Most programming languages have a case or switch statement that allows the 
programmer to select one of many alternatives depending on a single value. Th e 
simplest way to implement switch is via a sequence of conditional tests, turning the 
switch statement into a chain of if-then-else statements.

Sometimes the alternatives may be more effi  ciently encoded as a table of 
addresses of alternative instruction sequences, called a jump address table or 
jump table, and the program needs only to index into the table and then jump to 
the appropriate sequence. Th e jump table is then just an array of words containing 
addresses that correspond to labels in the code. Th e program loads the appropriate 
entry from the jump table into a register. It then needs to jump using the address 
in the register. To support such situations, computers like MIPS include a jump 
register instruction (jr), meaning an unconditional jump to the address specifi ed 
in a register. Th en it jumps to the proper address using this instruction. We’ll see an 
even more popular use of jr in the next section.

EXAMPLE

ANSWER

jump address 
table Also called jump 
table. A table of addresses 
of alternative instruction 
sequences.
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Although there are many statements for decisions and loops in programming 
languages like C and Java, the bedrock statement that implements them at the 
instruction set level is the conditional branch.

Elaboration: If you have heard about delayed branches, covered in Chapter 4, don’t 
worry: the MIPS assembler makes them invisible to the assembly language programmer.

 I. C has many statements for decisions and loops, while MIPS has few. Which 
of the following do or do not explain this imbalance? Why?

1. More decision statements make code easier to read and understand.

2. Fewer decision statements simplify the task of the underlying layer that is 
responsible for execution.

3. More decision statements mean fewer lines of code, which generally 
reduces coding time.

4. More decision statements mean fewer lines of code, which generally 
results in the execution of fewer operations.

II. Why does C provide two sets of operators for AND (& and &&) and two sets 
of operators for OR (| and ||), while MIPS doesn’t?

1. Logical operations AND and OR implement & and |, while conditional 
branches implement && and ||.

2. Th e previous statement has it backwards: && and || correspond to logical 
operations, while & and | map to conditional branches.

3. Th ey are redundant and mean the same thing: && and || are simply 
inherited from the programming language B, the predecessor of C.

 2.8  Supporting Procedures in Computer 
Hardware

A procedure or function is one tool programmers use to structure programs, both 
to make them easier to understand and to allow code to be reused. Procedures 
allow the programmer to concentrate on just one portion of the task at a time; 
parameters act as an interface between the procedure and the rest of the program 
and data, since they can pass values and return results. We describe the equivalent 
to procedures in Java in  Section 2.15, but Java needs everything from a computer 
that C needs. Procedures are one way to implement abstraction in soft ware.

Hardware/
Software 
Interface

Check 
Yourself

procedure A stored 
subroutine that performs 
a specifi c task based 
on the parameters with 
which it is provided.
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You can think of a procedure like a spy who leaves with a secret plan, acquires 
resources, performs the task, covers his or her tracks, and then returns to the point 
of origin with the desired result. Nothing else should be perturbed once the mission 
is complete. Moreover, a spy operates on only a “need to know” basis, so the spy 
can’t make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six 
steps:

1. Put parameters in a place where the procedure can access them.

2. Transfer control to the procedure.

3. Acquire the storage resources needed for the procedure.

4. Perform the desired task.

5. Put the result value in a place where the calling program can access it.

6. Return control to the point of origin, since a procedure can be called from 
several points in a program.

As mentioned above, registers are the fastest place to hold data in a computer, 
so we want to use them as much as possible. MIPS soft ware follows the following 
convention for procedure calling in allocating its 32 registers:

■ $a0–$a3: four argument registers in which to pass parameters

■ $v0–$v1: two value registers in which to return values

■ $ra: one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an 
instruction just for the procedures: it jumps to an address and simultaneously 
saves the address of the following instruction in register $ra. Th e jump-and-link 
instruction (jal) is simply written

jal ProcedureAddress

Th e link portion of the name means that an address or link is formed that points 
to the calling site to allow the procedure to return to the proper address. Th is “link,” 
stored in register$ra (register 31), is called the return address. Th e return address 
is needed because the same procedure could be called from several parts of the 
program.

To support such situations, computers like MIPS use jump register instruction 
(jr), introduced above to help with case statements, meaning an unconditional 
jump to the address specifi ed in a register:

jr   $ra

jump-and-link 
instruction An 
instruction that jumps 
to an address and 
simultaneously saves the 
address of the following 
instruction in a register 
($ra in MIPS).

return address A link to 
the calling site that allows 
a procedure to return 
to the proper address; 
in MIPS it is stored in 
register $ra.
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Th e jump register instruction jumps to the address stored in register $ra—
which is just what we want. Th us, the calling program, or caller, puts the parameter 
values in $a0–$a3 and uses jal X to jump to procedure X (sometimes named 
the callee). Th e callee then performs the calculations, places the results in $v0 and 
$v1, and returns control to the caller using jr $ra.

Implicit in the stored-program idea is the need to have a register to hold the 
address of the current instruction being executed. For historical reasons, this 
register is almost always called the program counter, abbreviated PC in the MIPS 
architecture, although a more sensible name would have been instruction address 
register. Th e jal instruction actually saves PC � 4 in register $ra to link to the 
following instruction to set up the procedure return.

Using More Registers
Suppose a compiler needs more registers for a procedure than the four argument 
and two return value registers. Since we must cover our tracks aft er our mission 
is complete, any registers needed by the caller must be restored to the values that 
they contained before the procedure was invoked. Th is situation is an example in 
which we need to spill registers to memory, as mentioned in the Hardware/Soft ware 
Interface section above.

Th e ideal data structure for spilling registers is a stack—a last-in-fi rst-out 
queue. A stack needs a pointer to the most recently allocated address in the stack 
to show where the next procedure should place the registers to be spilled or where 
old register values are found. Th e stack pointer is adjusted by one word for each 
register that is saved or restored. MIPS soft ware reserves register 29 for the stack 
pointer, giving it the obvious name $sp. Stacks are so popular that they have their 
own buzzwords for transferring data to and from the stack: placing data onto the 
stack is called a push, and removing data from the stack is called a pop.

By historical precedent, stacks “grow” from higher addresses to lower addresses. 
Th is convention means that you push values onto the stack by subtracting from the 
stack pointer. Adding to the stack pointer shrinks the stack, thereby popping values 
off  the stack.

Compiling a C Procedure That Doesn’t Call Another Procedure

Let’s turn the example on page 65 from Section 2.2 into a C procedure:

int leaf_example (int g, int h, int i, int j)
{
     int f;

     f = (g + h) – (i + j);
     return f;
}

What is the compiled MIPS assembly code?

caller Th e program that 
instigates a procedure and 
provides the necessary 
parameter values.

callee A procedure that 
executes a series of stored 
instructions based on 
parameters provided by 
the caller and then returns 
control to the caller.

program counter 
(PC) Th e register 
containing the address 
of the instruction in the 
program being executed.

stack A data structure 
for spilling registers 
organized as a last-in-
fi rst-out queue.

stack pointer A value 
denoting the most 
recently allocated address 
in a stack that shows 
where registers should 
be spilled or where old 
register values can be 
found. In MIPS, it is 
register $sp.

push Add element to 
stack.

pop Remove element 
from stack.

EXAMPLE



Th e parameter variables g, h, i, and j correspond to the argument registers 
$a0, $a1, $a2, and $a3, and f corresponds to $s0. Th e compiled program 
starts with the label of the procedure:

leaf_example:

Th e next step is to save the registers used by the procedure. Th e C assignment 
statement in the procedure body is identical to the example on page 68, which 
uses two temporary registers. Th us, we need to save three registers: $s0, $t0, 
and $t1. We “push” the old values onto the stack by creating space for three 
words (12 bytes) on the stack and then store them:

addi $sp, $sp, –12  # adjust stack to make room for 3 items
sw  $t1, 8($sp)     # save register $t1 for use afterwards
sw  $t0, 4($sp)     # save register $t0 for use afterwards
sw  $s0, 0($sp)     # save register $s0 for use afterwards

Figure 2.10 shows the stack before, during, and aft er the procedure call.
Th e next three statements correspond to the body of the procedure, which 

follows the example on page 68:

add $t0,$a0,$a1 # register  $t0 contains g + h
add $t1,$a2,$a3 # register  $t1 contains i + j
sub $s0,$t0,$t1 # f = $t0 – $t1, which is (g + h)–(i + j)

To return the value of f, we copy it into a return value register:

add $v0,$s0,$zero # returns f ($v0 = $s0 + 0)

Before returning, we restore the three old values of the registers we saved by 
“popping” them from the stack:

lw $s0, 0($sp)  # restore register $s0 for caller
lw $t0, 4($sp)  # restore register $t0 for caller
lw $t1, 8($sp)  # restore register $t1 for caller
addi $sp,$sp,12 # adjust stack to delete 3 items

Th e procedure ends with a jump register using the return address:

jr   $ra    # jump back to calling routine

In the previous example, we used temporary registers and assumed their old 
values must be saved and restored. To avoid saving and restoring a register whose 
value is never used, which might happen with a temporary register, MIPS soft ware 
separates 18 of the registers into two groups:

■ $t0–$t9: temporary registers that are not preserved by the callee (called 
procedure) on a procedure call

■ $s0–$s7: saved registers that must be preserved on a procedure call (if 
used, the callee saves and restores them)

ANSWER
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Th is simple convention reduces register spilling. In the example above, since the 
caller does not expect registers $t0 and $t1 to be preserved across a procedure 
call, we can drop two stores and two loads from the code. We still must save and 
restore $s0, since the callee must assume that the caller needs its value.

Nested Procedures
Procedures that do not call others are called leaf procedures. Life would be simple if 
all procedures were leaf procedures, but they aren’t. Just as a spy might employ other 
spies as part of a mission, who in turn might use even more spies, so do procedures 
invoke other procedures. Moreover, recursive procedures even invoke “clones” of 
themselves. Just as we need to be careful when using registers in procedures, more 
care must also be taken when invoking nonleaf procedures.

For example, suppose that the main program calls procedure A with an argument 
of 3, by placing the value 3 into register $a0 and then using jal A. Th en suppose 
that procedure A calls procedure B via jal B with an argument of 7, also placed 
in $a0. Since A hasn’t fi nished its task yet, there is a confl ict over the use of register 
$a0. Similarly, there is a confl ict over the return address in register $ra, since it 
now has the return address for B. Unless we take steps to prevent the problem, this 
confl ict will eliminate procedure A’s ability to return to its caller.

One solution is to push all the other registers that must be preserved onto 
the stack, just as we did with the saved registers. Th e caller pushes any argument 
registers ($a0–$a3) or temporary registers ($t0–$t9) that are needed aft er 
the call. Th e callee pushes the return address register $ra and any saved registers 
($s0–$s7) used by the callee. Th e stack pointer $sp is adjusted to account for the 
number of registers placed on the stack. Upon the return, the registers are restored 
from memory and the stack pointer is readjusted.

High address

Low address

Contents of register $t1

Contents of register $t0

Contents of register $s0

$sp

$sp

$sp

(a) (b) (c)

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c) 
after the procedure call. Th e stack pointer always points to the “top” of the stack, or the last word in the 
stack in this drawing.



Compiling a Recursive C Procedure, Showing Nested Procedure 
Linking

Let’s tackle a recursive procedure that calculates factorial:

int fact (int n)
{
    if (n < 1) return (1);
          else return (n * fact(n – 1));
}

What is the MIPS assembly code?

Th e parameter variable n corresponds to the argument register $a0. Th e 
compiled program starts with the label of the procedure and then saves two 
registers on the stack, the return address and $a0:

fact:
    addi  $sp, $sp, –8 # adjust stack for 2 items
    sw    $ra, 4($sp)  # save the return address
    sw    $a0, 0($sp)  # save the argument n

Th e fi rst time fact is called, sw saves an address in the program that called 
fact. Th e next two instructions test whether n is less than 1, going to L1 if 
n ≥ 1.

slti  $t0,$a0,1     # test for n < 1
beq   $t0,$zero,L1  # if n >= 1, go to L1

If n is less than 1, fact returns 1 by putting 1 into a value register: it adds 1 to 
0 and places that sum in $v0. It then pops the two saved values off  the stack 
and jumps to the return address:

addi  $v0,$zero,1 # return 1
addi  $sp,$sp,8   # pop 2 items off stack
jr    $ra         # return to caller

Before popping two items off  the stack, we could have loaded $a0 and 
$ra. Since $a0 and $ra don’t change when n is less than 1, we skip those 
instructions.

If n is not less than 1, the argument n is decremented and then fact is 
called again with the decremented value:

L1: addi $a0,$a0,–1  # n >= 1: argument gets (n – 1)
    jal fact         # call fact with (n –1)

EXAMPLE

ANSWER
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Th e next instruction is where fact returns. Now the old return address and 
old argument are restored, along with the stack pointer:

lw   $a0, 0($sp)  # return from jal: restore argument n
lw   $ra, 4($sp)  # restore the return address
addi $sp, $sp, 8  # adjust stack pointer to pop 2 items

Next, the value register $v0 gets the product of old argument $a0 and 
the current value of the value register. We assume a multiply instruction is 
available, even though it is not covered until Chapter 3:

mul  $v0,$a0,$v0   # return n * fact (n – 1)

Finally, fact jumps again to the return address:

jr   $ra           # return to the caller

A C variable is generally a location in storage, and its interpretation depends both 
on its type and storage class. Examples include integers and characters (see Section 
2.9). C has two storage classes: automatic and static. Automatic variables are local to 
a procedure and are discarded when the procedure exits. Static variables exist across 
exits from and entries to procedures. C variables declared outside all procedures 
are considered static, as are any variables declared using the keyword static. Th e 
rest are automatic. To simplify access to static data, MIPS soft ware reserves another 
register, called the global pointer, or $gp.

Figure 2.11 summarizes what is preserved across a procedure call. Note that 
several schemes preserve the stack, guaranteeing that the caller will get the same 
data back on a load from the stack as it stored onto the stack. Th e stack above $sp 
is preserved simply by making sure the callee does not write above $sp; $sp is 

Hardware/
Software 
Interface

global pointer Th e 
register that is reserved to 
point to the static area.

Saved registers: $s0–$s7 Temporary registers: $t0–$t9

Stack pointer register: $sp  Argument registers: $a0–$a3

Return address register: $ra Return value registers: $v0–$v1

Stack above the stack pointer Stack below the stack pointer

Preserved Not preserved

FIGURE 2.11 What is and what is not preserved across a procedure call. If the soft ware relies 
on the frame pointer register or on the global pointer register, discussed in the following subsections, they 
are also preserved.



itself preserved by the callee adding exactly the same amount that was subtracted 
from it; and the other registers are preserved by saving them on the stack (if they 
are used) and restoring them from there.

Allocating Space for New Data on the Stack
Th e fi nal complexity is that the stack is also used to store variables that are local 
to the procedure but do not fi t in registers, such as local arrays or structures. Th e 
segment of the stack containing a procedure’s saved registers and local variables is 
called a procedure frame or activation record. Figure 2.12 shows the state of the 
stack before, during, and aft er the procedure call.

Some MIPS soft ware uses a frame pointer ($fp) to point to the fi rst word of 
the frame of a procedure. A stack pointer might change during the procedure, and 
so references to a local variable in memory might have diff erent off sets depending 
on where they are in the procedure, making the procedure harder to understand. 
Alternatively, a frame pointer off ers a stable base register within a procedure for 
local memory-references. Note that an activation record appears on the stack 
whether or not an explicit frame pointer is used. We’ve been avoiding using $fp by 
avoiding changes to $sp within a procedure: in our examples, the stack is adjusted 
only on entry and exit of the procedure.

procedure frame Also 
called activation record. 
Th e segment of the stack 
containing a procedure’s 
saved registers and local 
variables.

frame pointer A value 
denoting the location of 
the saved registers and 
local variables for a given 
procedure.

High address

Low address
(a) (b) (c)

Saved argument
registers (if any)

$sp

$sp

$sp

$fp

$fp

$fp

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

FIGURE 2.12 Illustration of the stack allocation (a) before, (b) during, and (c) after the 
procedure call. Th e frame pointer ($fp) points to the fi rst word of the frame, oft en a saved argument 
register, and the stack pointer ($sp) points to the top of the stack. Th e stack is adjusted to make room for 
all the saved registers and any memory-resident local variables. Since the stack pointer may change during 
program execution, it’s easier for programmers to reference variables via the stable frame pointer, although it 
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the 
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When a 
frame pointer is used, it is initialized using the address in $sp on a call, and $sp is restored using $fp. Th is 
information is also found in Column 4 of the MIPS Reference Data Card at the front of this book.
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Allocating Space for New Data on the Heap
In addition to automatic variables that are local to procedures, C programmers 
need space in memory for static variables and for dynamic data structures. Figure 
2.13 shows the MIPS convention for allocation of memory. Th e stack starts in the 
high end of memory and grows down. Th e fi rst part of the low end of memory is 
reserved, followed by the home of the MIPS machine code, traditionally called 
the text segment. Above the code is the static data segment, which is the place 
for constants and other static variables. Although arrays tend to be a fi xed length 
and thus are a good match to the static data segment, data structures like linked 
lists tend to grow and shrink during their lifetimes. Th e segment for such data 
structures is traditionally called the heap, and it is placed next in memory. Note 
that this allocation allows the stack and heap to grow toward each other, thereby 
allowing the effi  cient use of memory as the two segments wax and wane.

text segment Th e 
segment of a UNIX object 
fi le that contains the 
machine language code 
for routines in the source 
fi le.

Stack

Dynamic data

Static data

Text

Reserved

$sp 7fff fffchex

$gp 1000 8000hex
1000 0000hex

pc 0040 0000hex

0

FIGURE 2.13 The MIPS memory allocation for program and data. Th ese addresses are only 
a soft ware convention, and not part of the MIPS architecture. Th e stack pointer is initialized to 7fff 
fffchex and grows down toward the data segment. At the other end, the program code (“text”) starts at 
0040 0000hex. Th e static data starts at 1000 0000hex. Dynamic data, allocated by malloc in C and by 
new in Java, is next. It grows up toward the stack in an area called the heap. Th e global pointer, $gp, is set to 
an address to make it easy to access data. It is initialized to 1000 8000hex so that it can access from 1000 
0000hex to 1000 ffffhex using the positive and negative 16-bit off sets from $gp. Th is information is also 
found in Column 4 of the MIPS Reference Data Card at the front of this book.

C allocates and frees space on the heap with explicit functions. malloc() 
allocates space on the heap and returns a pointer to it, and free() releases 
space on the heap to which the pointer points. Memory allocation is controlled by 
programs in C, and it is the source of many common and diffi  cult bugs. Forgetting 
to free space leads to a “memory leak,” which eventually uses up so much memory 
that the operating system may crash. Freeing space too early leads to “dangling 
pointers,” which can cause pointers to point to things that the program never 
intended. Java uses automatic memory allocation and garbage collection just to 
avoid such bugs.



Figure 2.14 summarizes the register conventions for the MIPS assembly 
language. Th is convention is another example of making the common case fast: 
most procedures can be satisfi ed with up to 4 arguments, 2 registers for a return 
value, 8 saved registers, and 10 temporary registers without ever going to memory.

Name Register number Usage
Preserved on 

call?

$zero 0 The constant value 0 n.a.

$v0–$v1 2–3 Values for results and expression evaluation no

$a0–$a3 4–7 Arguments no

$t0–$t7 onseiraropmeT51–8

$s0–$s7 seydevaS32–61

$t8–$t9 onseiraropmeteroM52–42

$gp seyretnioplabolG82

$sp seyretniopkcatS92

$fp seyretniopemarF03

$ra seysserddanruteR13

FIGURE 2.14 MIPS register conventions. Register 1, called $at, is reserved for the assembler (see 
Section 2.12), and registers 26–27, called $k0–$k1, are reserved for the operating system. Th is information 
is also found in Column 2 of the MIPS Reference Data Card at the front of this book.

Elaboration: What if there are more than four parameters? The MIPS convention is 
to place the extra parameters on the stack just above the frame pointer. The procedure 
then expects the fi rst four parameters to be in registers $a0 through $a3 and the rest 
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.12, the frame pointer is convenient because 
all references to variables in the stack within a procedure will have the same offset. 
The frame pointer is not necessary, however. The GNU MIPS C compiler uses a frame 
pointer, but the C compiler from MIPS does not; it treats register 30 as another save 
register ($s8).

Elaboration: Some recursive procedures can be implemented iteratively without using 
recursion. Iteration can signifi cantly improve performance by removing the overhead 
associated with recursive procedure calls. For example, consider a procedure used to 
accumulate a sum:

int sum (int n, int acc) {
  if (n >0)
      return sum(n – 1, acc + n);
  else
      return acc;
}

Consider the procedure call sum(3,0). This will result in recursive calls to 
sum(2,3), sum(1,5), and sum(0,6), and then the result 6 will be returned four 
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times. This recursive call of sum is referred to as a tail call, and this example use of 
tail recursion can be implemented very effi ciently (assume $a0 = n and $a1 = acc):

sum: slti $t0, $a0, 1 # test if n <= 0
      bne $t0, $zero, sum_exit # go to sum_exit if n <= 0
      add$a1, $a1, $a0 # add n to acc
      addi$a0, $a0, –1 # subtract 1 from n
      j sum   # go to sum
sum_exit:
      add$v0, $a1, $zero # return value acc
      jr $ra  # return to caller

Which of the following statements about C and Java are generally true?

1. C programmers manage data explicitly, while it’s automatic in Java.

2. C leads to more pointer bugs and memory leak bugs than does Java.

 2.9 Communicating with People

Computers were invented to crunch numbers, but as soon as they became 
commercially viable they were used to process text. Most computers today off er 
8-bit bytes to represent characters, with the American Standard Code for Information 
Interchange (ASCII) being the representation that nearly everyone follows. Figure 
2.15 summarizes ASCII.

Check 
Yourself

!(@ | � � (wow open 
tab at bar is great)
Fourth line of the 
keyboard poem “Hatless 
Atlas,” 1991 (some 
give names to ASCII 
characters: “!” is “wow,” 
“(” is open, “|” is bar, 
and so on).

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

096 ` 112 p

33 ! 49 097 a 113 q

34 " 50 098 b 114 r

35 # 51 3 6 099 c 115 s

36 $ 52

32  space 48 0 64 @ 80 P

1 65 A 81 Q

2 66 B 82 R

7 C 83 S

4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ' 55 7 71 G 87 W 103 g 119 w

40 ( 56 8 72 H 88 X 104 h 120 x

41 ) 57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [ 107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93 ] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 DEL

FIGURE 2.15 ASCII representation of characters. Note that upper- and lowercase letters diff er by exactly 32; this observation can 
lead to shortcuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a 
backspace, 9 represents a tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses 
to mark the end of a string. Th is information is also found in Column 3 of the MIPS Reference Data Card at the front of this book.
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ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers. 
How much does storage increase if the number 1 billion is represented in 
ASCII versus a 32-bit integer?

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long. 
Th us the storage expansion would be (10 � 8)/32 or 2.5. Beyond the expansion 
in storage, the hardware to add, subtract, multiply, and divide such decimal 
numbers is diffi  cult and would consume more energy. Such diffi  culties explain 
why computing professionals are raised to believe that binary is natural and 
that the occasional decimal computer is bizarre.

A series of instructions can extract a byte from a word, so load word and store 
word are suffi  cient for transferring bytes as well as words. Because of the popularity 
of text in some programs, however, MIPS provides instructions to move bytes. Load 
byte (lb) loads a byte from memory, placing it in the rightmost 8 bits of a register. 
Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to 
memory. Th us, we copy a byte with the sequence

lb $t0,0($sp)        # Read byte from source
sb $t0,0($gp)        # Write byte to destination

Characters are normally combined into strings, which have a variable number 
of characters. Th ere are three choices for representing a string: (1) the fi rst position 
of the string is reserved to give the length of a string, (2) an accompanying variable 
has the length of the string (as in a structure), or (3) the last position of a string is 
indicated by a character used to mark the end of a string. C uses the third choice, 
terminating a string with a byte whose value is 0 (named null in ASCII). Th us, 
the string “Cal” is represented in C by the following 4 bytes, shown as decimal 
numbers: 67, 97, 108, 0. (As we shall see, Java uses the fi rst option.)

EXAMPLE

ANSWER
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Compiling a String Copy Procedure, Showing How to Use C Strings

Th e procedure strcpy copies string y to string x using the null byte 
termination convention of C:

void strcpy (char x[], char y[])
{
    int i;

    i = 0;
    while ((x[i] = y[i]) != ‘\0’) /* copy & test byte */
    i += 1;
}

What is the MIPS assembly code?

Below is the basic MIPS assembly code segment. Assume that base addresses 
for arrays x and y are found in $a0 and $a1, while i is in $s0. strcpy 
adjusts the stack pointer and then saves the saved register $s0 on the stack:

strcpy:
 addi $sp,$sp,–4 # adjust stack for 1 more item
 sw $s0, 0($sp) # save $s0

To initialize i to 0, the next instruction sets $s0 to 0 by adding 0 to 0 and 
placing that sum in $s0:

 add $s0,$zero,$zero # i = 0 + 0

Th is is the beginning of the loop. Th e address of y[i] is fi rst formed by adding 
i to y[]:

L1: add $t1,$s0,$a1 # address of y[i] in $t1

Note that we don’t have to multiply i by 4 since y is an array of bytes and not 
of words, as in prior examples.

To load the character in y[i], we use load byte unsigned, which puts the 
character into $t2:

 lbu $t2, 0($t1) # $t2 = y[i]

A similar address calculation puts the address of x[i] in $t3, and then the 
character in $t2 is stored at that address.

EXAMPLE

ANSWER



 add $t3,$s0,$a0 # address of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]

Next, we exit the loop if the character was 0. Th at is, we exit if it is the last 
character of the string:

 beq $t2,$zero,L2 # if y[i] == 0, go to L2

If not, we increment i and loop back:

 addi  $s0, $s0,1 # i = i + 1
 j L1 # go to L1

If we don’t loop back, it was the last character of the string; we restore $s0 and 
the stack pointer, and then return.

L2: lw $s0, 0($sp) # y[i] == 0: end of string.
   # Restore old $s0

 addi  $sp,$sp,4 # pop 1 word off stack
 jr $ra # return

String copies usually use pointers instead of arrays in C to avoid the operations 
on i in the code above. See Section 2.14 for an explanation of arrays versus 
pointers.

Since the procedure strcpy above is a leaf procedure, the compiler could 
allocate i to a temporary register and avoid saving and restoring $s0. Hence, 
instead of thinking of the $t registers as being just for temporaries, we can think of 
them as registers that the callee should use whenever convenient. When a compiler 
fi nds a leaf procedure, it exhausts all temporary registers before using registers it 
must save.

Characters and Strings in Java
Unicode is a universal encoding of the alphabets of most human languages. Figure 
2.16 gives a list of Unicode alphabets; there are almost as many alphabets in Unicode 
as there are useful symbols in ASCII. To be more inclusive, Java uses Unicode for 
characters. By default, it uses 16 bits to represent a character.
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Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian Lao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

Syriac Georgian Hiragana Number Forms

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian 
Aboriginal Syllabic

Shavian Optical Character Recognition

Gujarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,” 
which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 
0370hex, and Cyrillic at 0400hex. Th e fi rst three columns show 48 blocks that correspond to human languages 
in roughly Unicode numerical order. Th e last column has 16 blocks that are multilingual and are not in order. 
A 16-bit encoding, called UTF-16, is the default. A variable-length encoding, called UTF-8, keeps the ASCII 
subset as eight bits and uses 16 or 32 bits for the other characters. UTF-32 uses 32 bits per character. To learn 
more, see www.unicode.org.

Th e MIPS instruction set has explicit instructions to load and store such 16-
bit quantities, called halfwords. Load half (lh) loads a halfword from memory, 
placing it in the rightmost 16 bits of a register. Like load byte, load half (lh) treats 
the halfword as a signed number and thus sign-extends to fi ll the 16 left most bits 
of the register, while load halfword unsigned (lhu) works with unsigned integers. 
Th us, lhu is the more popular of the two. Store half (sh) takes a halfword from the 
rightmost 16 bits of a register and writes it to memory. We copy a halfword with 
the sequence

lhu $t0,0($sp) # Read halfword (16 bits) from source
sh $t0,0($gp)  # Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefi ned 
methods for concatenation, comparison, and conversion. Unlike C, Java includes a 
word that gives the length of the string, similar to Java arrays.



Elaboration: MIPS software tries to keep the stack aligned to word addresses, 
allowing the program to always use lw and sw (which must be aligned) to access the 
stack. This convention means that a char variable allocated on the stack occupies 4 
bytes, even though it needs less. However, a C string variable or an array of bytes will 
pack 4 bytes per word, and a Java string variable or array of shorts packs 2 halfwords 
per word.

Elaboration: Refl ecting the international nature of the web, most web pages today 
use Unicode instead of ASCII.

 I. Which of the following statements about characters and strings in C and 
Java are true?

1. A string in C takes about half the memory as the same string in Java.

2. Strings are just an informal name for single-dimension arrays of 
characters in C and Java.

3. Strings in C and Java use null (0) to mark the end of a string.

4. Operations on strings, like length, are faster in C than in Java.

II. Which type of variable that can contain 1,000,000,000ten takes the most 
memory space?

1. int in C

2. string in C

3. string in Java

 2.10  MIPS Addressing for 32-bit Immediates 
and Addresses

Although keeping all MIPS instructions 32 bits long simplifi es the hardware, there 
are times where it would be convenient to have a 32-bit constant or 32-bit address. 
Th is section starts with the general solution for large constants, and then shows the 
optimizations for instruction addresses used in branches and jumps.

Check 
Yourself
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32-Bit Immediate Operands
Although constants are frequently short and fi t into the 16-bit fi eld, sometimes they 
are bigger. Th e MIPS instruction set includes the instruction load upper immediate 
(lui) specifi cally to set the upper 16 bits of a constant in a register, allowing a 
subsequent instruction to specify the lower 16 bits of the constant. Figure 2.17 
shows the operation of lui.

Loading a 32-Bit Constant

What is the MIPS assembly code to load this 32-bit constant into register $s0?

0000 0000 0011 1101 0000 1001 0000 0000

First, we would load the upper 16 bits, which is 61 in decimal, using lui:

lui $s0, 61   # 61 decimal = 0000 0000 0011 1101 binary

Th e value of register $s0 aft erward is

0000 0000 0011 1101 0000 0000 0000 0000

Th e next step is to insert the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000

Th e fi nal value in register $s0 is the desired value:

0000 0000 0011 1101 0000 1001 0000 0000

EXAMPLE

ANSWER

FIGURE 2.17 The effect of the lui instruction. Th e instruction lui transfers the 16-bit immediate constant fi eld value into the 
left most 16 bits of the register, fi lling the lower 16 bits with 0s.

The machine language version of  lui $t0, 255

Contents of register $t0 after executing lui $t0, 255:

001111 00000 01000 0000 0000 1111 1111

0000 0000 1111 1111 0000 0000 0000 0000

# $t0 is register 8:
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Either the compiler or the assembler must break large constants into pieces and 
then reassemble them into a register. As you might expect, the immediate fi eld’s 
size restriction may be a problem for memory addresses in loads and stores as 
well as for constants in immediate instructions. If this job falls to the assembler, 
as it does for MIPS soft ware, then the assembler must have a temporary register 
available in which to create the long values. Th is need is a reason for the register 
$at (assembler temporary), which is reserved for the assembler.

Hence, the symbolic representation of the MIPS machine language is no longer 
limited by the hardware, but by whatever the creator of an assembler chooses to 
include (see Section 2.12). We stick close to the hardware to explain the architecture 
of the computer, noting when we use the enhanced language of the assembler that 
is not found in the processor.

Elaboration: Creating 32-bit constants needs care. The instruction addi copies the 
left-most bit of the 16-bit immediate fi eld of the instruction into the upper 16 bits of a 
word. Logical or immediate from Section 2.6 loads 0s into the upper 16 bits and hence 
is used by the assembler in conjunction with lui to create 32-bit constants.

Addressing in Branches and Jumps
Th e MIPS jump instructions have the simplest addressing. Th ey use the fi nal MIPS 
instruction format, called the J-type, which consists of 6 bits for the operation fi eld 
and the rest of the bits for the address fi eld. Th us,

j   10000   # go to location 10000

could be assembled into this format (it’s actually a bit more complicated, as we will 
see):

2 10000

6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 10000.
Unlike the jump instruction, the conditional branch instruction must specify 

two operands in addition to the branch address. Th us,

bne  $s0,$s1,Exit  # go to Exit if $s0 ≠ $s1

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits

Hardware/
Software 
Interface
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If addresses of the program had to fi t in this 16-bit fi eld, it would mean that no 
program could be bigger than 216, which is far too small to be a realistic option 
today. An alternative would be to specify a register that would always be added 
to the branch address, so that a branch instruction would calculate the following:

Program counter Register Branch address

Th is sum allows the program to be as large as 232 and still be able to use 
conditional branches, solving the branch address size problem. Th en the question 
is, which register?

Th e answer comes from seeing how conditional branches are used. Conditional 
branches are found in loops and in if statements, so they tend to branch to a 
nearby instruction. For example, about half of all conditional branches in SPEC 
benchmarks go to locations less than 16 instructions away. Since the program 
counter (PC) contains the address of the current instruction, we can branch within 
�215 words of the current instruction if we use the PC as the register to be added 
to the address. Almost all loops and if statements are much smaller than 216 words, 
so the PC is the ideal choice.

Th is form of branch addressing is called PC-relative addressing. As we shall see 
in Chapter 4, it is convenient for the hardware to increment the PC early to point 
to the next instruction. Hence, the MIPS address is actually relative to the address 
of the following instruction (PC � 4) as opposed to the current instruction (PC). 
It is yet another example of making the common case fast, which in this case is 
addressing nearby instructions.

Like most recent computers, MIPS uses PC-relative addressing for all conditional 
branches, because the destination of these instructions is likely to be close to the 
branch. On the other hand, jump-and-link instructions invoke procedures that 
have no reason to be near the call, so they normally use other forms of addressing. 
Hence, the MIPS architecture off ers long addresses for procedure calls by using the 
J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the 
branch by having PC-relative addressing refer to the number of words to the next 
instruction instead of the number of bytes. Th us, the 16-bit fi eld can branch four 
times as far by interpreting the fi eld as a relative word address rather than as a 
relative byte address. Similarly, the 26-bit fi eld in jump instructions is also a word 
address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else for 
jumps. The MIPS jump instruction replaces only the lower 28 bits of the PC, leaving 
the upper 4 bits of the PC unchanged. The loader and linker (Section 2.12) must be 
careful to avoid placing a program across an address boundary of 256 MB (64 million 
instructions); otherwise, a jump must be replaced by a jump register instruction preceded 
by other instructions to load the full 32-bit address into a register.

PC-relative 
addressing An 
addressing regime 
in which the address 
is the sum of the 
program counter (PC) 
and a constant in the 
instruction.



Showing Branch Offset in Machine Language

Th e while loop on pages 92–93 was compiled into this MIPS assembler code:

Loop:sll $t1,$s3,2        # Temp reg $t1 = 4 * i
    add  $t1,$t1,$s6      # $t1 = address of save[i]
    lw   $t0,0($t1)       # Temp reg $t0 = save[i]
    bne  $t0,$s5, Exit    # go to Exit if save[i] ≠ k
    addi $s3,$s3,1        # i = i + 1
    j    Loop             # go to Loop
Exit:

If we assume we place the loop starting at location 80000 in memory, what is 
the MIPS machine code for this loop?

Th e assembled instructions and their addresses are:

EXAMPLE

ANSWER

80000 0 0 19 9 2 0

80004 0 9 22 9 0 32

80008 35 9 8 0

80012 5 8 21 2

80016 8 19 19 1

80020 2 20000

80024 . . .

Remember that MIPS instructions have byte addresses, so addresses of 
sequential words diff er by 4, the number of bytes in a word. Th e bne instruction 
on the fourth line adds 2 words or 8 bytes to the address of the following 
instruction (80016), specifying the branch destination relative to that following 
instruction (8 � 80016) instead of relative to the branch instruction (12 � 
80012) or using the full destination address (80024). Th e jump instruction on 
the last line does use the full address (20000 � 4 � 80000), corresponding to 
the label Loop.
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Most conditional branches are to a nearby location, but occasionally they branch 
far away, farther than can be represented in the 16 bits of the conditional branch 
instruction. Th e assembler comes to the rescue just as it did with large addresses 
or constants: it inserts an unconditional jump to the branch target, and inverts the 
condition so that the branch decides whether to skip the jump.

Branching Far Away

Given a branch on register $s0 being equal to register $s1,

beq    $s0, $s1, L1

replace it by a pair of instructions that off ers a much greater branching distance.

Th ese instructions replace the short-address conditional branch:

      bne    $s0, $s1, L2
      j      L1
L2:

MIPS Addressing Mode Summary
Multiple forms of addressing are generically called addressing modes. Figure 2.18 
shows how operands are identifi ed for each addressing mode. Th e MIPS addressing 
modes are the following:

1. Immediate addressing, where the operand is a constant within the instruction 
itself

2. Register addressing, where the operand is a register

3. Base or displacement addressing, where the operand is at the memory location 
whose address is the sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a 
constant in the instruction

5. Pseudodirect addressing, where the jump address is the 26 bits of the 
instruction concatenated with the upper bits of the PC

Hardware/
Software 
Interface

EXAMPLE

ANSWER

addressing mode One 
of several addressing 
regimes delimited by their 
varied use of operands 
and/or addresses.



Although we show MIPS as having 32-bit addresses, nearly all microprocessors 
(including MIPS) have 64-bit address extensions (see  Appendix E and Section 
2.18). Th ese extensions were in response to the needs of soft ware for larger 
programs. Th e process of instruction set extension allows architectures to expand in 
such a way that is able to move soft ware compatibly upward to the next generation 
of architecture.

Hardware/
Software 
Interface

1.  Immediate addressing

2. Register addressing

3.  Base addressing

4.  PC-relative addressing

5.  Pseudodirect addressing

Immediateop rs rt

op rs rt . . . functrd

Register

Registers

op rs rt Address

Word

Memory

+Register HalfwordByte

op rs rt Address

Word

Memory

+PC

op

Word

Memory

PC

Address

FIGURE 2.18 Illustration of the fi ve MIPS addressing modes. Th e operands are shaded in color. 
Th e operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of 
load and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. 
Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shift ed left  2 bits to the 
PC and mode 5 concatenating a 26-bit address shift ed left  2 bits with the 4 upper bits of the PC. Note that a 
single operation can use more than one addressing mode. Add, for example, uses both immediate (addi) 
and register (add) addressing.
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Decoding Machine Language
Sometimes you are forced to reverse-engineer machine language to create the 
original assembly language. One example is when looking at “core dump.” Figure 
2.19 shows the MIPS encoding of the fi elds for the MIPS machine language. Th is 
fi gure helps when translating by hand between assembly language and machine 
language.

Decoding Machine Code

What is the assembly language statement corresponding to this machine 
instruction?

00af8020hex

Th e fi rst step in converting hexadecimal to binary is to fi nd the op fi elds:

(Bits: 31 28 26                        5   2 0)
       0000 0000 1010 1111 1000 0000 0010 0000

We look at the op fi eld to determine the operation. Referring to Figure 2.19, 
when bits 31–29 are 000 and bits 28–26 are 000, it is an R-format instruction. 
Let’s reformat the binary instruction into R-format fi elds, listed in Figure 2.20:

op        rs       rt       rd       shamt    funct
000000    00101    01111    10000    00000    100000

Th e bottom portion of Figure 2.19 determines the operation of an R-format 
instruction. In this case, bits 5–3 are 100 and bits 2–0 are 000, which means 
this binary pattern represents an add instruction.

We decode the rest of the instruction by looking at the fi eld values. Th e 
decimal values are 5 for the rs fi eld, 15 for rt, and 16 for rd (shamt is unused). 
Figure 2.14 shows that these numbers represent registers $a1, $t7, and $s0. 
Now we can reveal the assembly instruction:

add $s0,$a1,$t7

EXAMPLE

ANSWER



op(31:26)

28–26

31–29
0(000) R-format Bltz/gez jump jump & link branch eq branch

ne
blez bgtz

1(001) add
immediate

addiu set less
than imm.

set less
than imm. 
unsigned

andi ori xori load upper
immediate

2(010) TLB FlPt

3(011)

4(100) load byte load half lwl load word load byte 
unsigned

load
half
unsigned

lwr

5(101) store byte store half swl store word swr

6(110) load linked 
word

lwc1

7(111) store cond. 
word

swc1

op(31:26)=010000 (TLB), rs(25:21)

23–21

25–24
0(00) mfc0 cfc0 mtc0 ctc0
1(01)

2(10)

3(11)

op(31:26)=000000 (R-format), funct(5:0)

2–0

5–3

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) shift left
logical

shift right
logical

sra sllv srlv srav

1(001) jump register jalr syscall break

2(010) mfhi mthi mfl o mtlo
3(011) mult multu div divu
4(100) add addu subtract subu and or xor not or (nor)
5(101) set l.t. set l.t. 

unsigned
6(110)

7(111)

FIGURE 2.19 MIPS instruction encoding. Th is notation gives the value of a fi eld by row and by column. For example, the top portion 
of the fi gure shows load word in row number 4 (100two for bits 31–29 of the instruction) and column number 3 (011two for bits 28–26 of the 
instruction), so the corresponding value of the op fi eld (bits 31–26) is 100011two. Underscore means the fi eld is used elsewhere. For example, 
R-format in row 0 and column 0 (op � 000000two) is defi ned in the bottom part of the fi gure. Hence, subtract in row 4 and column 
2 of the bottom section means that the funct fi eld (bits 5–0) of the instruction is 100010two and the op fi eld (bits 31–26) is 000000two. Th e 
floating point value in row 2, column 1 is defi ned in Figure 3.18 in Chapter 3. Bltz/gez is the opcode for four instructions found 
in Appendix A: bltz, bgez, bltzal, and bgezal. Th is chapter describes instructions given in full name using color, while Chapter 3 
describes instructions given in mnemonics using color. Appendix A covers all instructions.
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Figure 2.20 shows all the MIPS instruction formats. Figure 2.1 on page 64 shows 
the MIPS assembly language revealed in this chapter. Th e remaining hidden portion 
of MIPS instructions deals mainly with arithmetic and real numbers, which are 
covered in the next chapter.

   I.  What is the range of addresses for conditional branches in MIPS (K � 1024)?

1. Addresses between 0 and 64K � 1

2. Addresses between 0 and 256K � 1

3. Addresses up to about 32K before the branch to about 32K aft er

4. Addresses up to about 128K before the branch to about 128K aft er

 II. What is the range of addresses for jump and jump and link in MIPS 
(M � 1024K)?

1. Addresses between 0 and 64M � 1

2. Addresses between 0 and 256M � 1

3. Addresses up to about 32M before the branch to about 32M aft er

4. Addresses up to about 128M before the branch to about 128M aft er

5. Anywhere within a block of 64M addresses where the PC supplies the 
upper 6 bits

6. Anywhere within a block of 256M addresses where the PC supplies the 
upper 4 bits

III. What is the MIPS assembly language instruction corresponding to the 
machine instruction with the value 0000 0000hex?

1. j

2. R-format

3. addi

4. sll

5. mfc0

6. Undefi ned opcode: there is no legal instruction that corresponds to 0

Check 
Yourself

Name Fields Comments

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions are 32 bits long

R-format op rs rt rd shamt funct Arithmetic instruction format

I-format op rs rt address/immediate Transfer, branch,imm. format 

Jump instruction formatsserddategratpotamrof-J

FIGURE 2.20 MIPS instruction formats.
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 2.11  Parallelism and Instructions: 
Synchronization

Parallel execution is easier when tasks are independent, but oft en they need to 
cooperate. Cooperation usually means some tasks are writing new values that 
others must read. To know when a task is fi nished writing so that it is safe for 
another to read, the tasks need to synchronize. If they don’t synchronize, there is a 
danger of a data race, where the results of the program can change depending on 
how events happen to occur.

For example, recall the analogy of the eight reporters writing a story on page 44 of 
Chapter 1. Suppose one reporter needs to read all the prior sections before writing 
a conclusion. Hence, he or she must know when the other reporters have fi nished 
their sections, so that there is no danger of sections being changed aft erwards. Th at 
is, they had better synchronize the writing and reading of each section so that the 
conclusion will be consistent with what is printed in the prior sections.

In computing, synchronization mechanisms are typically built with user-level 
soft ware routines that rely on hardware-supplied synchronization instructions. In 
this section, we focus on the implementation of lock and unlock synchronization 
operations. Lock and unlock can be used straightforwardly to create regions 
where only a single processor can operate, called a mutual exclusion, as well as to 
implement more complex synchronization mechanisms.

Th e critical ability we require to implement synchronization in a multiprocessor 
is a set of hardware primitives with the ability to atomically read and modify a 
memory location. Th at is, nothing else can interpose itself between the read and 
the write of the memory location. Without such a capability, the cost of building 
basic synchronization primitives will be high and will increase unreasonably as the 
processor count increases.

Th ere are a number of alternative formulations of the basic hardware primitives, 
all of which provide the ability to atomically read and modify a location, together 
with some way to tell if the read and write were performed atomically. In general, 
architects do not expect users to employ the basic hardware primitives, but 
instead expect that the primitives will be used by system programmers to build a 
synchronization library, a process that is oft en complex and tricky.

Let’s start with one such hardware primitive and show how it can be used to 
build a basic synchronization primitive. One typical operation for building 
synchronization operations is the atomic exchange or atomic swap, which inter-
changes a value in a register for a value in memory.

To see how to use this to build a basic synchronization primitive, assume that 
we want to build a simple lock where the value 0 is used to indicate that the lock 
is free and 1 is used to indicate that the lock is unavailable. A processor tries to set 
the lock by doing an exchange of 1, which is in a register, with the memory address 
corresponding to the lock. Th e value returned from the exchange instruction is 1 
if some other processor had already claimed access, and 0 otherwise. In the latter 

data race Two memory 
accesses form a data race 
if they are from diff erent 
threads to same location, 
at least one is a write, 
and they occur one aft er 
another.
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case, the value is also changed to 1, preventing any competing exchange in another 
processor from also retrieving a 0.

For example, consider two processors that each try to do the exchange 
simultaneously: this race is broken, since exactly one of the processors will perform 
the exchange fi rst, returning 0, and the second processor will return 1 when it does 
the exchange. Th e key to using the exchange primitive to implement synchronization 
is that the operation is atomic: the exchange is indivisible, and two simultaneous 
exchanges will be ordered by the hardware. It is impossible for two processors 
trying to set the synchronization variable in this manner to both think they have 
simultaneously set the variable.

Implementing a single atomic memory operation introduces some challenges in 
the design of the processor, since it requires both a memory read and a write in a 
single, uninterruptible instruction.

An alternative is to have a pair of instructions in which the second instruction 
returns a value showing whether the pair of instructions was executed as if the pair 
were atomic. Th e pair of instructions is eff ectively atomic if it appears as if all other 
operations executed by any processor occurred before or aft er the pair. Th us, when 
an instruction pair is eff ectively atomic, no other processor can change the value 
between the instruction pair.

In MIPS this pair of instructions includes a special load called a load linked and 
a special store called a store conditional. Th ese instructions are used in sequence: 
if the contents of the memory location specifi ed by the load linked are changed 
before the store conditional to the same address occurs, then the store conditional 
fails. Th e store conditional is defi ned to both store the value of a (presumably 
diff erent) register in memory and to change the value of that register to a 1 if it 
succeeds and to a 0 if it fails. Since the load linked returns the initial value, and the 
store conditional returns 1 only if it succeeds, the following sequence implements 
an atomic exchange on the memory location specifi ed by the contents of $s1:

again: addi $t0,$zero,1       ;copy locked value
   ll       $t1,0($s1)        ;load linked
   sc       $t0,0($s1)        ;store conditional
   beq      $t0,$zero,again   ;branch if store fails
   add      $s4,$zero,$t1     ;put load value in $s4

Any time a processor intervenes and modifi es the value in memory between the 
ll and sc instructions, the sc returns 0 in $t0, causing the code sequence to try 
again. At the end of this sequence the contents of $s4 and the memory location 
specifi ed by $s1 have been atomically exchanged.

Elaboration: Although it was presented for multiprocessor synchronization, atomic 
exchange is also useful for the operating system in dealing with multiple processes 
in a single processor. To make sure nothing interferes in a single processor, the store 
conditional also fails if the processor does a context switch between the two instructions 
(see Chapter 5).
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An advantage of the load linked/store conditional mechanism is that it can be used 
to build other synchronization primitives, such as atomic compare and swap or atomic 
fetch-and-increment, which are used in some parallel programming models. These 
involve more instructions between the ll and the sc, but not too many.

Since the store conditional will fail after either another attempted store to the load 
linked address or any exception, care must be taken in choosing which instructions are 
inserted between the two instructions. In particular, only register-register instructions 
can safely be permitted; otherwise, it is possible to create deadlock situations where 
the processor can never complete the sc because of repeated page faults. In addition, 
the number of instructions between the load linked and the store conditional should be 
small to minimize the probability that either an unrelated event or a competing processor 
causes the store conditional to fail frequently.

When do you use primitives like load linked and store conditional?

1. When cooperating threads of a parallel program need to synchronize to get 
proper behavior for reading and writing shared data

2. When cooperating processes on a uniprocessor need to synchronize for 
reading and writing shared data

 2.12 Translating and Starting a Program

Th is section describes the four steps in transforming a C program in a fi le on disk 
into a program running on a computer. Figure 2.21 shows the translation hierarchy. 
Some systems combine these steps to reduce translation time, but these are the 
logical four phases that programs go through. Th is section follows this translation 
hierarchy.

Compiler
Th e compiler transforms the C program into an assembly language program, a 
symbolic form of what the machine understands. High-level language programs 
take many fewer lines of code than assembly language, so programmer productivity 
is much higher.

In 1975, many operating systems and assemblers were written in assembly 
language because memories were small and compilers were ineffi  cient. Th e 
million-fold increase in memory capacity per single DRAM chip has reduced 
program size concerns, and optimizing compilers today can produce assembly 
language programs nearly as well as an assembly language expert, and sometimes 
even better for large programs.

Check 
Yourself

assembly language 
A symbolic language that 
can be translated into 
binary machine language.
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Assembler
Since assembly language is an interface to higher-level soft ware, the assembler 
can also treat common variations of machine language instructions as if they 
were instructions in their own right. Th e hardware need not implement these 
instructions; however, their appearance in assembly language simplifi es translation 
and programming. Such instructions are called pseudoinstructions.

As mentioned above, the MIPS hardware makes sure that register $zero always 
has the value 0. Th at is, whenever register $zero is used, it supplies a 0, and the 
programmer cannot change the value of register $zero. Register $zero is used 
to create the assembly language instruction that copies the contents of one register 
to another. Th us the MIPS assembler accepts this instruction even though it is not 
found in the MIPS architecture:

move $t0,$t1      # register $t0 gets register $t1

pseudoinstruction 
A common variation 
of assembly language 
instructions oft en treated 
as if it were an instruction 
in its own right.

Loader

C program

Compiler

Assembly language program

Assembler

Object: Machine language module Object: Library routine (machine language)

Linker

Memory

Executable: Machine language program

FIGURE 2.21 A translation hierarchy for C. A high-level language program is fi rst compiled into 
an assembly language program and then assembled into an object module in machine language. Th e linker 
combines multiple modules with library routines to resolve all references. Th e loader then places the machine 
code into the proper memory locations for execution by the processor. To speed up the translation process, 
some steps are skipped or combined. Some compilers produce object modules directly, and some systems use 
linking loaders that perform the last two steps. To identify the type of fi le, UNIX follows a suffi  x convention 
for fi les: C source fi les are named x.c, assembly fi les are x.s, object fi les are named x.o, statically linked 
library routines are x.a, dynamically linked library routes are x.so, and executable fi les by default are 
called a.out. MS-DOS uses the suffi  xes .C, .ASM, .OBJ, .LIB, .DLL, and .EXE to the same eff ect.



Th e assembler converts this assembly language instruction into the machine 
language equivalent of the following instruction:

add $t0,$zero,$t1 # register $t0 gets 0 + register $t1

Th e MIPS assembler also converts blt (branch on less than) into the two 
instructions slt and bne mentioned in the example on page 95. Other examples 
include bgt, bge, and ble. It also converts branches to faraway locations into a 
branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants 
to be loaded into a register despite the 16-bit limit of the immediate instructions.

In summary, pseudoinstructions give MIPS a richer set of assembly language 
instructions than those implemented by the hardware. Th e only cost is reserving 
one register, $at, for use by the assembler. If you are going to write assembly 
programs, use pseudoinstructions to simplify your task. To understand the MIPS 
architecture and be sure to get best performance, however, study the real MIPS 
instructions found in Figures 2.1 and 2.19.

Assemblers will also accept numbers in a variety of bases. In addition to binary 
and decimal, they usually accept a base that is more succinct than binary yet 
converts easily to a bit pattern. MIPS assemblers use hexadecimal.

Such features are convenient, but the primary task of an assembler is assembly 
into machine code. Th e assembler turns the assembly language program into an 
object fi le, which is a combination of machine language instructions, data, and 
information needed to place instructions properly in memory.

To produce the binary version of each instruction in the assembly language 
program, the assembler must determine the addresses corresponding to all labels. 
Assemblers keep track of labels used in branches and data transfer instructions 
in a symbol table. As you might expect, the table contains pairs of symbols and 
addresses.

Th e object fi le for UNIX systems typically contains six distinct pieces:

■ Th e object fi le header describes the size and position of the other pieces of the 
object fi le.

■ Th e text segment contains the machine language code.

■ Th e static data segment contains data allocated for the life of the program. 
(UNIX allows programs to use both static data, which is allocated throughout 
the program, and dynamic data, which can grow or shrink as needed by the 
program. See Figure 2.13.)

■ Th e relocation information identifi es instructions and data words that depend 
on absolute addresses when the program is loaded into memory.

■ Th e symbol table contains the remaining labels that are not defi ned, such as 
external references.

symbol table A table 
that matches names of 
labels to the addresses of 
the memory words that 
instructions occupy.
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■ Th e debugging information contains a concise description of how the modules 
were compiled so that a debugger can associate machine instructions with C 
source fi les and make data structures readable.

Th e next subsection shows how to attach such routines that have already been 
assembled, such as library routines.

Linker
What we have presented so far suggests that a single change to one line of one 
procedure requires compiling and assembling the whole program. Complete 
retranslation is a terrible waste of computing resources. Th is repetition is 
particularly wasteful for standard library routines, because programmers would 
be compiling and assembling routines that by defi nition almost never change. An 
alternative is to compile and assemble each procedure independently, so that a 
change to one line would require compiling and assembling only one procedure. 
Th is alternative requires a new systems program, called a link editor or linker, 
which takes all the independently assembled machine language programs and 
“stitches” them together.

Th ere are three steps for the linker:

1. Place code and data modules symbolically in memory.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

Th e linker uses the relocation information and symbol table in each object 
module to resolve all undefi ned labels. Such references occur in branch instructions, 
jump instructions, and data addresses, so the job of this program is much like that 
of an editor: it fi nds the old addresses and replaces them with the new addresses. 
Editing is the origin of the name “link editor,” or linker for short. Th e reason a 
linker is useful is that it is much faster to patch code than it is to recompile and 
reassemble.

If all external references are resolved, the linker next determines the memory 
locations each module will occupy. Recall that Figure 2.13 on page 104 shows 
the MIPS convention for allocation of program and data to memory. Since the 
fi les were assembled in isolation, the assembler could not know where a module’s 
instructions and data would be placed relative to other modules. When the linker 
places a module in memory, all absolute references, that is, memory addresses that 
are not relative to a register, must be relocated to refl ect its true location.

Th e linker produces an executable fi le that can be run on a computer. Typically, 
this fi le has the same format as an object fi le, except that it contains no unresolved 
references. It is possible to have partially linked fi les, such as library routines, that 
still have unresolved addresses and hence result in object fi les.

linker Also called 
link editor. A systems 
program that combines 
independently assembled 
machine language 
programs and resolves all 
undefi ned labels into an 
executable fi le.

executable fi le 
A functional program in 
the format of an object 
fi le that contains no 
unresolved references. 
It can contain symbol 
tables and debugging 
information. A “stripped 
executable” does not 
contain that information. 
Relocation information 
may be included for the 
loader.



Linking Object Files

Link the two object fi les below. Show updated addresses of the fi rst few 
instructions of the completed executable fi le. We show the instructions in 
assembly language just to make the example understandable; in reality, the 
instructions would be numbers.

Note that in the object fi les we have highlighted the addresses and symbols 
that must be updated in the link process: the instructions that refer to the 
addresses of procedures A and B and the instructions that refer to the addresses 
of data words X and Y.

EXAMPLE

Object fi le header

Name Procedure A
Text size 100hex

Data size 20hex

Text segment Address Instruction

0 lw $a0, 0($gp)

4 jal 0
… …

Data segment 0 (X)
… …

Relocation information Address Instruction type Dependency

 0 lw X

4 jal B

Symbol table Label Address

X –

B –

Object fi le header

Name Procedure B
Text size 200hex

Data size 30hex

Text segment Address Instruction

0 sw $a1, 0($gp)
4 jal 0
… …

Data segment 0 (Y)
… …

Relocation information Address Instruction type Dependency

 0 sw Y
4 jal A

Symbol table Label Address

Y –

A –
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Procedure A needs to fi nd the address for the variable labeled X to put in the 
load instruction and to fi nd the address of procedure B to place in the jal 
instruction. Procedure B needs the address of the variable labeled Y for the 
store instruction and the address of procedure A for its jal instruction.

From Figure 2.13 on page 104, we know that the text segment starts 
at address 40 0000hex and the data segment at 1000 0000hex. Th e text of 
procedure A is placed at the fi rst address and its data at the second. Th e object 
fi le header for procedure A says that its text is 100hex bytes and its data is 20hex 
bytes, so the starting address for procedure B text is 40 0100hex, and its data 
starts at 1000 0020hex.

ANSWER

Executable fi le header

Text size 300hex

Data size 50hex

Text segment Address Instruction
0040 0000hex lw $a0, 8000hex($gp)

0040 0004hex jal 40 0100hex

… …
0040 0100hex sw $a1, 8020hex($gp)

0040 0104hex jal 40 0000hex

… …

Data segment Address
1000 0000hex (X)

… …
1000 0020hex (Y)

… …

Figure 2.13 also shows that the text segment starts at address 40 0000hex 
and the data segment at 1000 0000hex. Th e text of procedure A is placed at the 
fi rst address and its data at the second. Th e object fi le header for procedure A 
says that its text is 100hex bytes and its data is 20hex bytes, so the starting address 
for procedure B text is 40 0100hex, and its data starts at 1000 0020hex.

Now the linker updates the address fi elds of the instructions. It uses the 
instruction type fi eld to know the format of the address to be edited. We have 
two types here:

1. Th e jals are easy because they use pseudodirect addressing. Th e jal at 
address 40 0004hex gets 40 0100hex (the address of procedure B) in its 
address fi eld, and the jal at 40 0104hex gets 40 0000hex (the address of 
procedure A) in its address fi eld.

2. Th e load and store addresses are harder because they are relative to a base 
register. Th is example uses the global pointer as the base register. Figure 2.13 
shows that $gp is initialized to 1000 8000hex. To get the address 1000 0000hex 
(the address of word X), we place 8000hex in the address fi eld of lw at address 
40 0000hex. Similarly, we place 8020hex in the address fi eld of sw at address 
40 0100hex to get the address 1000 0020hex (the address of word Y).



Elaboration: Recall that MIPS instructions are word aligned, so jal drops the right 
two bits to increase the instruction’s address range. Thus, it uses 26 bits to create a 
28-bit byte address. Hence, the actual address in the lower 26 bits of the jal instruction 
in this example is 10 0040hex, rather than 40 0100hex.

Loader
Now that the executable fi le is on disk, the operating system reads it to memory and 
starts it. Th e loader follows these steps in UNIX systems:

1. Reads the executable fi le header to determine size of the text and data 
segments.

2. Creates an address space large enough for the text and data.

3. Copies the instructions and data from the executable fi le into memory.

4. Copies the parameters (if any) to the main program onto the stack.

5. Initializes the machine registers and sets the stack pointer to the fi rst free 
location.

6. Jumps to a start-up routine that copies the parameters into the argument 
registers and calls the main routine of the program. When the main routine 
returns, the start-up routine terminates the program with an exit system 
call.

Sections A.3 and A.4 in Appendix A describe linkers and loaders in more detail.

Dynamically Linked Libraries
Th e fi rst part of this section describes the traditional approach to linking libraries 
before the program is run. Although this static approach is the fastest way to call 
library routines, it has a few disadvantages:

■ Th e library routines become part of the executable code. If a new version of 
the library is released that fi xes bugs or supports new hardware devices, the 
statically linked program keeps using the old version.

■ It loads all routines in the library that are called anywhere in the executable, 
even if those calls are not executed. Th e library can be large relative to the 
program; for example, the standard C library is 2.5 MB.

Th ese disadvantages lead to dynamically linked libraries (DLLs), where the 
library routines are not linked and loaded until the program is run. Both the 
program and library routines keep extra information on the location of nonlocal 
procedures and their names. In the initial version of DLLs, the loader ran a dynamic 
linker, using the extra information in the fi le to fi nd the appropriate libraries and to 
update all external references.

loader A systems 
program that places an 
object program in main 
memory so that it is ready 
to execute.

dynamically linked 
libraries (DLLs) Library 
routines that are linked 
to a program during 
execution.
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Virtually every 
problem in computer 
science can be solved 
by another level of 
indirection.
David Wheeler
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Th e downside of the initial version of DLLs was that it still linked all routines 
of the library that might be called, versus only those that are called during the 
running of the program. Th is observation led to the lazy procedure linkage version 
of DLLs, where each routine is linked only aft er it is called.

Like many innovations in our fi eld, this trick relies on a level of indirection. 
Figure 2.22 shows the technique. It starts with the nonlocal routines calling a set of 
dummy routines at the end of the program, with one entry per nonlocal routine. 
Th ese dummy entries each contain an indirect jump.

Th e fi rst time the library routine is called, the program calls the dummy entry 
and follows the indirect jump. It points to code that puts a number in a register to 

Text

jal

(a) First call to DLL routine (b) Subsequent calls to DLL routine

lw
jr

...

...

Data

Text

li    ID
j

...

...

Text

Data/Text

Dynamic linker/loader
Remap DLL routine

j
...

DLL routine

jr
...

Text

jal

lw
jr
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Data

DLL routine

jr
...

Text

FIGURE 2.22 Dynamically linked library via lazy procedure linkage. (a) Steps for the fi rst time 
a call is made to the DLL routine. (b) Th e steps to fi nd the routine, remap it, and link it are skipped on 
subsequent calls. As we will see in Chapter 5, the operating system may avoid copying the desired routine by 
remapping it using virtual memory management.



identify the desired library routine and then jumps to the dynamic linker/loader. 
Th e linker/loader fi nds the desired routine, remaps it, and changes the address in 
the indirect jump location to point to that routine. It then jumps to it. When the 
routine completes, it returns to the original calling site. Th ereaft er, the call to the 
library routine jumps indirectly to the routine without the extra hops.

In summary, DLLs require extra space for the information needed for dynamic 
linking, but do not require that whole libraries be copied or linked. Th ey pay a good 
deal of overhead the fi rst time a routine is called, but only a single indirect jump 
thereaft er. Note that the return from the library pays no extra overhead. Microsoft ’s 
Windows relies extensively on dynamically linked libraries, and it is also the default 
when executing programs on UNIX systems today.

Starting a Java Program
Th e discussion above captures the traditional model of executing a program, 
where the emphasis is on fast execution time for a program targeted to a specifi c 
instruction set architecture, or even a specifi c implementation of that architecture. 
Indeed, it is possible to execute Java programs just like C. Java was invented with 
a diff erent set of goals, however. One was to run safely on any computer, even if it 
might slow execution time.

Figure 2.23 shows the typical translation and execution steps for Java. Rather 
than compile to the assembly language of a target computer, Java is compiled fi rst 
to instructions that are easy to interpret: the Java bytecode instruction set (see 

 Section 2.15). Th is instruction set is designed to be close to the Java language 
so that this compilation step is trivial. Virtually no optimizations are performed. 
Like the C compiler, the Java compiler checks the types of data and produces the 
proper operation for each type. Java programs are distributed in the binary version 
of these bytecodes.

A soft ware interpreter, called a Java Virtual Machine (JVM), can execute Java 
bytecodes. An interpreter is a program that simulates an instruction set architecture. 

Java bytecode 
Instruction from an 
instruction set designed 
to interpret Java 
programs.

Java Virtual Machine 
(JVM) Th e program that 
interprets Java bytecodes.

Java program

Compiler

Class files (Java bytecodes)

Java Virtual Machine

Compiled Java methods (machine language)

Java library routines (machine language)

Just In Time
compiler

FIGURE 2.23 A translation hierarchy for Java. A Java program is fi rst compiled into a binary 
version of Java bytecodes, with all addresses defi ned by the compiler. Th e Java program is now ready to run 
on the interpreter, called the Java Virtual Machine (JVM). Th e JVM links to desired methods in the Java 
library while the program is running. To achieve greater performance, the JVM can invoke the JIT compiler, 
which selectively compiles methods into the native machine language of the machine on which it is running.
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For example, the MIPS simulator used with this book is an interpreter. Th ere is no 
need for a separate assembly step since either the translation is so simple that the 
compiler fi lls in the addresses or JVM fi nds them at runtime.

Th e upside of interpretation is portability. Th e availability of soft ware Java virtual 
machines meant that most people could write and run Java programs shortly 
aft er Java was announced. Today, Java virtual machines are found in hundreds of 
millions of devices, in everything from cell phones to Internet browsers.

Th e downside of interpretation is lower performance. Th e incredible advances in 
performance of the 1980s and 1990s made interpretation viable for many important 
applications, but the factor of 10 slowdown when compared to traditionally 
compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java 
development was compilers that translated while the program was running. Such 
Just In Time compilers (JIT) typically profi le the running program to fi nd where 
the “hot” methods are and then compile them into the native instruction set on 
which the virtual machine is running. Th e compiled portion is saved for the next 
time the program is run, so that it can run faster each time it is run. Th is balance 
of interpretation and compilation evolves over time, so that frequently run Java 
programs suff er little of the overhead of interpretation.

As computers get faster so that compilers can do more, and as researchers 
invent betters ways to compile Java on the fl y, the performance gap between Java 
and C or C�� is closing.  Section 2.15 goes into much greater depth on the 
implementation of Java, Java bytecodes, JVM, and JIT compilers.

Which of the advantages of an interpreter over a translator do you think was most 
important for the designers of Java?

1. Ease of writing an interpreter

2. Better error messages

3. Smaller object code

4. Machine independence

 2.13 A C Sort Example to Put It All Together

One danger of showing assembly language code in snippets is that you will have no 
idea what a full assembly language program looks like. In this section, we derive 
the MIPS code from two procedures written in C: one to swap array elements and 
one to sort them.

Just In Time compiler 
(JIT) Th e name 
commonly given to a 
compiler that operates at 
runtime, translating the 
interpreted code segments 
into the native code of the 
computer.

Check 
Yourself
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The Procedure swap
Let’s start with the code for the procedure swap in Figure 2.24. Th is procedure 
simply swaps two locations in memory. When translating from C to assembly 
language by hand, we follow these general steps:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

Th is section describes the swap procedure in these three pieces, concluding by 
putting all the pieces together.

Register Allocation for swap
As mentioned on pages 98–99, the MIPS convention on parameter passing is to 
use registers $a0, $a1, $a2, and $a3. Since swap has just two parameters, v and 
k, they will be found in registers $a0 and $a1. Th e only other variable is temp, 
which we associate with register $t0 since swap is a leaf procedure (see page 100). 
Th is register allocation corresponds to the variable declarations in the fi rst part of 
the swap procedure in Figure 2.24.

Code for the Body of the Procedure swap
Th e remaining lines of C code in swap are

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Recall that the memory address for MIPS refers to the byte address, and so 
words are really 4 bytes apart. Hence we need to multiply the index k by 4 before 
adding it to the address. Forgetting that sequential word addresses diff er by 4 instead 

void swap(int v[], int k) 
{ 
 int temp; 
 temp = v[k]; 
 v[k] = v[k+1]; 
 v[k+1] = temp; 

}

FIGURE 2.24 A C procedure that swaps two locations in memory. Th is subsection uses this 
procedure in a sorting example.
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of by 1 is a common mistake in assembly language programming. Hence the fi rst step 
is to get the address of v[k] by multiplying k by 4 via a shift  left  by 2:

sll   $t1, $a1,2     # reg $t1 = k * 4
add   $t1, $a0,$t1   # reg $t1 = v + (k * 4)
                     # reg $t1 has the address of v[k]

Now we load v[k] using $t1, and then v[k+1] by adding 4 to $t1:

lw    $t0, 0($t1)    # reg $t0 (temp) = v[k]
lw    $t2, 4($t1)    # reg $t2 = v[k + 1]
                     # refers to next element of v

Next we store $t0 and $t2 to the swapped addresses:

sw    $t2, 0($t1)    # v[k] = reg $t2
sw    $t0, 4($t1)    # v[k+1] = reg $t0 (temp)

Now we have allocated registers and written the code to perform the operations 
of the procedure. What is missing is the code for preserving the saved registers 
used within swap. Since we are not using saved registers in this leaf procedure, 
there is nothing to preserve.

The Full swap Procedure

We are now ready for the whole routine, which includes the procedure label and 
the return jump. To make it easier to follow, we identify in Figure 2.25 each block 
of code with its purpose in the procedure.

Procedure body

swap: sll $t1, $a1, 2  # reg $t1 = k * 4
 add $t1, $a0, $t1    # reg $t1 = v + (k * 4)

 # reg $t1 has the address of v[k]
 lw $t0, 0($t1)  # reg $t0 (temp) = v[k]
 lw $t2, 4($t1)  # reg $t2 = v[k + 1]

 # refers to next element of v
 sw $t2, 0($t1)  # v[k] = reg $t2
 sw $t0, 4($t1)  # v[k+1] = reg $t0 (temp)

Procedure return

 jr $ra  # return to calling routine

FIGURE 2.25 MIPS assembly code of the procedure swap in Figure 2.24.



The Procedure sort
To ensure that you appreciate the rigor of programming in assembly language, we’ll 
try a second, longer example. In this case, we’ll build a routine that calls the swap 
procedure. Th is program sorts an array of integers, using bubble or exchange sort, 
which is one of the simplest if not the fastest sorts. Figure 2.26 shows the C version 
of the program. Once again, we present this procedure in several steps, concluding 
with the full procedure.

void sort (int v[], int n)
{
 int i, j;
 for (i = 0; i < n; i += 1) {
  for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j =1) {
  swap(v,j);
  }
 }
}

FIGURE 2.26 A C procedure that performs a sort on the array v.

Register Allocation for sort
Th e two parameters of the procedure sort, v and n, are in the parameter registers 
$a0 and $a1, and we assign register $s0 to i and register $s1 to j.

Code for the Body of the Procedure sort
Th e procedure body consists of two nested for loops and a call to swap that includes 
parameters. Let’s unwrap the code from the outside to the middle.

Th e fi rst translation step is the fi rst for loop:

for (i = 0; i <n; i += 1) {

Recall that the C for statement has three parts: initialization, loop test, and iteration 
increment. It takes just one instruction to initialize i to 0, the fi rst part of the for 
statement:

move    $s0, $zero    # i = 0

(Remember that move is a pseudoinstruction provided by the assembler for the 
convenience of the assembly language programmer; see page 124.) It also takes just 
one instruction to increment i, the last part of the for statement:

addi    $s0, $s0, 1     # i += 1
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Th e loop should be exited if i < n is not true or, said another way, should be 
exited if i ≥ n. Th e set on less than instruction sets register $t0 to 1 if $s0 < 
$a1 and to 0 otherwise. Since we want to test if $s0 ≥ $a1, we branch if register 
$t0 is 0. Th is test takes two instructions:

for1tst:slt  $t0, $s0, $a1      # reg $t0 = 0 if $s0 ≥ $a1 (i≥n)
        beq  $t0, $zero,exit1  # go to exit1 if $s0 ≥ $a1 (i≥n)

Th e bottom of the loop just jumps back to the loop test:

        j  for1tst      # jump to test of outer loop
exit1:

Th e skeleton code of the fi rst for loop is then

       move $s0, $zero       # i = 0
for1tst:slt $t0, $s0, $a1    # reg $t0 = 0 if $s0 ≥ $a1 (i≥n)
       beq  $t0, $zero,exit1 # go to exit1 if $s0 ≥ $a1 (i≥n)
            . . .
            (body of first for loop)
            . . .
       addi $s0, $s0, 1      # i += 1
       j    for1tst          # jump to test of outer loop
exit1:

Voila! (Th e exercises explore writing faster code for similar loops.)
Th e second for loop looks like this in C:

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

Th e initialization portion of this loop is again one instruction:

addi     $s1, $s0, –1 # j = i – 1

Th e decrement of j at the end of the loop is also one instruction:

addi     $s1, $s1, –1 # j –= 1

Th e loop test has two parts. We exit the loop if either condition fails, so the fi rst 
test must exit the loop if it fails (j � 0):

for2tst: slti $t0, $s1, 0      # reg $t0 = 1 if $s1 < 0 (j < 0)
         bne  $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

Th is branch will skip over the second condition test. If it doesn’t skip, j ≥ 0.



Th e second test exits if v[j] > v[j + 1] is not true, or exits if v[j] ≤ 
v[j + 1]. First we create the address by multiplying j by 4 (since we need a byte 
address) and add it to the base address of v:

sll    $t1, $s1, 2   # reg $t1 = j * 4
add    $t2, $a0, $t1 # reg $t2 = v + (j * 4)

Now we load v[j]:

lw     $t3, 0($t2)   # reg $t3  = v[j]

Since we know that the second element is just the following word, we add 4 to 
the address in register $t2 to get v[j + 1]:

lw     $t4, 4($t2)   # reg $t4  = v[j + 1]

Th e test of v[j] ≤ v[j + 1] is the same as v[j + 1] ≥ v[j], so the 
two instructions of the exit test are

slt    $t0, $t4, $t3     # reg $t0 = 0 if $t4 ≥ $t3
beq    $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

Th e bottom of the loop jumps back to the inner loop test:

j    for2tst   # jump to test of inner loop

Combining the pieces, the skeleton of the second for loop looks like this:

        addi $s1, $s0, –1     # j = i – 1
for2tst:slti $t0, $s1, 0      # reg $t0 = 1 if $s1 < 0 (j < 0)
        bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
        sll $t1, $s1, 2       # reg $t1 = j * 4
        add $t2, $a0, $t1     # reg $t2 = v + (j * 4)
        lw  $t3, 0($t2)       # reg $t3 = v[j]
        lw  $t4, 4($t2)       # reg $t4 = v[j + 1]
        slt $t0, $t4, $t3     # reg $t0 = 0 if $t4 ≥ $t3
        beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3
            . . .
            (body of second for loop)
            . . .
        addi $s1, $s1, –1     # j –= 1
        j  for2tst            # jump to test of inner loop
exit2:

The Procedure Call in sort
Th e next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

jal    swap
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Passing Parameters in sort
Th e problem comes when we want to pass parameters because the sort procedure 
needs the values in registers $a0 and $a1, yet the swap procedure needs to have its 
parameters placed in those same registers. One solution is to copy the parameters 
for sort into other registers earlier in the procedure, making registers $a0 and 
$a1 available for the call of swap. (Th is copy is faster than saving and restoring on 
the stack.) We fi rst copy $a0 and $a1 into $s2 and $s3 during the procedure:

move  $s2, $a0     # copy parameter $a0 into $s2
move  $s3, $a1     # copy parameter $a1 into $s3

Th en we pass the parameters to swap with these two instructions:

move  $a0, $s2     # first swap parameter is v
move  $a1, $s1     # second swap parameter is j

Preserving Registers in sort
Th e only remaining code is the saving and restoring of registers. Clearly, we must 
save the return address in register $ra, since sort is a procedure and is called 
itself. Th e sort procedure also uses the saved registers $s0, $s1, $s2, and $s3, 
so they must be saved. Th e prologue of the sort procedure is then

addi  $sp,$sp,–20  # make room on stack for 5 registers
sw    $ra,16($sp)  # save $ra on stack
sw    $s3,12($sp)  # save $s3 on stack
sw    $s2, 8($sp)  # save $s2 on stack
sw    $s1, 4($sp)  # save $s1 on stack
sw    $s0, 0($sp)  # save $s0 on stack

Th e tail of the procedure simply reverses all these instructions, then adds a jr to 
return.

The Full Procedure sort
Now we put all the pieces together in Figure 2.27, being careful to replace references 
to registers $a0 and $a1 in the for loops with references to registers $s2 and $s3. 
Once again, to make the code easier to follow, we identify each block of code with 
its purpose in the procedure. In this example, nine lines of the sort procedure in 
C became 35 lines in the MIPS assembly language.

Elaboration: One optimization that works with this example is procedure inlining. 
Instead of passing arguments in parameters and invoking the code with a jal instruction, 
the compiler would copy the code from the body of the swap procedure where the call 
to swap appears in the code. Inlining would avoid four instructions in this example. The 
downside of the inlining optimization is that the compiled code would be bigger if the 
inlined procedure is called from several locations. Such a code expansion might turn 
into lower performance if it increased the cache miss rate; see Chapter 5.



Saving registers

sort: addi $sp,$sp, –20 # make room on stack for 5 registers
 sw $ra, 16($sp)# save $ra on stack
 sw $s3,12($sp) # save $s3 on stack
 sw $s2, 8($sp)# save $s2 on stack
 sw $s1, 4($sp)# save $s1 on stack
 sw $s0, 0($sp)# save $s0 on stack

Procedure body

Move parameters
 move $s2, $a0 # copy parameter $a0 into $s2 (save $a0)
 move $s3, $a1 # copy parameter $a1 into $s3 (save $a1)

Outer loop

 move $s0, $zero# i = 0
for1tst:slt     $t0, $s0,$s3 #reg$t0=0if$s0Š$s3(iŠn)
 beq $t0, $zero, exit1# go to exit1 if $s0 Š $s3 (i Š n)

Inner loop

 addi $s1, $s0, –1# j = i – 1
for2tst:slti    $t0, $s1,0   #reg$t0=1if$s1<0(j<0)
 bne $t0, $zero, exit2# go to exit2 if $s1 < 0 (j < 0)
 sll $t1, $s1, 2# reg $t1 = j * 4
 add $t2, $s2, $t1# reg $t2 = v + (j * 4)
 lw $t3, 0($t2)# reg $t3 = v[j]
 lw $t4, 4($t2)# reg $t4 = v[j + 1]
 slt $t0, $t4, $t3 # reg $t0 = 0 if $t4 Š $t3
 beq $t0, $zero, exit2# go to exit2 if $t4 Š $t3

Pass parameters
and call

 move $a0, $s2  # 1st parameter of swap is v (old $a0)
 move $a1, $s1 # 2nd parameter of swap is j
 jal swap  # swap code shown in Figure 2.25

Inner loop  addi $s1, $s1, –1# j –= 1
 j for2tst  # jump to test of inner loop

Outer loop exit2: addi $s0, $s0, 1 # i += 1
 j for1tst  # jump to test of outer loop

Restoring registers

exit1: lw $s0, 0($sp) # restore $s0 from stack
 lw $s1, 4($sp)# restore $s1 from stack
 lw $s2, 8($sp)# restore $s2 from stack
 lw $s3,12($sp) # restore $s3 from stack
 lw $ra,16($sp) # restore $ra from stack
 addi $sp,$sp, 20 # restore stack pointer

Procedure return

 jr $ra  # return to calling routine

FIGURE 2.27 MIPS assembly version of procedure sort in Figure 2.26.
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Figure 2.28 shows the impact of compiler optimization on sort program 
performance, compile time, clock cycles, instruction count, and CPI. Note that 
unoptimized code has the best CPI, and O1 optimization has the lowest instruction 
count, but O3 is the fastest, reminding us that time is the only accurate measure of 
program performance.

Figure 2.29 compares the impact of programming languages, compilation 
versus interpretation, and algorithms on performance of sorts. Th e fourth column 
shows that the unoptimized C program is 8.3 times faster than the interpreted 
Java code for Bubble Sort. Using the JIT compiler makes Java 2.1 times faster than 
the unoptimized C and within a factor of 1.13 of the highest optimized C code. 
(  Section 2.15 gives more details on interpretation versus compilation of Java and 
the Java and MIPS code for Bubble Sort.) Th e ratios aren’t as close for Quicksort 
in Column 5, presumably because it is harder to amortize the cost of runtime 
compilation over the shorter execution time. Th e last column demonstrates the 
impact of a better algorithm, off ering three orders of magnitude a performance 
increases by when sorting 100,000 items. Even comparing interpreted Java in 
Column 5 to the C compiler at highest optimization in Column 4, Quicksort beats 
Bubble Sort by a factor of 50 (0.05 � 2468, or 123 times faster than the unoptimized 
C code versus 2.41 times faster).

Elaboration: The MIPS compilers always save room on the stack for the arguments 
in case they need to be stored, so in reality they always decrement $sp by 16 to make 
room for all four argument registers (16 bytes). One reason is that C provides a vararg 
option that allows a pointer to pick, say, the third argument to a procedure. When the 
compiler encounters the rare vararg, it copies the four argument registers onto the 
stack into the four reserved locations.

Understanding 
Program 

Performance

gcc optimization
Relative 

performance
Clock cycles 

(millions)
Instruction count 

(millions) CPI

None 1.00 158,615 114,938  1.38 

O1 (medium) 2.37 66,990   37,470 1.79 

O2 (full) 2.38 66,521 39,993 1.66 

O3 (procedure integration) 2.41 65,747 44,993 1.46 

FIGURE 2.28 Comparing performance, instruction count, and CPI using compiler 
optimization for Bubble Sort. Th e programs sorted 100,000 words with the array initialized to random 
values. Th ese programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus 
with 2 GB of PC2100 DDR SDRAM. It used Linux version 2.4.20.
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 2.14 Arrays versus Pointers

A challenge for any new C programmer is understanding pointers. Comparing 
assembly code that uses arrays and array indices to the assembly code that uses 
pointers off ers insights about pointers. Th is section shows C and MIPS assembly 
versions of two procedures to clear a sequence of words in memory: one using 
array indices and one using pointers. Figure 2.30 shows the two C procedures.

Th e purpose of this section is to show how pointers map into MIPS instructions, 
and not to endorse a dated programming style. We’ll see the impact of modern 
compiler optimization on these two procedures at the end of the section.

Array Version of Clear
Let’s start with the array version, clear1, focusing on the body of the loop and 
ignoring the procedure linkage code. We assume that the two parameters array 
and size are found in the registers $a0 and $a1, and that i is allocated to 
register $t0.

Th e initialization of i, the fi rst part of the for loop, is straightforward:

     move    $t0,$zero      # i = 0 (register $t0 = 0)

To set array[i] to 0 we must fi rst get its address. Start by multiplying i by 4 
to get the byte address:

loop1: sll   $t1,$t0,2      # $t1 = i * 4

Since the starting address of the array is in a register, we must add it to the index 
to get the address of array[i] using an add instruction:

       add   $t2,$a0,$t1    # $t2 = address of array[i]

Language Execution method Optimization
Bubble Sort relative 

performance
Quicksort relative 

performance
Speedup Quicksort 

vs. Bubble Sort

C Compiler None 1.00 1.00 2468

Compiler O1 2.37 1.50 1562

Compiler O2 2.38 1.50 1555

Compiler O3 2.41 1.91 1955

Java Interpreter – 0.12 0.05 1050

JIT compiler – 2.13 0.29 338

FIGURE 2.29 Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative 
to unoptimized C version. Th e last column shows the advantage in performance of Quicksort over Bubble Sort for each language and 
execution option. Th ese programs were run on the same system as in Figure 2.28. Th e JVM is Sun version 1.3.1, and the JIT is Sun Hotspot 
version 1.3.1.
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Finally, we can store 0 in that address:

        sw   $zero, 0($t2)  # array[i] = 0

Th is instruction is the end of the body of the loop, so the next step is to increment i:

        addi $t0,$t0,1      # i = i + 1

Th e loop test checks if i is less than size:

       slt  $t3,$t0,$a1      # $t3 = (i < size)
       bne  $t3,$zero,loop1  # if (i < size) go to loop1

We have now seen all the pieces of the procedure. Here is the MIPS code for 
clearing an array using indices:

       move  $t0,$zero       # i = 0
loop1: sll   $t1,$t0,2       # $t1 = i * 4
       add   $t2,$a0,$t1     # $t2 = address of array[i]
       sw    $zero, 0($t2)   # array[i] = 0
       addi  $t0,$t0,1       # i = i + 1
       slt   $t3,$t0,$a1     # $t3 = (i < size)
       bne   $t3,$zero,loop1 # if (i < size) go to loop1

(Th is code works as long as size is greater than 0; ANSI C requires a test of size 
before the loop, but we’ll skip that legality here.)

clear1(int array[], int size)
{
 int i;
 for (i = 0; i < size; i += 1)
  array[i] = 0;
}
clear2(int *array, int size)
{
 int *p;
 for (p = &array[0]; p < &array[size]; p = p + 1)
  *p = 0;
}

FIGURE 2.30 Two C procedures for setting an array to all zeros. Clear1 uses indices, 
while clear2 uses pointers. Th e second procedure needs some explanation for those unfamiliar with C. 
Th e address of a variable is indicated by &, and the object pointed to by a pointer is indicated by *. Th e 
declarations declare that array and p are pointers to integers. Th e fi rst part of the for loop in clear2 
assigns the address of the fi rst element of array to the pointer p. Th e second part of the for loop tests to see 
if the pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the last part of 
the for loop, means moving the pointer to the next sequential object of its declared size. Since p is a pointer to 
integers, the compiler will generate MIPS instructions to increment p by four, the number of bytes in a MIPS 
integer. Th e assignment in the loop places 0 in the object pointed to by p.



Pointer Version of Clear
Th e second procedure that uses pointers allocates the two parameters array and 
size to the registers $a0 and $a1 and allocates p to register $t0. Th e code for 
the second procedure starts with assigning the pointer p to the address of the fi rst 
element of the array:

     move  $t0,$a0         # p = address of array[0]

Th e next code is the body of the for loop, which simply stores 0 into p:

loop2: sw  $zero,0($t0)    # Memory[p] = 0

Th is instruction implements the body of the loop, so the next code is the iteration 
increment, which changes p to point to the next word:

     addi  $t0,$t0,4       # p = p + 4

Incrementing a pointer by 1 means moving the pointer to the next sequential 
object in C. Since p is a pointer to integers, each of which uses 4 bytes, the compiler 
increments p by 4.

Th e loop test is next. Th e fi rst step is calculating the address of the last element 
of array. Start with multiplying size by 4 to get its byte address:

     sll   $t1,$a1,2       # $t1 = size * 4

and then we add the product to the starting address of the array to get the address 
of the fi rst word aft er the array:

add  $t2,$a0,$t1      # $t2 = address of array[size]

Th e loop test is simply to see if p is less than the last element of array:

slt  $t3,$t0,$t2      # $t3 = (p<&array[size])
bne  $t3,$zero,loop2  # if (p<&array[size]) go to loop2

With all the pieces completed, we can show a pointer version of the code to zero 
an array:

   move $t0,$a0        # p = address of array[0]
loop2: sw   $zero,0($t0)   # Memory[p] = 0

   addi $t0,$t0,4      # p = p + 4
   sll  $t1,$a1,2      # $t1 = size * 4
   add  $t2,$a0,$t1    # $t2 = address of array[size]
   slt  $t3,$t0,$t2    # $t3 = (p<&array[size])
   bne  $t3,$zero,loop2 # if (p<&array[size]) go to loop2

As in the fi rst example, this code assumes size is greater than 0.
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Note that this program calculates the address of the end of the array in every 
iteration of the loop, even though it does not change. A faster version of the code 
moves this calculation outside the loop:

   move $t0,$a0         # p = address of array[0]
   sll  $t1,$a1,2       # $t1 = size * 4
   add  $t2,$a0,$t1     # $t2 = address of array[size]

loop2: sw   $zero,0($t0)    # Memory[p] = 0
   addi $t0,$t0,4       # p = p + 4
   slt  $t3,$t0,$t2     # $t3 = (p<&array[size])
   bne  $t3,$zero,loop2 # if (p<&array[size]) go to loop2

Comparing the Two Versions of Clear
Comparing the two code sequences side by side illustrates the diff erence between 
array indices and pointers (the changes introduced by the pointer version are 
highlighted):

Th e version on the left  must have the “multiply” and add inside the loop because 
i is incremented and each address must be recalculated from the new index. Th e 
memory pointer version on the right increments the pointer p directly. Th e pointer 
version moves the scaling shift  and the array bound addition outside the loop, 
thereby reducing the instructions executed per iteration from 6 to 4. Th is manual 
optimization corresponds to the compiler optimization of strength reduction (shift  
instead of multiply) and induction variable elimination (eliminating array address 
calculations within loops).  Section 2.15 describes these two and many other 
optimizations.

Elaboration: As mentioned ealier, a C compiler would add a test to be sure that size 
is greater than 0. One way would be to add a jump just before the fi rst instruction of the 
loop to the slt instruction.

 move $t0,$zero  # i = 0

loop1: sll $t1,$t0,2 # $t1 = i * 4

 add $t2,$a0,$t1 # $t2 = &array[i]

 sw $zero, 0($t2) # array[i] = 0

 addi $t0,$t0,1 # i = i + 1

 slt $t3,$t0,$a1 # $t3 = (i < size)

 bne $t3,$zero,loop1# if () go to loop1

 move $t0,$a0 # p = & array[0]

 sll $t1,$a1,2 # $t1 = size * 4

 add $t2,$a0,$t1 # $t2 = &array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0

 addi $t0,$t0,4 # p = p + 4

 slt $t3,$t0,$t2     # $t3=(p<&array[size])

 bne $t3,$zero,loop2# if () go to loop2
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People used to be taught to use pointers in C to get greater effi  ciency than that 
available with arrays: “Use pointers, even if you can’t understand the code.” Modern 
optimizing compilers can produce code for the array version that is just as good. 
Most programmers today prefer that the compiler do the heavy lift ing.

   Advanced Material: Compiling C and 
Interpreting Java

Th is section gives a brief overview of how the C compiler works and how Java 
is executed. Because the compiler will signifi cantly aff ect the performance of a 
computer, understanding compiler technology today is critical to understanding 
performance. Keep in mind that the subject of compiler construction is usually 
taught in a one- or two-semester course, so our introduction will necessarily only 
touch on the basics.

Th e second part of this section is for readers interested in seeing how an object 
oriented language like Java executes on a MIPS architecture. It shows the Java 
byte-codes used for interpretation and the MIPS code for the Java version of some 
of the C segments in prior sections, including Bubble Sort. It covers both the Java 
Virtual Machine and JIT compilers.

Th e rest of  Section 2.15 can be found online.

 2.16 Real Stuff: ARMv7 (32-bit) Instructions

ARM is the most popular instruction set architecture for embedded devices, with 
more than 9 billion devices in 2011 using ARM, and recent growth has been 2 
billion per year. Standing originally for the Acorn RISC Machine, later changed 
to Advanced RISC Machine, ARM came out the same year as MIPS and followed 
similar philosophies. Figure 2.31 lists the similarities. Th e principal diff erence is 
that MIPS has more registers and ARM has more addressing modes.

Th ere is a similar core of instruction sets for arithmetic-logical and data transfer 
instructions for MIPS and ARM, as Figure 2.32 shows.

Addressing Modes
Figure 2.33 shows the data addressing modes supported by ARM. Unlike MIPS, 
ARM does not reserve a register to contain 0. Although MIPS has just three simple 
data addressing modes (see Figure 2.18), ARM has nine, including fairly complex 
calculations. For example, ARM has an addressing mode that can shift  one register 

Understanding 
Program 
Performance

2.15

object oriented 
language 
A programming language 
that is oriented around 
objects rather than 
actions, or data versus 
logic.
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ARM MIPS 

Date announced 1985 1985

Instruction size (bits) 32 32

Address space (size, model) 32 bits, fl at 32 bits, fl at

Data alignment Aligned Aligned

Data addressing modes 9 3

Integer registers (number, model, size) 15 GPR � 32 bits 31 GPR � 32 bits  
I/O Memory mapped Memory mapped

FIGURE 2.31 Similarities in ARM and MIPS instruction sets.

Register-register

ddA

buS

luM

iviD

dnA

rO

roX

oC

Data transfer
aoL

rotS

rotS

Instruction name ARM MIPS

add

Add (trap if overfl ow) adds; swivs add

addu, addiu

subtcart

Subtract (trap if overfl ow) subs; swivs sub

subu

mult, multumulylpit

div, divu—ed

andand

ororr

xoreor

Load high part register — lui

Shift left logical lsl1 sllv, sll

Shift right logical lsr1 srlv, srl

Shift right arithmetic asr1 srav, sra 

slt/i,slt/iucmp, cmn, tst, teqerapm

Load byte signed ldrsb lb

Load byte unsigned ldrb lbu

Load halfword signed ldrsh lh

Load halfword unsigned ldrh lhu

lwldrdrowd

sbstrbetybe

Store halfword strh sh

swstrdrowe

Read, write special registers mrs, msr move 

Atomic Exchange swp, swpb ll;sc

FIGURE 2.32 ARM register-register and data transfer instructions equivalent to MIPS 
core. Dashes mean the operation is not available in that architecture or not synthesized in a few instructions. 
If there are several choices of instructions equivalent to the MIPS core, they are separated by commas. ARM 
includes shift s as part of every data operation instruction, so the shift s with superscript 1 are just a variation 
of a move instruction, such as lsr1. Note that ARM has no divide instruction.



by any amount, add it to the other registers to form the address, and then update 
one register with this new address.

Addressing mode MIPS

Register operand XX

Immediate operand XX

Register + offset (displacement or based) XX

Register + register (indexed) —X

Register + scaled register (scaled) —X

Register + offset and update register —X

Register + register and update register —X

Autoincrement, autodecrement —X

PC-relative data —X

ARM

FIGURE 2.33 Summary of data addressing modes. ARM has separate register indirect and register 
� off set addressing modes, rather than just putting 0 in the off set of the latter mode. To get greater addressing 
range, ARM shift s the off set left  1 or 2 bits if the data size is halfword or word.

Compare and Conditional Branch
MIPS uses the contents of registers to evaluate conditional branches. ARM uses the 
traditional four condition code bits stored in the program status word: negative, 
zero, carry, and overfl ow. Th ey can be set on any arithmetic or logical instruction; 
unlike earlier architectures, this setting is optional on each instruction. An 
explicit option leads to fewer problems in a pipelined implementation. ARM uses 
conditional branches to test condition codes to determine all possible unsigned 
and signed relations.

CMP subtracts one operand from the other and the diff erence sets the condition 
codes. Compare negative (CMN) adds one operand to the other, and the sum sets 
the condition codes. TST performs logical AND on the two operands to set all 
condition codes but overfl ow, while TEQ uses exclusive OR to set the fi rst three 
condition codes.

One unusual feature of ARM is that every instruction has the option of executing 
conditionally, depending on the condition codes. Every instruction starts with a 
4-bit fi eld that determines whether it will act as a no operation instruction (nop) 
or as a real instruction, depending on the condition codes. Hence, conditional 
branches are properly considered as conditionally executing the unconditional 
branch instruction. Conditional execution allows avoiding a branch to jump over a 
single instruction. It takes less code space and time to simply conditionally execute 
one instruction.

Figure 2.34 shows the instruction formats for ARM and MIPS. Th e principal 
diff erences are the 4-bit conditional execution fi eld in every instruction and the 
smaller register fi eld, because ARM has half the number of registers.
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Unique Features of ARM
Figure 2.35 shows a few arithmetic-logical instructions not found in MIPS. Since 
ARM does not have a dedicated register for 0, it has separate opcodes to perform 
some operations that MIPS can do with $zero. In addition, ARM has support for 
multiword arithmetic.

ARM’s 12-bit immediate fi eld has a novel interpretation. Th e eight least-
signifi cant bits are zero-extended to a 32-bit value, then rotated right the number 
of bits specifi ed in the fi rst four bits of the fi eld multiplied by two. One advantage is 
that this scheme can represent all powers of two in a 32-bit word. Whether this split 
actually catches more immediates than a simple 12-bit fi eld would be an interesting 
study.

Operand shift ing is not limited to immediates. Th e second register of all 
arithmetic and logical processing operations has the option of being shift ed before 
being operated on. Th e shift  options are shift  left  logical, shift  right logical, shift  
right arithmetic, and rotate right.

Register ConstantOpcode

ARM

Register-register

Opx4

31 28 27

28 27

28 27

28 27

19 16 15

16 15

16 15

16 15

16 15

1112 4 3 0

Op8 Rs14 Rd4 Rs24Opx8

Data transfer

ARM Opx4

31 1112 0

Op8 Rs14 Rd4 Const12

Branch

ARM

Jump/Call

Opx4

31 2324 0

Op4 Const24

ARM Opx4

31 2324 0

Op4 Const24

MIPS

31 2526

20

21 20

2526 21 20

21 20

1920

11 10 6 5 0

Const5Rs15 Rs25 Rd5 Opx6Op6

MIPS

31 0

Const16Rs15 Rd5Op6

MIPS

31 2526

2526

0

Rs15 Opx5/Rs25 Const16Op6

31 0

Op6MIPS Const26

FIGURE 2.34 Instruction formats, ARM and MIPS. Th e diff erences result from whether the 
architecture has 16 or 32 registers.
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ARM also has instructions to save groups of registers, called block loads and 
stores. Under control of a 16-bit mask within the instructions, any of the 16 registers 
can be loaded or stored into memory in a single instruction. Th ese instructions can 
save and restore registers on procedure entry and return. Th ese instructions can 
also be used for block memory copy, and today block copies are the most important 
use of such instructions.

 2.17 Real Stuff: x86 Instructions

Designers of instruction sets sometimes provide more powerful operations than 
those found in ARM and MIPS. Th e goal is generally to reduce the number of 
instructions executed by a program. Th e danger is that this reduction can occur at 
the cost of simplicity, increasing the time a program takes to execute because the 
instructions are slower. Th is slowness may be the result of a slower clock cycle time 
or of requiring more clock cycles than a simpler sequence.

Th e path toward operation complexity is thus fraught with peril. Section 2.19 
demonstrates the pitfalls of complexity.

Evolution of the Intel x86
ARM and MIPS were the vision of single small groups in 1985; the pieces of these 
architectures fi t nicely together, and the whole architecture can be described 
succinctly. Such is not the case for the x86; it is the product of several independent 
groups who evolved the architecture over 35 years, adding new features to the 
original instruction set as someone might add clothing to a packed bag. Here are 
important x86 milestones.

Beauty is altogether in 
the eye of the beholder.
Margaret Wolfe 
Hungerford, Molly 
Bawn, 1877

Name Defi nition ARM   MIPS

Load immediate Rd = Imm mov addi $0,

Not Rd = ~(Rs1) mvn nor $0,

Move Rd = Rs1 mov or $0,

Rotate right Rd = Rs i >>  i
Rd0. . . i–1 = Rs31–i. . . 31

ror

And not Rd = Rs1 & ~(Rs2) bic

Reverse subtract Rd = Rs2 – Rs1 rsb, rsc

Support for multiword 
integer add

CarryOut, Rd = Rd + Rs1 + 
OldCarryOut

adcs —

Support for multiword 
integer sub

CarryOut, Rd = Rd – Rs1 + 
OldCarryOut

sbcs —

FIGURE 2.35 ARM arithmetic/logical instructions not found in MIPS.
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■ 1978: Th e Intel 8086 architecture was announced as an assembly 
language–compatible extension of the then successful Intel 8080, an 8-bit 
microprocessor. Th e 8086 is a 16-bit architecture, with all internal registers 
16 bits wide. Unlike MIPS, the registers have dedicated uses, and hence the 
8086 is not considered a general-purpose register architecture.

■ 1980: Th e Intel 8087 fl oating-point coprocessor is announced. Th is archi-
tecture extends the 8086 with about 60 fl oating-point instructions. Instead of 
using registers, it relies on a stack (see  Section 2.21 and Section 3.7).

■ 1982: Th e 80286 extended the 8086 architecture by increasing the address 
space to 24 bits, by creating an elaborate memory-mapping and protection 
model (see Chapter 5), and by adding a few instructions to round out the 
instruction set and to manipulate the protection model.

■ 1985: Th e 80386 extended the 80286 architecture to 32 bits. In addition to 
a 32-bit architecture with 32-bit registers and a 32-bit address space, the 
80386 added new addressing modes and additional operations. Th e added 
instructions make the 80386 nearly a general-purpose register machine. Th e 
80386 also added paging support in addition to segmented addressing (see 
Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs 
without change.

■ 1989–95: Th e subsequent 80486 in 1989, Pentium in 1992, and Pentium 
Pro in 1995 were aimed at higher performance, with only four instructions 
added to the user-visible instruction set: three to help with multiprocessing 
(Chapter 6) and a conditional move instruction.

■ 1997: Aft er the Pentium and Pentium Pro were shipping, Intel announced that 
it would expand the Pentium and the Pentium Pro architectures with MMX 
(Multi Media Extensions). Th is new set of 57 instructions uses the fl oating-
point stack to accelerate multimedia and communication applications. MMX 
instructions typically operate on multiple short data elements at a time, in 
the tradition of single instruction, multiple data (SIMD) architectures (see 
Chapter 6). Pentium II did not introduce any new instructions.

■ 1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD 
Extensions) as part of Pentium III. Th e primary changes were to add eight 
separate registers, double their width to 128 bits, and add a single precision 
fl oating-point data type. Hence, four 32-bit fl oating-point operations can be 
performed in parallel. To improve memory performance, SSE includes cache 
prefetch instructions plus streaming store instructions that bypass the caches 
and write directly to memory.

■ 2001: Intel added yet another 144 instructions, this time labeled SSE2. Th e 
new data type is double precision arithmetic, which allows pairs of 64-bit 
fl oating-point operations in parallel. Almost all of these 144 instructions are 
versions of existing MMX and SSE instructions that operate on 64 bits of data 

general-purpose 
register (GPR) 
A register that can be 
used for addresses or for 
data with virtually any 
instruction.



in parallel. Not only does this change enable more multimedia operations; 
it gives the compiler a diff erent target for fl oating-point operations than 
the unique stack architecture. Compilers can choose to use the eight SSE 
registers as fl oating-point registers like those found in other computers. Th is 
change boosted the fl oating-point performance of the Pentium 4, the fi rst 
microprocessor to include SSE2 instructions.

■ 2003: A company other than Intel enhanced the x86 architecture this time. 
AMD announced a set of architectural extensions to increase the address 
space from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address 
space in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also 
increases the number of registers to 16 and increases the number of 128-
bit SSE registers to 16. Th e primary ISA change comes from adding a new 
mode called long mode that redefi nes the execution of all x86 instructions 
with 64-bit addresses and data. To address the larger number of registers, it 
adds a new prefi x to instructions. Depending how you count, long mode also 
adds four to ten new instructions and drops 27 old ones. PC-relative data 
addressing is another extension. AMD64 still has a mode that is identical 
to x86 (legacy mode) plus a mode that restricts user programs to x86 but 
allows operating systems to use AMD64 (compatibility mode). Th ese modes 
allow a more graceful transition to 64-bit addressing than the HP/Intel IA-64 
architecture.

■ 2004: Intel capitulates and embraces AMD64, relabeling it Extended Memory 
64 Technology (EM64T). Th e major diff erence is that Intel added a 128-bit 
atomic compare and swap instruction, which probably should have been 
included in AMD64. At the same time, Intel announced another generation of 
media extensions. SSE3 adds 13 instructions to support complex arithmetic, 
graphics operations on arrays of structures, video encoding, fl oating-point 
conversion, and thread synchronization (see Section 2.11). AMD added SSE3 
in subsequent chips and the missing atomic swap instruction to AMD64 to 
maintain binary compatibility with Intel.

■ 2006: Intel announces 54 new instructions as part of the SSE4 instruction set 
extensions. Th ese extensions perform tweaks like sum of absolute diff erences, 
dot products for arrays of structures, sign or zero extension of narrow data to 
wider sizes, population count, and so on. Th ey also added support for virtual 
machines (see Chapter 5).

■ 2007: AMD announces 170 instructions as part of SSE5, including 46 
instructions of the base instruction set that adds three operand instructions 
like MIPS.

■ 2011: Intel ships the Advanced Vector Extension that expands the SSE 
register width from 128 to 256 bits, thereby redefi ning about 250 instructions 
and adding 128 new instructions.
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Th is history illustrates the impact of the “golden handcuff s” of compatibility on 
the x86, as the existing soft ware base at each step was too important to jeopardize 
with signifi cant architectural changes.

Whatever the artistic failures of the x86, keep in mind that this instruction set 
largely drove the PC generation of computers and still dominates the cloud portion 
of the PostPC Era. Manufacturing 350M x86 chips per year may seem small 
compared to 9 billion ARMv7 chips, but many companies would love to control 
such a market. Nevertheless, this checkered ancestry has led to an architecture that 
is diffi  cult to explain and impossible to love.

Brace yourself for what you are about to see! Do not try to read this section 
with the care you would need to write x86 programs; the goal instead is to give you 
familiarity with the strengths and weaknesses of the world’s most popular desktop 
architecture.

Rather than show the entire 16-bit, 32-bit, and 64-bit instruction set, in this 
section we concentrate on the 32-bit subset that originated with the 80386. We start 
our explanation with the registers and addressing modes, move on to the integer 
operations, and conclude with an examination of instruction encoding.

x86 Registers and Data Addressing Modes

Th e registers of the 80386 show the evolution of the instruction set (Figure 2.36). 
Th e 80386 extended all 16-bit registers (except the segment registers) to 32 bits, 
prefi xing an E to their name to indicate the 32-bit version. We’ll refer to them 
generically as GPRs (general-purpose registers). Th e 80386 contains only eight 
GPRs. Th is means MIPS programs can use four times as many and ARMv7 twice 
as many.

Figure 2.37 shows the arithmetic, logical, and data transfer instructions are 
two-operand instructions. Th ere are two important diff erences here. Th e x86 
arithmetic and logical instructions must have one operand act as both a source 
and a destination; ARMv7 and MIPS allow separate registers for source and 
destination. Th is restriction puts more pressure on the limited registers, since one 
source register must be modifi ed. Th e second important diff erence is that one of 
the operands can be in memory. Th us, virtually any instruction may have one 
operand in memory, unlike ARMv7 and MIPS.

Data memory-addressing modes, described in detail below, off er two sizes of 
addresses within the instruction. Th ese so-called displacements can be 8 bits or 32 
bits.

Although a memory operand can use any addressing mode, there are restrictions 
on which registers can be used in a mode. Figure 2.38 shows the x86 addressing 
modes and which GPRs cannot be used with each mode, as well as how to get the 
same eff ect using MIPS instructions.

x86 Integer Operations
Th e 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. Th e 
80386 adds 32-bit addresses and data (double words) in the x86. (AMD64 adds 64-



GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use

031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended 
to 32 bits and could also be used as general-purpose registers.

Source/destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

FIGURE 2.37 Instruction types for the arithmetic, logical, and data transfer instructions. 
Th e x86 allows the combinations shown. Th e only restriction is the absence of a memory-memory mode. 
Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.36 
(not EIP or EFLAGS).
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bit addresses and data, called quad words; we’ll stick to the 80386 in this section.) 
Th e data type distinctions apply to register operations as well as memory accesses.

Almost every operation works on both 8-bit data and on one longer data size. 
Th at size is determined by the mode and is either 16 bits or 32 bits.

Clearly, some programs want to operate on data of all three sizes, so the 80386 
architects provided a convenient way to specify each version without expanding 
code size signifi cantly. Th ey decided that either 16-bit or 32-bit data dominates 
most programs, and so it made sense to be able to set a default large size. Th is 
default data size is set by a bit in the code segment register. To override the default 
data size, an 8-bit prefi x is attached to the instruction to tell the machine to use the 
other large size for this instruction.

Th e prefi x solution was borrowed from the 8086, which allows multiple prefi xes 
to modify instruction behavior. Th e three original prefi xes override the default 
segment register, lock the bus to support synchronization (see Section 2.11), or 
repeat the following instruction until the register ECX counts down to 0. Th is last 
prefi x was intended to be paired with a byte move instruction to move a variable 
number of bytes. Th e 80386 also added a prefi x to override the default address size.

Th e x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test, integer, and decimal 
arithmetic operations

3. Control fl ow, including conditional branches, unconditional jumps, calls, 
and returns

4. String instructions, including string move and string compare

Mode Description
Register 

restrictions MIPS equivalent

Register indirect Address is in a register. Not ESP or EBP lw $s0,0($s1)

Based mode with 8- or 32-bit 
displacement

Address is contents of base register plus 
displacement.

Not ESP lw $s0,100($s1) # <= 16-bit
               # displacement

Base plus scaled index The address is
Base + (2Scale x Index) 

where Scale has the value 0, 1, 2, or 3.

Base: any GPR
Index: not ESP

mul $t0,$s2,4
add $t0,$t0,$s1
lw $s0,0($t0)

Base plus scaled index with
8- or 32-bit displacement

The address is
Base + (2Scale x Index) + displacement

where Scale has the value 0, 1, 2, or 3.

Base: any GPR
Index: not ESP

mul $t0,$s2,4
add $t0,$t0,$s1
lw $s0,100($t0) #<=16-bit

# displacement

FIGURE 2.38 x86 32-bit addressing modes with register restrictions and the equivalent MIPS code. Th e Base plus Scaled 
Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to turn an index in a register 
into a byte address (see Figures 2.25 and 2.27). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. A scale factor 
of 0 means the address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mode 
would need two more instructions: a lui to load the upper 16 bits of the displacement and an add to sum the upper address with the base 
register $s1. (Intel gives two diff erent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical 
and we combine them here.)



Th e fi rst two categories are unremarkable, except that the arithmetic and logic 
instruction operations allow the destination to be either a register or a memory 
location. Figure 2.39 shows some typical x86 instructions and their functions.

Conditional branches on the x86 are based on condition codes or fl ags, like 
ARMv7. Condition codes are set as a side eff ect of an operation; most are used 
to compare the value of a result to 0. Branches then test the condition codes. PC-

Instruction Function

je name if equal(condition code) {EIP=name};
EIP–128 <= name < EIP+128

jmp name EIP=name

call name SP=SP–4; M[SP]=EIP+5; EIP=name;

movw EBX,[EDI+45] EBX=M[EDI+45]

push ESI SP=SP–4; M[SP]=ESI

pop EDI EDI=M[SP]; SP=SP+4

add EAX,#6765 EAX= EAX+6765

test EDX,#42 Set condition code (fl ags) with EDX and 42

movsl M[EDI]=M[ESI];
EDI=EDI+4; ESI=ESI+4

FIGURE 2.39 Some typical x86 instructions and their functions. A list of frequent operations 
appears in Figure 2.40. Th e CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.)

relative branch addresses must be specifi ed in the number of bytes, since unlike 
ARMv7 and MIPS, 80386 instructions are not all 4 bytes in length.

String instructions are part of the 8080 ancestry of the x86 and are not commonly 
executed in most programs. Th ey are oft en slower than equivalent soft ware routines 
(see the fallacy on page 159).

Figure 2.40 lists some of the integer x86 instructions. Many of the instructions 
are available in both byte and word formats.

x86 Instruction Encoding
Saving the worst for last, the encoding of instructions in the 80386 is complex, with 
many diff erent instruction formats. Instructions for the 80386 may vary from 1 
byte, when there are no operands, up to 15 bytes.

Figure 2.41 shows the instruction format for several of the example instructions in 
Figure 2.39. Th e opcode byte usually contains a bit saying whether the operand is 8 bits 
or 32 bits. For some instructions, the opcode may include the addressing mode and 
the register; this is true in many instructions that have the form “register � register op 
immediate.” Other instructions use a “postbyte” or extra opcode byte, labeled “mod, reg, 
r/m,” which contains the addressing mode information. Th is postbyte is used for many 
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of the instructions that address memory. Th e base plus scaled index mode uses a second 
postbyte, labeled “sc, index, base.”

Figure 2.42 shows the encoding of the two postbyte address specifi ers for 
both 16-bit and 32-bit mode. Unfortunately, to understand fully which registers 
and which addressing modes are available, you need to see the encoding of all 
addressing modes and sometimes even the encoding of the instructions.

x86 Conclusion
Intel had a 16-bit microprocessor two years before its competitors’ more elegant 
architectures, such as the Motorola 68000, and this head start led to the selection 
of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge that 
the x86 is more diffi  cult to build than computers like ARMv7 and MIPS, but the 
large market meant in the PC Era that AMD and Intel could aff ord more resources 

Instruction Meaning

Control Conditional and unconditional branches

jnz, jz Jump if condition to EIP + 8-bit offset; JNE (forJNZ), JE (for JZ) are   
alternative names

jmp Unconditional jump—8-bit or 16-bit offset 

call Subroutine call—16-bit offset; return address pushed onto stack

ret Pops return address from stack and jumps to it

loop Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX ≠ 0  
Data transfer Move data between registers or between register and memory

move Move between two registers or between register and memory

push, pop Push source operand on stack; pop operand from stack top to a register

les Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

add, sub Add source to destination; subtract source from destination; register-memory 
format

cmp Compare source and destination; register-memory format

shl, shr, rcr Shift left; shift logical right; rotate right with carry condition code as fi ll

cbw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test Logical AND of source and destination sets condition codes

inc, dec Increment destination, decrement destination

or, xor Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefi x

movs Copies from string source to destination by incrementing ESI and EDI; may be 
repeated

lods Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.40 Some typical operations on the x86. Many operations use register-memory format, 
where either the source or the destination may be memory and the other may be a register or immediate 
operand.



to help overcome the added complexity. What the x86 lacks in style, it made up for 
in market size, making it beautiful from the right perspective.

Its saving grace is that the most frequently used x86 architectural components 
are not too diffi  cult to implement, as AMD and Intel have demonstrated by rapidly 
improving performance of integer programs since 1978. To get that performance, 

FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte. 
Many instructions contain the 1-bit fi eld w, which says whether the operation is a byte or a double word. Th e 
d fi eld in MOV is used in instructions that may move to or from memory and shows the direction of the move. 
Th e ADD instruction requires 32 bits for the immediate fi eld, because in 32-bit mode, the immediates are 
either 8 bits or 32 bits. Th e immediate fi eld in the TEST is 32 bits long because there is no 8-bit immediate for 
test in 32-bit mode. Overall, instructions may vary from 1 to 15 bytes in length. Th e long length comes from 
extra 1-byte prefi xes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of 
2 bytes, and using the scaled index mode specifi er, which adds another byte.
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a. JE EIP + displacement

b. CALL

c. MOV      EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacement
r/m

Postbyte

Offset

Displacement
Condi-

tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8
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compilers must avoid the portions of the architecture that are hard to implement 
fast.

In the PostPC Era, however, despite considerable architectural and manufacturing 
expertise, x86 has not yet been competitive in the personal mobile device.

 2.18 Real Stuff: ARMv8 (64-bit) Instructions

Of the many potential problems in an instruction set, the one that is almost impossible 
to overcome is having too small a memory address. While the x86 was successfully 
extended fi rst to 32-bit addresses and then later to 64-bit addresses, many of its 
brethren were left  behind. For example, the 16-bit address MOStek 6502 powered the 
Apple II, but even given this headstart with the fi rst commercially successful personal 
computer, its lack of address bits condemned it to the dustbin of history.

ARM architects could see the writing on the wall of their 32-bit address 
computer, and began design of the 64-bit address version of ARM in 2007. It was 
fi nally revealed in 2013. Rather than some minor cosmetic changes to make all 
the registers 64 bits wide, which is basically what happened to the x86, ARM did a 
complete overhaul. Th e good news is that if you know MIPS it will be very easy to 
pick up ARMv8, as the 64-bit version is called.

First, as compared to MIPS, ARM dropped virtually all of the unusual features 
of v7:

■ Th ere is no conditional execution fi eld, as there was in nearly every instruction 
in v7.

reg w = 0 w = 1 r/m mod = 0 mod = 1 mod = 2 mod = 3

16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same

1 CL CX ECX 1 addr=BX+DI =ECX addr as addr as addr as addr as as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + disp16 + disp32 fi eld

4 AH SP ESP 4 addr=SI =(sib) SI+disp8 (sib)+disp8 SI+disp8 (sib)+disp32 “

5 CH BP EBP 5 addr=DI =disp32 DI+disp8 EBP+disp8 DI+disp16 EBP+disp32 “

6 DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESI+disp8 BP+disp16 ESI+disp32 “

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp16 EDI+disp32 “

FIGURE 2.42 The encoding of the fi rst address specifi er of the x86: mod, reg, r/m. Th e fi rst four columns show the encoding 
of the 3-bit reg fi eld, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386). 
Th e remaining columns explain the mod and r/m fi elds. Th e meaning of the 3-bit r/m fi eld depends on the value in the 2-bit mod fi eld and the 
address size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod � 0, with mod � 1 
adding an 8-bit displacement and mod � 2 adding a 16-bit or 32-bit displacement, depending on the address mode. Th e exceptions are 1) r/m 
� 6 when mod � 1 or mod � 2 in 16-bit mode selects BP plus the displacement; 2) r/m � 5 when mod � 1 or mod � 2 in 32-bit mode selects 
EBP plus displacement; and 3) r/m � 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled index mode shown in 
Figure 2.38. When mod � 3, the r/m fi eld indicates a register, using the same encoding as the reg fi eld combined with the w bit.
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■ Th e immediate fi eld is simply a 12 bit constant, rather than essentially an 
input to a function that produces a constant as in v7.

■ ARM dropped Load Multiple and Store Multiple instructions.

■ Th e PC is no longer one of the registers, which resulted in unexpected 
branches if you wrote to it.

Second, ARM added missing features that are useful in MIPS

■ V8 has 32 general-purpose registers, which compiler writers surely love. Like 
MIPS, one register is hardwired to 0, although in load and store instructions 
it instead refers to the stack pointer.

■ Its addressing modes work for all word sizes in ARMv8, which was not the 
case in ARMv7.

■ It includes a divide instruction, which was omitted from ARMv7.

■ It adds the equivalent of MIPS branch if equal and branch if not equal.

As the philosophy of the v8 instruction set is much closer to MIPS than it is to 
v7, our conclusion is that the main similarity between ARMv7 and ARMv8 is the 
name.

 2.19 Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance.
Part of the power of the Intel x86 is the prefi xes that can modify the execution of 
the following instruction. One prefi x can repeat the following instruction until a 
counter counts down to 0. Th us, to move data in memory, it would seem that the 
natural instruction sequence is to use move with the repeat prefi x to perform 32-bit 
memory-to-memory moves.

An alternative method, which uses the standard instructions found in all 
computers, is to load the data into the registers and then store the registers back to 
memory. Th is second version of this program, with the code replicated to reduce 
loop overhead, copies at about 1.5 times as fast. A third version, which uses the 
larger fl oating-point registers instead of the integer registers of the x86, copies at 
about 2.0 times as fast than the complex move instruction.

Fallacy: Write in assembly language to obtain the highest performance.
At one time compilers for programming languages produced naïve instruction 
sequences; the increasing sophistication of compilers means the gap between 
compiled code and code produced by hand is closing fast. In fact, to compete 
with current compilers, the assembly language programmer needs to understand 
the concepts in Chapters 4 and 5 thoroughly (processor pipelining and memory 
hierarchy).
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Th is battle between compilers and assembly language coders is another situation 
in which humans are losing ground. For example, C off ers the programmer a 
chance to give a hint to the compiler about which variables to keep in registers 
versus spilled to memory. When compilers were poor at register allocation, such 
hints were vital to performance. In fact, some old C textbooks spent a fair amount 
of time giving examples that eff ectively use register hints. Today’s C compilers 
generally ignore such hints, because the compiler does a better job at allocation 
than the programmer does.

Even if writing by hand resulted in faster code, the dangers of writing in assembly 
language are the longer time spent coding and debugging, the loss in portability, 
and the diffi  culty of maintaining such code. One of the few widely accepted axioms 
of soft ware engineering is that coding takes longer if you write more lines, and it 
clearly takes many more lines to write a program in assembly language than in C 
or Java. Moreover, once it is coded, the next danger is that it will become a popular 
program. Such programs always live longer than expected, meaning that someone 
will have to update the code over several years and make it work with new releases 
of operating systems and new models of machines. Writing in higher-level language 
instead of assembly language not only allows future compilers to tailor the code 
to future machines; it also makes the soft ware easier to maintain and allows the 
program to run on more brands of computers.

Fallacy: Th e importance of commercial binary compatibility means successful 
instruction sets don’t change.

While backwards binary compatibility is sacrosanct, Figure 2.43 shows that the x86 
architecture has grown dramatically. Th e average is more than one instruction per 
month over its 35-year lifetime!

Pitfall: Forgetting that sequential word addresses in machines with byte addressing 
do not diff er by one.

Many an assembly language programmer has toiled over errors made by assuming 
that the address of the next word can be found by incrementing the address in a 
register by one instead of by the word size in bytes. Forewarned is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defi ning procedure.
A common mistake in dealing with pointers is to pass a result from a procedure 
that includes a pointer to an array that is local to that procedure. Following the 
stack discipline in Figure 2.12, the memory that contains the local array will be 
reused as soon as the procedure returns. Pointers to automatic variables can lead 
to chaos.
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 2.20 Concluding Remarks

Th e two principles of the stored-program computer are the use of instructions that 
are indistinguishable from numbers and the use of alterable memory for programs. 
Th ese principles allow a single machine to aid environmental scientists, fi nancial 
advisers, and novelists in their specialties. Th e selection of a set of instructions that 
the machine can understand demands a delicate balance among the number of 
instructions needed to execute a program, the number of clock cycles needed by an 
instruction, and the speed of the clock. As illustrated in this chapter, three design 
principles guide the authors of instruction sets in making that delicate balance:

1. Simplicity favors regularity. Regularity motivates many features of the MIPS 
instruction set: keeping all instructions a single size, always requiring three 
register operands in arithmetic instructions, and keeping the register fi elds 
in the same place in each instruction format.

2. Smaller is faster. Th e desire for speed is the reason that MIPS has 32 registers 
rather than many more.

3. Good design demands good compromises. One MIPS example was the 
compromise between providing for larger addresses and constants in 
instructions and keeping all instructions the same length.

Less is more.
Robert Browning, 
Andrea del Sarto, 1855
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FIGURE 2.43 Growth of x86 instruction set over time. While there is clear technical value to 
some of these extensions, this rapid change also increases the diffi  culty for other companies to try to build 
compatible processors.
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We also saw the great idea of making the common cast fast applied to instruction 
sets as well as computer architecture. Examples of making the common MIPS 
case fast include PC-relative addressing for conditional branches and immediate 
addressing for larger constant operands.

Above this machine level is assembly language, a language that humans can read. 
Th e assembler translates it into the binary numbers that machines can understand, 
and it even “extends” the instruction set by creating symbolic instructions that 
aren’t in the hardware. For instance, constants or addresses that are too big are 
broken into properly sized pieces, common variations of instructions are given 
their own name, and so on. Figure 2.44 lists the MIPS instructions we have covered 

 MIPS instructions Name Format Pseudo MIPS Name Format

add add R move move R

subtract sub R multiply mult R

add immediate addi I multiply immediate multi I

load word lw I load immediate li I

store word sw I branch less than blt I

load half lh I branch less than 
or equal ble I

load half unsigned lhu I

store half sh I branch greater than bgt I

load byte lb I branch greater than 
or equal bge I

load byte unsigned lbu I

store byte sb I

load linked ll I

store conditional sc I

load upper immediate lui I

and and R

or or R

nor nor R

and immediate andi I

or immediate ori I

shift left logical sll R

shift right logical srl R

branch on equal beq I

branch on not equal bne I

set less than slt R

set less than immediate slti I

set less than immediate 
unsigned

sltiu I

jump j J

jump register jr R

jump and link jal J

FIGURE 2.44 The MIPS instruction set covered so far, with the real MIPS instructions 
on the left and the pseudoinstructions on the right. Appendix A (Section A.10) describes the 
full MIPS architecture. Figure 2.1 shows more details of the MIPS architecture revealed in this chapter. Th e 
information given here is also found in Columns 1 and 2 of the MIPS Reference Data Card at the front of 
the book.
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so far, both real and pseudoinstructions. Hiding details from the higher level is 
another example of the great idea of abstraction.

Each category of MIPS instructions is associated with constructs that appear in 
programming languages:

■ Arithmetic instructions correspond to the operations found in assignment 
statements.

■ Transfer instructions are most likely to occur when dealing with data 
structures like arrays or structures.

■ Conditional branches are used in if statements and in loops.

■ Unconditional jumps are used in procedure calls and returns and for case/
switch statements.

Th ese instructions are not born equal; the popularity of the few dominates the 
many. For example, Figure 2.45 shows the popularity of each class of instructions 
for SPEC CPU2006. Th e varying popularity of instructions plays an important role 
in the chapters about datapath, control, and pipelining.

Instruction class MIPS examples HLL correspondence

Frequency

Integer Ft. pt.

Arithmetic add, sub, addi Operations in assignment statement s

Data transfer lw, sw, lb, lbu, lh, 
lhu, sb, lui

Logical and, or, nor, andi, ori,
sll, srl

0perations in assignment statement s

Conditional branch beq, bne, slt, slti, 
sltiu

If statements and loops

Jump j, jr, jal Procedure calls, returns, and case/switch statements

16%

35%

12%

34%

2%

48%

36%

4%

8%

0%

References to data structures, such as arrays

FIGURE 2.45 MIPS instruction classes, examples, correspondence to high-level program language constructs, and 
percentage of MIPS instructions executed by category for the average integer and fl oating point SPEC CPU2006 
benchmarks. Figure 3.26 in Chapter 3 shows average percentage of the individual MIPS instructions executed.

Aft er we explain computer arithmetic in Chapter 3, we reveal the rest of the 
MIPS instruction set architecture.

  
 Historical Perspective and Further 
Reading

Th is section surveys the history of instruction set architectures (ISAs) over time, 
and we give a short history of programming languages and compilers. ISAs 

2.21



164 Chapter 2 Instructions: Language of the Computer

include accumulator architectures, general-purpose register architectures, 
stack architectures, and a brief history of ARM and the x86. We also review the 
controversial subjects of high-level-language computer architectures and reduced 
instruction set computer architectures. Th e history of programming languages 
includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C��, and Java, 
and the history of compilers includes the key milestones and the pioneers who 
achieved them. Th e rest of  Section 2.21 is found online.

 2.22 Exercises

Appendix A describes the MIPS simulator, which is helpful for these exercises. 
Although the simulator accepts pseudoinstructions, try not to use pseudoinstructions 
for any exercises that ask you to produce MIPS code. Your goal should be to learn 
the real MIPS instruction set, and if you are asked to count instructions, your 
count should refl ect the actual instructions that will be executed and not the 
pseudoinstructions.

Th ere are some cases where pseudoinstructions must be used (for example, the 
la instruction when an actual value is not known at assembly time). In many cases, 
they are quite convenient and result in more readable code (for example, the li 
and move instructions). If you choose to use pseudoinstructions for these reasons, 
please add a sentence or two to your solution stating which pseudoinstructions you 
have used and why.

2.1 [5] <§2.2> For the following C statement, what is the corresponding MIPS 
assembly code? Assume that the variables f, g, h, and i are given and could be 
considered 32-bit integers as declared in a C program. Use a minimal number of 
MIPS assembly instructions.

f = g + (h − 5);

2.2 [5] <§2.2> For the following MIPS assembly instructions above, what is a 
corresponding C statement?

add  f, g, h

add  f, i, f
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2.3 [5] <§§2.2, 2.3> For the following C statement, what is the corresponding 
MIPS assembly code? Assume that the variables f, g, h, i, and j are assigned to 
registers $s0, $s1, $s2, $s3, and $s4, respectively. Assume that the base address 
of the arrays A and B are in registers $s6 and $s7, respectively.

B[8] = A[i−j];

2.4 [5] <§§2.2, 2.3> For the MIPS assembly instructions below, what is the 
corresponding C statement? Assume that the variables f, g, h, i, and j are assigned 
to registers $s0, $s1, $s2, $s3, and $s4, respectively. Assume that the base address 
of the arrays A and B are in registers $s6 and $s7, respectively.

sll  $t0, $s0, 2     # $t0 = f * 4
add  $t0, $s6, $t0   # $t0 = &A[f]
sll  $t1, $s1, 2     # $t1 = g * 4
add  $t1, $s7, $t1   # $t1 = &B[g]
lw   $s0, 0($t0)     # f = A[f]
addi $t2, $t0, 4
lw   $t0, 0($t2)
add  $t0, $t0, $s0
sw   $t0, 0($t1)

2.5 [5] <§§2.2, 2.3> For the MIPS assembly instructions in Exercise 2.4, rewrite 
the assembly code to minimize the number if MIPS instructions (if possible) 
needed to carry out the same function.

2.6 Th e table below shows 32-bit values of an array stored in memory.

Address Data

24 2

38 4

32 3

36 6

40 1
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2.6.1 [5] <§§2.2, 2.3> For the memory locations in the table above, write C 
code to sort the data from lowest to highest, placing the lowest value in the 
smallest memory location shown in the figure. Assume that the data shown 
represents the C variable called Array, which is an array of type int, and that 
the first number in the array shown is the first element in the array. Assume 
that this particular machine is a byte-addressable machine and a word consists 
of four bytes.

2.6.2 [5] <§§2.2, 2.3> For the memory locations in the table above, write MIPS 
code to sort the data from lowest to highest, placing the lowest value in the smallest 
memory location. Use a minimum number of MIPS instructions. Assume the base 
address of Array is stored in register $s6.

2.7 [5] <§2.3> Show how the value 0xabcdef12 would be arranged in memory 
of a little-endian and a big-endian machine. Assume the data is stored starting at 
address 0.

2.8 [5] <§2.4> Translate 0xabcdef12 into decimal.

2.9 [5] <§§2.2, 2.3> Translate the following C code to MIPS. Assume that the 
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, 
respectively. Assume that the base address of the arrays A and B are in registers $s6 
and $s7, respectively. Assume that the elements of the arrays A and B are 4-byte 
words:

B[8] = A[i] + A[j];

2.10 [5] <§§2.2, 2.3> Translate the following MIPS code to C. Assume that the 
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, 
respectively. Assume that the base address of the arrays A and B are in registers $s6 
and $s7, respectively.

addi $t0, $s6, 4
add  $t1, $s6, $0
sw   $t1, 0($t0)
lw   $t0, 0($t0)
add  $s0, $t1, $t0

2.11 [5] <§§2.2, 2.5> For each MIPS instruction, show the value of the opcode 
(OP), source register (RS), and target register (RT) fi elds. For the I-type instructions, 
show the value of the immediate fi eld, and for the R-type instructions, show the 
value of the destination register (RD) fi eld.
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2.12 Assume that registers $s0 and $s1 hold the values 0x80000000 and 
0xD0000000, respectively. 

2.12.1 [5] <§2.4> What is the value of $t0 for the following assembly code?

add $t0, $s0, $s1

2.12.2 [5] <§2.4> Is the result in $t0 the desired result, or has there been overfl ow?

2.12.3 [5] <§2.4> For the contents of registers $s0 and $s1 as specifi ed above, 
what is the value of $t0 for the following assembly code?

sub $t0, $s0, $s1

2.12.4 [5] <§2.4> Is the result in $t0 the desired result, or has there been overfl ow?

2.12.5 [5] <§2.4> For the contents of registers $s0 and $s1 as specifi ed above, 
what is the value of $t0 for the following assembly code?

add $t0, $s0, $s1
add $t0, $t0, $s0

2.12.6 [5] <§2.4> Is the result in $t0 the desired result, or has there been 
overfl ow?

2.13 Assume that $s0 holds the value 128ten.

2.13.1 [5] <§2.4> For the instruction add $t0, $s0, $s1, what is the range(s) of 
values for $s1 that would result in overfl ow?

2.13.2 [5] <§2.4> For the instruction sub $t0, $s0, $s1, what is the range(s) of 
values for $s1 that would result in overfl ow?

2.13.3 [5] <§2.4> For the instruction sub $t0, $s1, $s0, what is the range(s) of 
values for $s1 that would result in overfl ow?

2.14 [5] <§§2.2, 2.5> Provide the type and assembly language instruction for the 
following binary value: 0000 0010 0001 0000 1000 0000 0010 0000two

2.15 [5] <§§2.2, 2.5> Provide the type and hexadecimal representation of 
following instruction: sw $t1, 32($t2)
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2.16 [5] <§2.5> Provide the type, assembly language instruction, and binary 
representation of instruction described by the following MIPS fi elds:

op=0, rs=3, rt=2, rd=3, shamt=0, funct=34

2.17 [5] <§2.5> Provide the type, assembly language instruction, and binary 
representation of instruction described by the following MIPS fi elds:

op=0x23, rs=1, rt=2, const=0x4

2.18 Assume that we would like to expand the MIPS register fi le to 128 registers 
and expand the instruction set to contain four times as many instructions.

2.18.1 [5] <§2.5> How this would this aff ect the size of each of the bit fi elds in 
the R-type instructions?

2.18.2 [5] <§2.5> How this would this aff ect the size of each of the bit fi elds in 
the I-type instructions?

2.18.3 [5] <§§2.5, 2.10> How could each of the two proposed changes decrease 
the size of an MIPS assembly program? On the other hand, how could the proposed 
change increase the size of an MIPS assembly program?

2.19 Assume the following register contents:

$t0 = 0xAAAAAAAA, $t1 = 0x12345678

2.19.1 [5] <§2.6> For the register values shown above, what is the value of $t2 
for the following sequence of instructions?

sll $t2, $t0, 44
or  $t2, $t2, $t1

2.19.2 [5] <§2.6> For the register values shown above, what is the value of $t2 
for the following sequence of instructions?

sll  $t2, $t0, 4
andi $t2, $t2, −1

2.19.3 [5] <§2.6> For the register values shown above, what is the value of $t2 
for the following sequence of instructions?

srl  $t2, $t0, 3
andi $t2, $t2, 0xFFEF
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2.20 [5] <§2.6> Find the shortest sequence of MIPS instructions that extracts bits 
16 down to 11 from register $t0 and uses the value of this fi eld to replace bits 31 
down to 26 in register $t1 without changing the other 26 bits of register $t1.

2.21 [5] <§2.6> Provide a minimal set of MIPS instructions that may be used to 
implement the following pseudoinstruction:

not $t1, $t2      // bit-wise invert

2.22 [5] <§2.6> For the following C statement, write a minimal sequence of MIPS 
assembly instructions that does the identical operation. Assume $t1 = A, $t2 = B, 
and $s1 is the base address of C.

A = C[0] << 4;

2.23 [5] <§2.7> Assume $t0 holds the value 0x00101000. What is the value of 
$t2 aft er the following instructions?

slt  $t2, $0,  $t0
bne  $t2, $0,  ELSE
j    DONE

ELSE: addi $t2, $t2, 2
DONE:

2.24 [5] <§2.7> Suppose the program counter (PC) is set to 0x2000 0000. Is it 
possible to use the jump (j) MIPS assembly instruction to set the PC to the address 
as 0x4000 0000? Is it possible to use the branch-on-equal (beq) MIPS assembly 
instruction to set the PC to this same address?

2.25 Th e following instruction is not included in the MIPS instruction set:

rpt $t2, loop # if(R[rs]>0) R[rs]=R[rs]−1, PC=PC+4+BranchAddr

2.25.1 [5] <§2.7> If this instruction were to be implemented in the MIPS 
instruction set, what is the most appropriate instruction format?

2.25.2 [5] <§2.7> What is the shortest sequence of MIPS instructions that 
performs the same operation?
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2.26 Consider the following MIPS loop:

LOOP: slt  $t2, $0,  $t1
beq  $t2, $0,  DONE
subi $t1, $t1, 1
addi $s2, $s2, 2
j    LOOP

DONE:

2.26.1 [5] <§2.7> Assume that the register $t1 is initialized to the value 10. What 
is the value in register $s2 assuming $s2 is initially zero?

2.26.2 [5] <§2.7> For each of the loops above, write the equivalent C code 
routine. Assume that the registers $s1, $s2, $t1, and $t2 are integers A, B, i, and 
temp, respectively.

2.26.3 [5] <§2.7> For the loops written in MIPS assembly above, assume that 
the register $t1 is initialized to the value N. How many MIPS instructions are 
executed?

2.27 [5] <§2.7> Translate the following C code to MIPS assembly code. Use a 
minimum number of instructions. Assume that the values of a, b, i, and j are in 
registers $s0, $s1, $t0, and $t1, respectively. Also, assume that register $s2 holds 
the base address of the array D.

for(i=0; i<a; i++)

for(j=0; j<b; j++)

D[4*j] = i + j;

2.28 [5] <§2.7> How many MIPS instructions does it take to implement the C 
code from Exercise 2.27? If the variables a and b are initialized to 10 and 1 and all 
elements of D are initially 0, what is the total number of MIPS instructions that is 
executed to complete the loop?

2.29 [5] <§2.7> Translate the following loop into C. Assume that the C-level 
integer i is held in register $t1, $s2 holds the C-level integer called result, and 
$s0 holds the base address of the integer MemArray.

      addi $t1, $0, $0
LOOP: lw   $s1, 0($s0)
      add  $s2, $s2, $s1
      addi $s0, $s0, 4
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      addi $t1, $t1, 1
      slti $t2, $t1, 100
      bne  $t2, $s0, LOOP

2.30 [5] <§2.7> Rewrite the loop from Exercise 2.29 to reduce the number of 
MIPS instructions executed.

2.31 [5] <§2.8> Implement the following C code in MIPS assembly. What is the 
total number of MIPS instructions needed to execute the function?

int fib(int n){

    if (n==0)

       return 0;

    else if (n == 1)

       return 1;

    else

       return fib(n−1) + fib(n−2);

2.32 [5] <§2.8> Functions can oft en be implemented by compilers “in-line.” An 
in-line function is when the body of the function is copied into the program space, 
allowing the overhead of the function call to be eliminated. Implement an “in-line” 
version of the C code above in MIPS assembly. What is the reduction in the total 
number of MIPS assembly instructions needed to complete the function? Assume 
that the C variable n is initialized to 5.

2.33 [5] <§2.8> For each function call, show the contents of the stack aft er the 
function call is made. Assume the stack pointer is originally at address 0x7ff ff ff c, 
and follow the register conventions as specifi ed in Figure 2.11.

2.34 Translate function f into MIPS assembly language. If you need to use 
registers $t0 through $t7, use the lower-numbered registers fi rst. Assume the 
function declaration for func is “int f(int a, int b);”. Th e code for function 
f is as follows:

int f(int a, int b, int c, int d){

  return func(func(a,b),c+d);

}
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2.35 [5] <§2.8> Can we use the tail-call optimization in this function? If no, 
explain why not. If yes, what is the diff erence in the number of executed instructions 
in f with and without the optimization?

2.36 [5] <§2.8> Right before your function f from Exercise 2.34 returns, what do 
we know about contents of registers $t5, $s3, $ra, and $sp? Keep in mind that 
we know what the entire function f looks like, but for function func we only know 
its declaration.

2.37 [5] <§2.9> Write a program in MIPS assembly language to convert an ASCII 
number string containing positive and negative integer decimal strings, to an 
integer. Your program should expect register $a0 to hold the address of a null-
terminated string containing some combination of the digits 0 through 9. Your 
program should compute the integer value equivalent to this string of digits, then 
place the number in register $v0. If a non-digit character appears anywhere in the 
string, your program should stop with the value −1 in register $v0. For example, 
if register $a0 points to a sequence of three bytes 50ten, 52ten, 0ten (the null-
terminated string “24”), then when the program stops, register $v0 should contain 
the value 24ten.

2.38 [5] <§2.9> Consider the following code:

lbu $t0, 0($t1)

sw  $t0, 0($t2)

Assume that the register $t1 contains the address 0x1000 0000 and the register 
$t2 contains the address 0x1000 0010. Note the MIPS architecture utilizes 
big-endian addressing. Assume that the data (in hexadecimal) at address 0x1000 
0000 is: 0x11223344. What value is stored at the address pointed to by register 
$t2?

2.39 [5] <§2.10> Write the MIPS assembly code that creates the 32-bit constant 
0010 0000 0000 0001 0100 1001 0010 0100two and stores that value to 
register $t1.

2.40 [5] <§§2.6, 2.10> If the current value of the PC is 0x00000000, can you use 
a single jump instruction to get to the PC address as shown in Exercise 2.39?

2.41 [5] <§§2.6, 2.10> If the current value of the PC is 0x00000600, can you use 
a single branch instruction to get to the PC address as shown in Exercise 2.39?
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2.42 [5] <§§2.6, 2.10> If the current value of the PC is 0x1FFFf000, can you use 
a single branch instruction to get to the PC address as shown in Exercise 2.39?

2.43 [5] <§2.11> Write the MIPS assembly code to implement the following C 
code:

      lock(lk);

      shvar=max(shvar,x);

      unlock(lk);

Assume that the address of the lk variable is in $a0, the address of the shvar 
variable is in $a1, and the value of variable x is in $a2. Your critical section should 
not contain any function calls. Use ll/sc instructions to implement the lock() 
operation, and the unlock() operation is simply an ordinary store instruction.

2.44 [5] <§2.11> Repeat Exercise 2.43, but this time use ll/sc to perform 
an atomic update of the shvar variable directly, without using lock() and 
unlock(). Note that in this problem there is no variable lk.

2.45 [5] <§2.11> Using your code from Exercise 2.43 as an example, explain what 
happens when two processors begin to execute this critical section at the same 
time, assuming that each processor executes exactly one instruction per cycle.

2.46 Assume for a given processor the CPI of arithmetic instructions is 1, 
the CPI of load/store instructions is 10, and the CPI of branch instructions is 
3. Assume a program has the following instruction breakdowns: 500 million 
arithmetic instructions, 300 million load/store instructions, 100 million branch 
instructions.

2.46.1 [5] <§2.19> Suppose that new, more powerful arithmetic instructions are 
added to the instruction set. On average, through the use of these more powerful 
arithmetic instructions, we can reduce the number of arithmetic instructions 
needed to execute a program by 25%, and the cost of increasing the clock cycle 
time by only 10%. Is this a good design choice? Why?

2.46.2 [5] <§2.19> Suppose that we fi nd a way to double the performance of 
arithmetic instructions. What is the overall speedup of our machine? What if we 
fi nd a way to improve the performance of arithmetic instructions by 10 times?

2.47 Assume that for a given program 70% of the executed instructions are 
arithmetic, 10% are load/store, and 20% are branch.
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2.47.1 [5] <§2.19> Given this instruction mix and the assumption that an 
arithmetic instruction requires 2 cycles, a load/store instruction takes 6 cycles, and 
a branch instruction takes 3 cycles, fi nd the average CPI.

2.47.2 [5] <§2.19> For a 25% improvement in performance, how many cycles, on 
average, may an arithmetic instruction take if load/store and branch instructions 
are not improved at all?

2.47.3 [5] <§2.19> For a 50% improvement in performance, how many cycles, on 
average, may an arithmetic instruction take if load/store and branch instructions 
are not improved at all?

§2.2, page 66: MIPS, C, Java
§2.3, page 72: 2) Very slow
§2.4, page 79: 2) �8ten
§2.5, page 87: 4) sub $t2, $t0, $t1
§2.6, page 89: Both. AND with a mask pattern of 1s will leaves 0s everywhere but 
the desired fi eld. Shift ing left  by the correct amount removes the bits from the left  
of the fi eld. Shift ing right by the appropriate amount puts the fi eld into the right-
most bits of the word, with 0s in the rest of the word. Note that AND leaves the 
fi eld where it was originally, and the shift  pair moves the fi eld into the rightmost 
part of the word.
§2.7, page 96: I. All are true. II. 1).
§2.8, page 106: Both are true.
§2.9, page 111: I. 1) and 2) II. 3)
§2.10, page 120: I. 4) ��128K. II. 6) a block of 256M. III. 4) sll
§2.11, page 123: Both are true.
§2.12, page 132: 4) Machine independence.
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 3.1 Introduction

Computer words are composed of bits; thus, words can be represented as binary 
numbers. Chapter 2 shows that integers can be represented either in decimal or 
binary form, but what about the other numbers that commonly occur? For example:

■ What about fractions and other real numbers?

■ What happens if an operation creates a number bigger than can be represented?

■ And underlying these questions is a mystery: How does hardware really 
multiply or divide numbers?

Th e goal of this chapter is to unravel these mysteries including representation of 
real numbers, arithmetic algorithms, hardware that follows these algorithms, and 
the implications of all this for instruction sets. Th ese insights may explain quirks 
that you have already encountered with computers. Moreover, we show how to use 
this knowledge to make arithmetic-intensive programs go much faster.

 3.2 Addition and Subtraction

Addition is just what you would expect in computers. Digits are added bit by bit 
from right to left , with carries passed to the next digit to the left , just as you would 
do by hand. Subtraction uses addition: the appropriate operand is simply negated 
before being added.

Binary Addition and Subtraction

Let’s try adding 6ten to 7ten in binary and then subtracting 6ten from 7ten in binary.

 0000 0000 0000 0000 0000 0000 0000 0111two = 7ten
+ 0000 0000 0000 0000 0000 0000 0000 0110two = 6ten
= 0000 0000 0000 0000 0000 0000 0000 1101two = 13ten

Th e 4 bits to the right have all the action; Figure 3.1 shows the sums and 
carries. Th e carries are shown in parentheses, with the arrows showing how 
they are passed.

Subtracting 6ten from 7ten can be done directly:

Subtraction: Addition’s 
Tricky Pal
No. 10, Top Ten 
Courses for Athletes at a 
Football Factory, David 
Letterman et al., Book of 
Top Ten Lists, 1990

EXAMPLE

ANSWER
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 0000 0000 0000 0000 0000 0000 0000 0111two = 7ten
– 0000 0000 0000 0000 0000 0000 0000 0110two = 6ten
= 0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

or via addition using the two’s complement representation of �6:
 0000 0000 0000 0000 0000 0000 0000 0111two = 7ten
+ 1111 1111 1111 1111 1111 1111 1111 1010two = –6ten
= 0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

(0)

0

0

0 (0)

(0)

0

0

0 (0)

(1)

0

0

1 (1)

(1)

1

1

1 (1)

(0)

1

1

0 (0)

(Carries)

1

0

1(0)

. . .

. . .

. . .

FIGURE 3.1 Binary addition, showing carries from right to left. Th e rightmost bit adds 1 
to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation 
for the second digit to the right is 0 � 1 � 1. Th is generates a 0 for this sum bit and a carry out of 1. Th e 
third digit is the sum of 1 � 1 � 1, resulting in a carry out of 1 and a sum bit of 1. Th e fourth bit is 1 � 
0 � 0, yielding a 1 sum and no carry.

Recall that overfl ow occurs when the result from an operation cannot be 
represented with the available hardware, in this case a 32-bit word. When can 
overfl ow occur in addition? When adding operands with diff erent signs, overfl ow 
cannot occur. Th e reason is the sum must be no larger than one of the operands. 
For example, �10 � 4 � �6. Since the operands fi t in 32 bits and the sum is no 
larger than an operand, the sum must fi t in 32 bits as well. Th erefore, no overfl ow 
can occur when adding positive and negative operands.

Th ere are similar restrictions to the occurrence of overfl ow during subtract, but 
it’s just the opposite principle: when the signs of the operands are the same, overfl ow 
cannot occur. To see this, remember that c � a � c � (�a) because we subtract by 
negating the second operand and then add. Th erefore, when we subtract operands 
of the same sign we end up by adding operands of diff erent signs. From the prior 
paragraph, we know that overfl ow cannot occur in this case either.

Knowing when overfl ow cannot occur in addition and subtraction is all well and 
good, but how do we detect it when it does occur? Clearly, adding or subtracting 
two 32-bit numbers can yield a result that needs 33 bits to be fully expressed.

Th e lack of a 33rd bit means that when overfl ow occurs, the sign bit is set with 
the value of the result instead of the proper sign of the result. Since we need just one 
extra bit, only the sign bit can be wrong. Hence, overfl ow occurs when adding two 
positive numbers and the sum is negative, or vice versa. Th is spurious sum means 
a carry out occurred into the sign bit.

Overfl ow occurs in subtraction when we subtract a negative number from a 
positive number and get a negative result, or when we subtract a positive number 
from a negative number and get a positive result. Such a ridiculous result means a 
borrow occurred from the sign bit. Figure 3.2 shows the combination of operations, 
operands, and results that indicate an overfl ow.
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We have just seen how to detect overfl ow for two’s complement numbers in a 
computer. What about overfl ow with unsigned integers? Unsigned integers are 
commonly used for memory addresses where overfl ows are ignored.

Th e computer designer must therefore provide a way to ignore overfl ow in 
some cases and to recognize it in others. Th e MIPS solution is to have two kinds of 
arithmetic instructions to recognize the two choices:

■ Add (add), add immediate (addi), and subtract (sub) cause exceptions on 
overfl ow.

■ Add unsigned (addu), add immediate unsigned (addiu), and subtract 
unsigned (subu) do not cause exceptions on overfl ow.

Because C ignores overfl ows, the MIPS C compilers will always generate the 
unsigned versions of the arithmetic instructions addu, addiu, and subu, no 
matter what the type of the variables. Th e MIPS Fortran compilers, however, pick 
the appropriate arithmetic instructions, depending on the type of the operands.

 Appendix B describes the hardware that performs addition and subtraction, 
which is called an Arithmetic Logic Unit or ALU.

Elaboration: A constant source of confusion for addiu is its name and what happens 
to its immediate fi eld. The u stands for unsigned, which means addition cannot cause an 
overfl ow exception. However, the 16-bit immediate fi eld is sign extended to 32 bits, just 
like addi, slti, and sltiu. Thus, the immediate fi eld is signed, even if the operation 
is “unsigned.”

Th e computer designer must decide how to handle arithmetic overfl ows. Although 
some languages like C and Java ignore integer overfl ow, languages like Ada and 
Fortran require that the program be notifi ed. Th e programmer or the programming 
environment must then decide what to do when overfl ow occurs.

MIPS detects overfl ow with an exception, also called an interrupt on many 
computers. An exception or interrupt is essentially an unscheduled procedure 
call. Th e address of the instruction that overfl owed is saved in a register, and the 
computer jumps to a predefi ned address to invoke the appropriate routine for that 
exception. Th e interrupted address is saved so that in some situations the program 
can continue aft er corrective code is executed. (Section 4.9 covers exceptions in 

Arithmetic Logic 
Unit (ALU) Hardware 
that performs addition, 
subtraction, and usually 
logical operations such as 
AND and OR.

Hardware/
Software 
Interface

exception Also 
called interrupt on 
many computers. An 
unscheduled event 
that disrupts program 
execution; used to detect 
overfl ow.

FIGURE 3.2 Overfl ow conditions for addition and subtraction.

Operation Operand A Operand B
Result 

indicating overflow

A + B ≥ 0 ≥ 0 < 0

A + B < 0 < 0 ≥ 0
A – B ≥ 0 < 0 < 0

A – B < 0 ≥ 0 ≥ 0
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more detail; Chapter 5 describes other situations where exceptions and interrupts 
occur.)

MIPS includes a register called the exception program counter (EPC) to contain 
the address of the instruction that caused the exception. Th e instruction move from 
system control (mfc0) is used to copy EPC into a general-purpose register so that 
MIPS soft ware has the option of returning to the off ending instruction via a jump 
register instruction.

Summary
A major point of this section is that, independent of the representation, the fi nite 
word size of computers means that arithmetic operations can create results that 
are too large to fi t in this fi xed word size. It’s easy to detect overfl ow in unsigned 
numbers, although these are almost always ignored because programs don’t want to 
detect overfl ow for address arithmetic, the most common use of natural numbers. 
Two’s complement presents a greater challenge, yet some soft ware systems require 
detection of overfl ow, so today all computers have a way to detect it.

Some programming languages allow two’s complement integer arithmetic 
on variables declared byte and half, whereas MIPS only has integer arithmetic 
operations on full words. As we recall from Chapter 2, MIPS does have data transfer 
operations for bytes and halfwords. What MIPS instructions should be generated 
for byte and halfword arithmetic operations?

1. Load with lbu, lhu; arithmetic with add, sub, mult, div; then store using 
sb, sh.

2. Load with lb, lh; arithmetic with add, sub, mult, div; then store using 
sb, sh.

3. Load with lb, lh; arithmetic with add, sub, mult, div, using AND to mask 
result to 8 or 16 bits aft er each operation; then store using sb, sh.

Elaboration: One feature not generally found in general-purpose microprocessors is 
saturating operations. Saturation means that when a calculation overfl ows, the result 
is set to the largest positive number or most negative number, rather than a modulo 
calculation as in two’s complement arithmetic. Saturation is likely what you want for media 
operations. For example, the volume knob on a radio set would be frustrating if, as you 
turned it, the volume would get continuously louder for a while and then immediately very 
soft. A knob with saturation would stop at the highest volume no matter how far you turned 
it. Multimedia extensions to standard instruction sets often offer saturating arithmetic.

Elaboration: MIPS can trap on overfl ow, but unlike many other computers, there is 
no conditional branch to test overfl ow. A sequence of MIPS instructions can discover 

interrupt An exception 
that comes from outside 
of the processor. (Some 
architectures use the 
term interrupt for all 
exceptions.)

Check 
Yourself
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overfl ow. For signed addition, the sequence is the following (see the Elaboration on page 
89 in Chapter 2 for a description of the xor instruction):

addu $t0, $t1, $t2 # $t0 = sum, but don’t trap
xor  $t3, $t1, $t2 # Check if signs differ
slt  $t3, $t3, $zero # $t3 = 1 if signs differ
bne  $t3, $zero, No_overflow # $t1, $t2 signs ≠,
                             # so no overflow
xor $t3, $t0, $t1 # signs =; sign of sum match too?
                  # $t3 negative if sum sign different
slt $t3, $t3, $zero # $t3 = 1 if sum sign different
bne $t3, $zero, Overflow # All 3 signs ≠; goto overflow

For unsigned addition ($t0 = $t1 + $t2), the test is

addu $t0, $t1, $t2     # $t0 = sum
nor $t3, $t1, $zero    # $t3 = NOT $t1
                       # (2’s comp – 1: 232 – $t1 – 1)
sltu $t3, $t3, $t2     # (232 – $t1 – 1) < $t2
                       # ⇒ 232 – 1 < $t1 + $t2
bne $t3,$zero,Overflow # if(232–1<$t1+$t2) goto overflow

Elaboration: In the preceding text, we said that you copy EPC into a register via 
mfc0 and then return to the interrupted code via jump register. This directive leads to 
an interesting question: since you must fi rst transfer EPC to a register to use with jump 
register, how can jump register return to the interrupted code and restore the original 
values of all registers? Either you restore the old registers fi rst, thereby destroying your 
return address from EPC, which you placed in a register for use in jump register, or you 
restore all registers but the one with the return address so that you can jump—meaning 
an exception would result in changing that one register at any time during program 
execution! Neither option is satisfactory.

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve 
registers $k0 and $k1 for the operating system; these registers are not restored on 
exceptions. Just as the MIPS compilers avoid using register $at so that the assembler 
can use it as a temporary register (see Hardware/Software Interface in Section 2.10), 
compilers also abstain from using registers $k0 and $k1 to make them available for the 
operating system. Exception routines place the return address in one of these registers 
and then use jump register to restore the instruction address.

Elaboration: The speed of addition is increased by determining the carry in to the 
high-order bits sooner. There are a variety of schemes to anticipate the carry so that 
the worst-case scenario is a function of the log2 of the number of bits in the adder. 
These anticipatory signals are faster because they go through fewer gates in sequence, 
but it takes many more gates to anticipate the proper carry. The most popular is carry 
lookahead, which Section B.6 in  Appendix B describes.
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 3.3 Multiplication

Now that we have completed the explanation of addition and subtraction, we are 
ready to build the more vexing operation of multiplication.

First, let’s review the multiplication of decimal numbers in longhand to remind 
ourselves of the steps of multiplication and the names of the operands. For reasons 
that will become clear shortly, we limit this decimal example to using only the 
digits 0 and 1. Multiplying 1000ten by 1001ten:

Multiplicand 1000ten
Multiplier x 1001ten

1000
0000

0000
1000

Product 1001000ten

Th e fi rst operand is called the multiplicand and the second the multiplier. 
Th e fi nal result is called the product. As you may recall, the algorithm learned in 
grammar school is to take the digits of the multiplier one at a time from right to 
left , multiplying the multiplicand by the single digit of the multiplier, and shift ing 
the intermediate product one digit to the left  of the earlier intermediate products.

Th e fi rst observation is that the number of digits in the product is considerably 
larger than the number in either the multiplicand or the multiplier. In fact, if we 
ignore the sign bits, the length of the multiplication of an n-bit multiplicand and an 
m-bit multiplier is a product that is n � m bits long. Th at is, n � m bits are required 
to represent all possible products. Hence, like add, multiply must cope with 
overfl ow because we frequently want a 32-bit product as the result of multiplying 
two 32-bit numbers.

In this example, we restricted the decimal digits to 0 and 1. With only two 
choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 � multiplicand) in the proper place 
if the multiplier digit is a 1, or

2. Place 0 (0 � multiplicand) in the proper place if the digit is 0.

Although the decimal example above happens to use only 0 and 1, multiplication 
of binary numbers must always use 0 and 1, and thus always off ers only these two 
choices.

Now that we have reviewed the basics of multiplication, the traditional next 
step is to provide the highly optimized multiply hardware. We break with tradition 
in the belief that you will gain a better understanding by seeing the evolution of 
the multiply hardware and algorithm through multiple generations. For now, let’s 
assume that we are multiplying only positive numbers.

Multiplication is 
vexation, Division is 
as bad; Th e rule of 
three doth puzzle me, 
And practice drives me 
mad.
Anonymous, 
Elizabethan manuscript, 
1570
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Sequential Version of the Multiplication Algorithm and 
Hardware
Th is design mimics the algorithm we learned in grammar school; Figure 3.3 shows 
the hardware. We have drawn the hardware so that data fl ows from top to bottom 
to resemble more closely the paper-and-pencil method.

Let’s assume that the multiplier is in the 32-bit Multiplier register and that the 64-
bit Product register is initialized to 0. From the paper-and-pencil example above, 
it’s clear that we will need to move the multiplicand left  one digit each step, as it may 
be added to the intermediate products. Over 32 steps, a 32-bit multiplicand would 
move 32 bits to the left . Hence, we need a 64-bit Multiplicand register, initialized 
with the 32-bit multiplicand in the right half and zero in the left  half. Th is register 
is then shift ed left  1 bit each step to align the multiplicand with the sum being 
accumulated in the 64-bit Product register.

Figure 3.4 shows the three basic steps needed for each bit. Th e least signifi cant 
bit of the multiplier (Multiplier0) determines whether the multiplicand is added to 
the Product register. Th e left  shift  in step 2 has the eff ect of moving the intermediate 
operands to the left , just as when multiplying with paper and pencil. Th e shift  right 
in step 3 gives us the next bit of the multiplier to examine in the following iteration. 
Th ese three steps are repeated 32 times to obtain the product. If each step took a 
clock cycle, this algorithm would require almost 100 clock cycles to multiply two 
32-bit numbers. Th e relative importance of arithmetic operations like multiply 
varies with the program, but addition and subtraction may be anywhere from 5 to 
100 times more popular than multiply. Accordingly, in many applications, multiply 
can take multiple clock cycles without signifi cantly aff ecting performance. Yet 
Amdahl’s Law (see Section 1.10) reminds us that even a moderate frequency for a 
slow operation can limit performance.

Multiplicand
Shift left

64 bits

64-bit ALU

Product
Write

64 bits

Control test

Multiplier
Shift right

32 bits

FIGURE 3.3 First version of the multiplication hardware. Th e Multiplicand register, ALU, 
and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. (Appendix B 
describes ALUs.) Th e 32-bit multiplicand starts in the right half of the Multiplicand register and is shift ed left  
1 bit on each step. Th e multiplier is shift ed in the opposite direction at each step. Th e algorithm starts with 
the product initialized to 0. Control decides when to shift  the Multiplicand and Multiplier registers and when 
to write new values into the Product register.
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Th is algorithm and hardware are easily refi ned to take 1 clock cycle per step. 
Th e speed-up comes from performing the operations in parallel: the multiplier 
and multiplicand are shift ed while the multiplicand is added to the product if the 
multiplier bit is a 1. Th e hardware just has to ensure that it tests the right bit of 
the multiplier and gets the preshift ed version of the multiplicand. Th e hardware is 
usually further optimized to halve the width of the adder and registers by noticing 
where there are unused portions of registers and adders. Figure 3.5 shows the 
revised hardware.

32nd repetition?

1a.  Add multiplicand to product and

place the result in Product register

Multiplier0 = 01.  Test

Multiplier0

Start

Multiplier0 = 1

2.  Shift the Multiplicand register left 1 bit

3.  Shift the Multiplier register right 1 bit

No: < 32 repetitions

Yes: 32 repetitions

Done

FIGURE 3.4 The fi rst multiplication algorithm, using the hardware shown in Figure 3.3. If 
the least signifi cant bit of the multiplier is 1, add the multiplicand to the product. If not, go to the next step. 
Shift  the multiplicand left  and the multiplier right in the next two steps. Th ese three steps are repeated 32 
times.
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Replacing arithmetic by shift s can also occur when multiplying by constants. Some 
compilers replace multiplies by short constants with a series of shift s and adds. 
Because one bit to the left  represents a number twice as large in base 2, shift ing 
the bits left  has the same eff ect as multiplying by a power of 2. As mentioned in 
Chapter 2, almost every compiler will perform the strength reduction optimization 
of substituting a left  shift  for a multiply by a power of 2.

A Multiply Algorithm

Using 4-bit numbers to save space, multiply 2ten � 3ten, or 0010two � 0011two.

Figure 3.6 shows the value of each register for each of the steps labeled 
according to Figure 3.4, with the fi nal value of 0000 0110two or 6ten. Color is 
used to indicate the register values that change on that step, and the bit circled 
is the one examined to determine the operation of the next step.

Hardware/
Software 
Interface

EXAMPLE

ANSWER

Multiplicand

32 bits

32-bit ALU

Product
Write

64 bits

Control
test

Shift right

FIGURE 3.5 Refi ned version of the multiplication hardware. Compare with the fi rst version in 
Figure 3.3. Th e Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Product 
register left  at 64 bits. Now the product is shift ed right. Th e separate Multiplier register also disappeared. Th e 
multiplier is placed instead in the right half of the Product register. Th ese changes are highlighted in color. 
(Th e Product register should really be 65 bits to hold the carry out of the adder, but it’s shown here as 64 bits 
to highlight the evolution from Figure 3.3.)
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Signed Multiplication
So far, we have dealt with positive numbers. Th e easiest way to understand how 
to deal with signed numbers is to fi rst convert the multiplier and multiplicand to 
positive numbers and then remember the original signs. Th e algorithms should 
then be run for 31 iterations, leaving the signs out of the calculation. As we learned 
in grammar school, we need negate the product only if the original signs disagree.

It turns out that the last algorithm will work for signed numbers, provided that 
we remember that we are dealing with numbers that have infi nite digits, and we are 
only representing them with 32 bits. Hence, the shift ing steps would need to extend 
the sign of the product for signed numbers. When the algorithm completes, the 
lower word would have the 32-bit product.

Faster Multiplication
Moore’s Law has provided so much more in resources that hardware designers can 
now build much faster multiplication hardware. Whether the multiplicand is to be 
added or not is known at the beginning of the multiplication by looking at each of 
the 32 multiplier bits. Faster multiplications are possible by essentially providing 
one 32-bit adder for each bit of the multiplier: one input is the multiplicand ANDed 
with a multiplier bit, and the other is the output of a prior adder.

A straightforward approach would be to connect the outputs of adders on the 
right to the inputs of adders on the left , making a stack of adders 32 high. An 
alternative way to organize these 32 additions is in a parallel tree, as Figure 3.7 
shows. Instead of waiting for 32 add times, we wait just the log2 (32) or fi ve 32-bit 
add times.

Iteration Step Multiplier Multiplicand Product

0  Initial values 0011 0000 0010 0000 0000
1 1a: 1 ⇒ Prod = Prod + Mcand 0011 0000 0010 0000 0010

2: Shift left Multiplicand 0011 0000 0100 0000 0010
3: Shift right Multiplier 0001 0000 0100 0000 0010

2 1a: 1 ⇒ Prod = Prod + Mcand 0001 0000 0100 0000 0110

2: Shift left Multiplicand 0001 0000 1000 0000 0110
3: Shift right Multiplier 0000 0000 1000 0000 0110

3 1: 0 ⇒ No operation 0000 0000 1000 0000 0110
2: Shift left Multiplicand 0000 0001 0000 0000 0110
3: Shift right Multiplier 0000 0001 0000 0000 0110

4 1: 0 ⇒ No operation 0000 0001 0000 0000 0110
2: Shift left Multiplicand 0000 0010 0000 0000 0110
3: Shift right Multiplier 0000 0010 0000 0000 0110

FIGURE 3.6 Multiply example using algorithm in Figure 3.4. Th e bit examined to determine the 
next step is circled in color.
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In fact, multiply can go even faster than fi ve add times because of the use of carry 
save adders (see Section B.6 in  Appendix B) and because it is easy to pipeline 
such a design to be able to support many multiplies simultaneously (see Chapter 4).

Multiply in MIPS
MIPS provides a separate pair of 32-bit registers to contain the 64-bit product, 
called Hi and Lo. To produce a properly signed or unsigned product, MIPS has two 
instructions: multiply (mult) and multiply unsigned (multu). To fetch the integer 
32-bit product, the programmer uses move from lo (mflo). Th e MIPS assembler 
generates a pseudoinstruction for multiply that specifi es three general-purpose 
registers, generating mflo and mfhi instructions to place the product into registers.

Summary
Multiplication hardware simply shift s and add, as derived from the paper-and-
pencil method learned in grammar school. Compilers even use shift  instructions 
for multiplications by powers of 2. With much more hardware we can do the adds 
in parallel, and do them much faster.

Both MIPS multiply instructions ignore overfl ow, so it is up to the soft ware to 
check to see if the product is too big to fi t in 32 bits. Th ere is no overfl ow if Hi is 
0 for multu or the replicated sign of Lo for mult. Th e instruction move from hi 
(mfhi) can be used to transfer Hi to a general-purpose register to test for overfl ow.

Hardware/
Software 
Interface

Product1 Product0Product63 Product62 Product47..16

1 bit 1 bit 1 bit 1 bit

. . .

. . .

. . .. . .

. . . . . .

32 bits

32 bits

32 bits 32 bits 32 bits

32 bits 32 bits

Mplier31 • Mcand Mplier30 • Mcand Mplier29 • Mcand Mplier28 • Mcand Mplier3 • Mcand Mplier2 • Mcand Mplier1 • Mcand Mplier0 • Mcand

FIGURE 3.7 Fast multiplication hardware. Rather than use a single 32-bit adder 31 times, this hardware “unrolls the loop” to use 31 
adders and then organizes them to minimize delay.
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 3.4 Division

Th e reciprocal operation of multiply is divide, an operation that is even less frequent 
and even more quirky. It even off ers the opportunity to perform a mathematically 
invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall the 
names of the operands and the grammar school division algorithm. For reasons 
similar to those in the previous section, we limit the decimal digits to just 0 or 1. 
Th e example is dividing 1,001,010ten by 1000ten:

1001ten Quotient 

Divisor 1000ten 1001010ten Dividend
−1000

10
101
1010

−1000
10ten Remainder

Divide’s two operands, called the dividend and divisor, and the result, called 
the quotient, are accompanied by a second result, called the remainder. Here is 
another way to express the relationship between the components:

Dividend � Quotient � Divisor � Remainder

where the remainder is smaller than the divisor. Infrequently, programs use the 
divide instruction just to get the remainder, ignoring the quotient.

Th e basic grammar school division algorithm tries to see how big a number 
can be subtracted, creating a digit of the quotient on each attempt. Our carefully 
selected decimal example uses only the numbers 0 and 1, so it’s easy to fi gure out 
how many times the divisor goes into the portion of the dividend: it’s either 0 times 
or 1 time. Binary numbers contain only 0 or 1, so binary division is restricted to 
these two choices, thereby simplifying binary division.

Let’s assume that both the dividend and the divisor are positive and hence the 
quotient and the remainder are nonnegative. Th e division operands and both 
results are 32-bit values, and we will ignore the sign for now.

A Division Algorithm and Hardware
Figure 3.8 shows hardware to mimic our grammar school algorithm. We start with 
the 32-bit Quotient register set to 0. Each iteration of the algorithm needs to move 
the divisor to the right one digit, so we start with the divisor placed in the left  half 
of the 64-bit Divisor register and shift  it right 1 bit each step to align it with the 
dividend. Th e Remainder register is initialized with the dividend.

Divide et impera.
Latin for “Divide and 
rule,” ancient political 
maxim cited by 
Machiavelli, 1532

dividend A number 
being divided.

divisor A number that 
the dividend is divided by.

quotient Th e primary 
result of a division; 
a number that when 
multiplied by the 
divisor and added to the 
remainder produces the 
dividend.

remainder Th e 
secondary result of 
a division; a number 
that when added to the 
product of the quotient 
and the divisor produces 
the dividend. 
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Figure 3.9 shows three steps of the fi rst division algorithm. Unlike a human, the 
computer isn’t smart enough to know in advance whether the divisor is smaller 
than the dividend. It must fi rst subtract the divisor in step 1; remember that this is 
how we performed the comparison in the set on less than instruction. If the result 
is positive, the divisor was smaller or equal to the dividend, so we generate a 1 in 
the quotient (step 2a). If the result is negative, the next step is to restore the original 
value by adding the divisor back to the remainder and generate a 0 in the quotient 
(step 2b). Th e divisor is shift ed right and then we iterate again. Th e remainder and 
quotient will be found in their namesake registers aft er the iterations are complete.

A Divide Algorithm

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7ten by 2ten, 
or 0000 0111two by 0010two.

Figure 3.10 shows the value of each register for each of the steps, with the 
quotient being 3ten and the remainder 1ten. Notice that the test in step 2 of whether 
the remainder is positive or negative simply tests whether the sign bit of the 
Remainder register is a 0 or 1. Th e surprising requirement of this algorithm is 
that it takes n + 1 steps to get the proper quotient and remainder.

EXAMPLE

ANSWER

Divisor
Shift right

64 bits

64-bit ALU

Remainder
Write

64 bits

Control
test

Quotient
Shift left

32 bits

FIGURE 3.8 First version of the division hardware. Th e Divisor register, ALU, and Remainder 
register are all 64 bits wide, with only the Quotient register being 32 bits. Th e 32-bit divisor starts in the 
left  half of the Divisor register and is shift ed right 1 bit each iteration. Th e remainder is initialized with the 
dividend. Control decides when to shift  the Divisor and Quotient registers and when to write the new value 
into the Remainder register.
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33rd repetition?

2a.  Shift the Quotient register to the left,

setting the new rightmost bit to 1

Remainder < 0Remainder ≥ 0
Test Remainder

Start

3.  Shift the Divisor register right 1 bit

No: < 33 repetitions

Yes: 33 repetitions

Done

1.  Subtract the Divisor register from the

Remainder register and place the 

result in the Remainder register

2b.  Restore the original value by adding

the Divisor register to the Remainder

register and placing the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

FIGURE 3.9 A division algorithm, using the hardware in Figure 3.8. If the remainder is positive, 
the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative remainder aft er 
step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and adds 
the divisor to the remainder, thereby reversing the subtraction of step 1. Th e fi nal shift , in step 3, aligns the 
divisor properly, relative to the dividend for the next iteration. Th ese steps are repeated 33 times.

Th is algorithm and hardware can be refi ned to be faster and cheaper. Th e speed-
up comes from shift ing the operands and the quotient simultaneously with the 
subtraction. Th is refi nement halves the width of the adder and registers by noticing 
where there are unused portions of registers and adders. Figure 3.11 shows the 
revised hardware.
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Signed Division
So far, we have ignored signed numbers in division. Th e simplest solution is to 
remember the signs of the divisor and dividend and then negate the quotient if the 
signs disagree.

Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0000 0111

1

1: Rem = Rem – Div 0000 0010 0000 1110 0111

2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 0010 0000 0000 0111

3: Shift Div right 0000 0001 0000 0000 0111

2

1: Rem = Rem – Div 0000 0001 0000 1111 0111

2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 0001 0000 0000 0111
3: Shift Div right 0000 0000 1000 0000 0111

3

1: Rem = Rem – Div 0000 0000 1000 1111 1111

2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 0000 1000 0000 0111
3: Shift Div right 0000 0000 0100 0000 0111

4

1: Rem = Rem – Div 0000 0000 0100 0000 0011

2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1 0001 0000 0100 0000 0011
3: Shift Div right 0001 0000 0010 0000 0011

5

1: Rem = Rem – Div 0001 0000 0010 0000 0001

2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1 0011 0000 0010 0000 0001
3: Shift Div right 0011 0000 0001 0000 0001

FIGURE 3.10 Division example using the algorithm in Figure 3.9. Th e bit examined to determine 
the next step is circled in color.

Divisor

32 bits

32-bit ALU

Remainder
Write

64 bits

Control
test

Shift left
Shift right

FIGURE 3.11 An improved version of the division hardware. Th e Divisor register, ALU, and 
Quotient register are all 32 bits wide, with only the Remainder register left  at 64 bits. Compared to Figure 3.8, 
the ALU and Divisor registers are halved and the remainder is shift ed left . Th is version also combines the 
Quotient register with the right half of the Remainder register. (As in Figure 3.5, the Remainder register 
should really be 65 bits to make sure the carry out of the adder is not lost.)
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Elaboration: The one complication of signed division is that we must also set the sign 
of the remainder. Remember that the following equation must always hold:

Dividend � Quotient � Divisor � Remainder

To understand how to set the sign of the remainder, let’s look at the example of dividing 
all the combinations of �7ten by  �2ten. The fi rst case is easy:

�7 � �2: Quotient � �3, � Remainder � �1

Checking the results:

�7 � 3 � 2 � (�1) � 6 � 1

If we change the sign of the dividend, the quotient must change as well:

�7 � �2: Quotient � �3

Rewriting our basic formula to calculate the remainder:

Remainder  � (Dividend � Quotient � Divisor) � �7 � (�3x � 2) 
� �7 � (�6) � �1

So,

�7 � �2: Quotient � �3, Remainder � �1

Checking the results again:

�7 � �3 � 2 � (�1) � �6 � 1

The reason the answer isn’t a quotient of �4 and a remainder of �1, which would also 
fi t this formula, is that the absolute value of the quotient would then change depending 
on the sign of the dividend and the divisor! Clearly, if

�(x � y) � (�x) � y

programming would be an even greater challenge. This anomalous behavior is avoided 
by following the rule that the dividend and remainder must have the same signs, no 
matter what the signs of the divisor and quotient.

We calculate the other combinations by following the same rule:
�7 � �2: Quotient � �3, Remainder � �1

�7 � �2: Quotient � �3, Remainder � �1
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Thus the correctly signed division algorithm negates the quotient if the signs of the 
operands are opposite and makes the sign of the nonzero remainder match the dividend.

Faster Division
Moore’s Law applies to division hardware as well as multiplication, so we would 
like to be able to speed up division by throwing hardware at it. We used many 
adders to speed up multiply, but we cannot do the same trick for divide. Th e reason 
is that we need to know the sign of the diff erence before we can perform the next 
step of the algorithm, whereas with multiply we could calculate the 32 partial 
products immediately.

Th ere are techniques to produce more than one bit of the quotient per step. 
Th e SRT division technique tries to predict several quotient bits per step, using a 
table lookup based on the upper bits of the dividend and remainder. It relies on 
subsequent steps to correct wrong predictions. A typical value today is 4 bits. Th e 
key is guessing the value to subtract. With binary division, there is only a single 
choice. Th ese algorithms use 6 bits from the remainder and 4 bits from the divisor 
to index a table that determines the guess for each step.

Th e accuracy of this fast method depends on having proper values in the lookup 
table. Th e fallacy on page 231 in Section 3.9 shows what can happen if the table is 
incorrect.

Divide in MIPS
You may have already observed that the same sequential hardware can be used for 
both multiply and divide in Figures 3.5 and 3.11. Th e only requirement is a 64-bit 
register that can shift  left  or right and a 32-bit ALU that adds or subtracts. Hence, 
MIPS uses the 32-bit Hi and 32-bit Lo registers for both multiply and divide.

As we might expect from the algorithm above, Hi contains the remainder, and 
Lo contains the quotient aft er the divide instruction completes.

To handle both signed integers and unsigned integers, MIPS has two instructions: 
divide (div) and divide unsigned (divu). Th e MIPS assembler allows divide 
instructions to specify three registers, generating the mflo or mfhi instructions to 
place the desired result into a general-purpose register.

Summary
Th e common hardware support for multiply and divide allows MIPS to provide a 
single pair of 32-bit registers that are used both for multiply and divide. We accelerate 
division by predicting multliple quotient bits and then correcting mispredictions 
later, Figure 3.12 summarizes the enhancements to the MIPS architecture for the 
last two sections.
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MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add     $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; overflow detected
subtract sub     $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; overflow detected
add immediate addi    $s1,$s2,100 $s1 = $s2 + 100 + constant; overflow detected
add unsigned addu    $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; overflow undetected
subtract unsigned subu    $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; overflow undetected
add immediate unsigned addiu   $s1,$s2,100 $s1 = $s2 + 100 + constant; overflow undetected
move from coprocessor 
register 

mfc0    $s1,$epc $s1 = $epc Copy Exception PC + special regs

multiply mult    $s2,$s3 Hi, Lo = $s2 × $s3 64-bit signed product in Hi, Lo
multiply unsigned multu   $s2,$s3 Hi, Lo = $s2 × $s3 64-bit unsigned product in Hi, Lo
divide div     $s2,$s3 Lo = $s2 / $s3, 

Hi = $s2 mod $s3
Lo = quotient, Hi = remainder

divide unsigned divu    $s2,$s3 Lo = $s2 / $s3, 
Hi = $s2 mod $s3

Unsigned quotient and remainder

move from Hi mfhi    $s1 $s1 = Hi Used to get copy of Hi
move from Lo mflo     $s1 $s1 = Lo Used to get copy of Lo

Data 
transfer

load word lw      $s1,20($s2) $s1 = Memory[$s2 + 20] Word from memory to register

store word sw      $s1,20($s2) Memory[$s2 + 20] = $s1 Word from register to memory

load half unsigned lhu     $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register

store half sh      $s1,20($s2) Memory[$s2 + 20] = $s1 Halfword register to memory

load byte unsigned lbu     $s1,20($s2) $s1 = Memory[$s2 + 20] Byte from memory to register

store byte sb      $s1,20($s2) Memory[$s2 + 20] = $s1 Byte from register to memory

load linked word ll      $s1,20($s2) $s1 = Memory[$s2 + 20] Load word as 1st half of atomic swap 

store conditional word sc      $s1,20($s2) Memory[$s2+20]=$s1;$s1=0 
or 1

Store word as 2nd half atomic swap 

load upper immediate lui     $s1,100 $s1 = 100 * 216 Loads constant in upper 16 bits

Logical

AND AND     $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND

OR OR      $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR

NOR NOR     $s1,$s2,$s3 $s1 = ~ ($s2 |$s3) Three reg. operands; bit-by-bit NOR

AND immediate ANDi    $s1,$s2,100 $s1 = $s2 & 100 Bit-by-bit AND with constant

OR immediate ORi     $s1,$s2,100 $s1 = $s2 | 100 Bit-by-bit OR with constant

shift left logical sll     $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl     $s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Condi- 
tional 
branch

branch on equal beq     $s1,$s2,25 if ($s1 == $s2) go to PC + 4 + 100 Equal test; PC-relative branch

branch on not equal bne     $s1,$s2,25 if ($s1 !=  $s2) go to PC + 4 + 100 Not equal test; PC-relative 

set on less than slt     $s1,$s2,$s3 if ($s2 < $s3)  $s1 = 1;
else $s1 = 0

Compare less than; two’s 
complement

set less than immediate slti    $s1,$s2,100 if ($s2 < 100)  $s1 = 1; 
else $s1=0

Compare < constant; two’s 
complement

set less than unsigned sltu    $s1,$s2,$s3 if ($s2 < $s3)  $s1 = 1; 
else $s1=0

Compare less than; natural numbers

set less than immediate 
unsigned

sltiu   $s1,$s2,100 if ($s2 < 100)  $s1 = 1; 
else $s1 = 0

Compare < constant; natural numbers

Uncondi- 
tional  
jump

jump j       2500 go to 10000 Jump to target address
jump register jr      $ra go to $ra For switch, procedure return
jump and link jal     2500 $ra = PC + 4; go to 10000 For procedure call

FIGURE 3.12 MIPS core architecture. Th e memory and registers of the MIPS architecture are not included for space reasons, but this 
section added the Hi and Lo registers to support multiply and divide. MIPS machine language is listed in the MIPS Reference Data Card at the 
front of this book.



196 Chapter 3 Arithmetic for Computers

MIPS divide instructions ignore overfl ow, so soft ware must determine whether the 
quotient is too large. In addition to overfl ow, division can also result in an improper 
calculation: division by 0. Some computers distinguish these two anomalous events. 
MIPS soft ware must check the divisor to discover division by 0 as well as overfl ow.

Elaboration: An even faster algorithm does not immediately add the divisor back 
if the remainder is negative. It simply adds the dividend to the shifted remainder in 
the following step, since (r � d) � 2 � d � r � 2 � d � 2 � d � r � 2 � d. This 
nonrestoring division algorithm, which takes 1 clock cycle per step, is explored further 
in the exercises; the algorithm above is called restoring division. A third algorithm that 
doesn’t save the result of the subtract if it’s negative is called a nonperforming division 
algorithm. It averages one-third fewer arithmetic operations.

 3.5 Floating Point

Going beyond signed and unsigned integers, programming languages support 
numbers with fractions, which are called reals in mathematics. Here are some 
examples of reals:

3.14159265… ten (pi)

2.71828… ten (e)

0.000000001ten or 1.0ten × 10−9 (seconds in a nanosecond)

3,155,760,000ten or 3.15576ten × 109 (seconds in a typical century)

Notice that in the last case, the number didn’t represent a small fraction, but it 
was bigger than we could represent with a 32-bit signed integer. Th e alternative 
notation for the last two numbers is called scientifi c notation, which has a single 
digit to the left  of the decimal point. A number in scientifi c notation that has no 
leading 0s is called a normalized number, which is the usual way to write it. For 
example, 1.0ten � 10�9 is in normalized scientifi c notation, but 0.1ten � 10�8 and 
10.0ten � 10�10 are not.

Just as we can show decimal numbers in scientifi c notation, we can also show 
binary numbers in scientifi c notation:

1.0two
 � 2�1

To keep a binary number in normalized form, we need a base that we can increase 
or decrease by exactly the number of bits the number must be shift ed to have one 
nonzero digit to the left  of the decimal point. Only a base of 2 fulfi lls our need. Since 
the base is not 10, we also need a new name for decimal point; binary point will do fi ne.

Hardware/
Software 
Interface

Speed gets you 
nowhere if you’re 
headed the wrong way.
American proverb

scientifi c notation 
A notation that renders 
numbers with a single 
digit to the left  of the 
decimal point.

normalized A number 
in fl oating-point notation 
that has no leading 0s.
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Computer arithmetic that supports such numbers is called fl oating point 
because it represents numbers in which the binary point is not fi xed, as it is for 
integers. Th e programming language C uses the name fl oat for such numbers. Just 
as in scientifi c notation, numbers are represented as a single nonzero digit to the 
left  of the binary point. In binary, the form is

1.xxxxxxxxxtwo
 � 2yyyy

(Although the computer represents the exponent in base 2 as well as the rest of the 
number, to simplify the notation we show the exponent in decimal.)

A standard scientifi c notation for reals in normalized form off ers three 
advantages. It simplifi es exchange of data that includes fl oating-point numbers; 
it simplifi es the fl oating-point arithmetic algorithms to know that numbers will 
always be in this form; and it increases the accuracy of the numbers that can be 
stored in a word, since the unnecessary leading 0s are replaced by real digits to the 
right of the binary point.

Floating-Point Representation
A designer of a fl oating-point representation must fi nd a compromise between the 
size of the fraction and the size of the exponent, because a fi xed word size means 
you must take a bit from one to add a bit to the other. Th is tradeoff  is between 
precision and range: increasing the size of the fraction enhances the precision 
of the fraction, while increasing the size of the exponent increases the range of 
numbers that can be represented. As our design guideline from Chapter 2 reminds 
us, good design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. Th e 
representation of a MIPS fl oating-point number is shown below, where s is the sign 
of the fl oating-point number (1 meaning negative), exponent is the value of the 
8-bit exponent fi eld (including the sign of the exponent), and fraction is the 23-bit 
number. As we recall from Chapter 2, this representation is sign and magnitude, 
since the sign is a separate bit from the rest of the number.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s exponent fraction

1 bit 8 bits 23 bits

In general, fl oating-point numbers are of the form

(�1)S
 � F � 2E

F involves the value in the fraction fi eld and E involves the value in the exponent 
fi eld; the exact relationship to these fi elds will be spelled out soon. (We will shortly 
see that MIPS does something slightly more sophisticated.)

fl oating point  
Computer arithmetic that 
represents numbers in 
which the binary point is 
not fi xed.

fraction Th e value, 
generally between 0 and 
1, placed in the fraction 
fi eld. Th e fraction is also 
called the mantissa.

exponent In the 
numerical representation 
system of fl oating-point 
arithmetic, the value that 
is placed in the exponent 
fi eld.



198 Chapter 3 Arithmetic for Computers

Th ese chosen sizes of exponent and fraction give MIPS computer arithmetic 
an extraordinary range. Fractions almost as small as 2.0ten � 10�38 and numbers 
almost as large as 2.0ten � 1038 can be represented in a computer. Alas, extraordinary 
diff ers from infi nite, so it is still possible for numbers to be too large. Th us, overfl ow 
interrupts can occur in fl oating-point arithmetic as well as in integer arithmetic. 
Notice that overfl ow here means that the exponent is too large to be represented 
in the exponent fi eld.

Floating point off ers a new kind of exceptional event as well. Just as programmers 
will want to know when they have calculated a number that is too large to be 
represented, they will want to know if the nonzero fraction they are calculating 
has become so small that it cannot be represented; either event could result in a 
program giving incorrect answers. To distinguish it from overfl ow, we call this 
event underfl ow. Th is situation occurs when the negative exponent is too large to 
fi t in the exponent fi eld.

One way to reduce chances of underfl ow or overfl ow is to off er another format 
that has a larger exponent. In C this number is called double, and operations on 
doubles are called double precision fl oating-point arithmetic; single precision 
fl oating point is the name of the earlier format.

Th e representation of a double precision fl oating-point number takes two MIPS 
words, as shown below, where s is still the sign of the number, exponent is the value 
of the 11-bit exponent fi eld, and fraction is the 52-bit number in the fraction fi eld.

overfl ow (fl oating-
point) A situation in 
which a positive exponent 
becomes too large to fi t in 
the exponent fi eld.

underfl ow (fl oating-
point) A situation 
in which a negative 
exponent becomes too 
large to fi t in the exponent 
fi eld.

double precision 
A fl oating-point value 
represented in two 32-bit 
words.

single precision 
A fl oating-point value 
represented in a single 32-
bit word.

MIPS double precision allows numbers almost as small as 2.0ten � 10�308 and almost 
as large as 2.0ten � 10308. Although double precision does increase the exponent 
range, its primary advantage is its greater precision because of the much larger 
fraction.

Th ese formats go beyond MIPS. Th ey are part of the IEEE 754 fl oating-point 
standard, found in virtually every computer invented since 1980. Th is standard has 
greatly improved both the ease of porting fl oating-point programs and the quality 
of computer arithmetic.

To pack even more bits into the signifi cand, IEEE 754 makes the leading 1-bit 
of normalized binary numbers implicit. Hence, the number is actually 24 bits long 
in single precision (implied 1 and a 23-bit fraction), and 53 bits long in double 
precision (1 � 52). To be precise, we use the term signifi cand to represent the 24- 
or 53-bit number that is 1 plus the fraction, and fraction when we mean the 23- or 
52-bit number. Since 0 has no leading 1, it is given the reserved exponent value 0 so 
that the hardware won’t attach a leading 1 to it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

fractionexponents

1 bit 11 bits 20 bits

fraction (continued)

32 bits
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Th us 00 … 00two represents 0; the representation of the rest of the numbers uses 
the form from before with the hidden 1 added:

(�1)S  � (1 � Fraction) � 2E

where the bits of the fraction represent a number between 0 and 1 and E specifi es 
the value in the exponent fi eld, to be given in detail shortly. If we number the bits 
of the fraction from left  to right s1, s2, s3, …, then the value is

(�1)S � (1 � (s1 � 2�1) � (s2 � 2�2) � (s3 � 2�3) � (s4 � 2�4) � ...) � 2E

Figure 3.13 shows the encodings of IEEE 754 fl oating-point numbers. Other 
features of IEEE 754 are special symbols to represent unusual events. For example, 
instead of interrupting on a divide by 0, soft ware can set the result to a bit pattern 
representing �∞ or �∞; the largest exponent is reserved for these special symbols. 
When the programmer prints the results, the program will print an infi nity symbol. 
(For the mathematically trained, the purpose of infi nity is to form topological 
closure of the reals.)

IEEE 754 even has a symbol for the result of invalid operations, such as 0/0 
or subtracting infi nity from infi nity. Th is symbol is NaN, for Not a Number. Th e 
purpose of NaNs is to allow programmers to postpone some tests and decisions to 
a later time in the program when they are convenient.

Th e designers of IEEE 754 also wanted a fl oating-point representation that could 
be easily processed by integer comparisons, especially for sorting. Th is desire is 
why the sign is in the most signifi cant bit, allowing a quick test of less than, greater 
than, or equal to 0. (It’s a little more complicated than a simple integer sort, since 
this notation is essentially sign and magnitude rather than two’s complement.)

Placing the exponent before the signifi cand also simplifi es the sorting of 
fl oating-point numbers using integer comparison instructions, since numbers with 
bigger exponents look larger than numbers with smaller exponents, as long as both 
exponents have the same sign.

Single precision Double precision Object represented

Exponent Fraction Exponent Fraction

0 0 0 0 0

0  Nonzero 0  Nonzero ± denormalized number

1–254 Anything 1–2046 Anything ± floating-point number

255 0 2047 0 ± infinity

255 Nonzero 2047 Nonzero NaN (Not a Number)

FIGURE 3.13  EEE 754 encoding of fl oating-point numbers. A separate sign bit determines the 
sign. Denormalized numbers are described in the Elaboration on page 222. Th is information is also found in 
Column 4 of the MIPS Reference Data Card at the front of this book.
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Negative exponents pose a challenge to simplifi ed sorting. If we use two’s 
complement or any other notation in which negative exponents have a 1 in the 
most signifi cant bit of the exponent fi eld, a negative exponent will look like a big 
number. For example, 1.0two � 2�1 would be represented as

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

(Remember that the leading 1 is implicit in the signifi cand.) Th e value 1.0two � 2�1 
would look like the smaller binary number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

Th e desirable notation must therefore represent the most negative exponent as 
00 … 00two and the most positive as 11 … 11two. Th is convention is called biased 
notation, with the bias being the number subtracted from the normal, unsigned 
representation to determine the real value.

IEEE 754 uses a bias of 127 for single precision, so an exponent of �1 is 
represented by the bit pattern of the value �1 � 127ten, or 126ten � 0111 1110two, 
and �1 is represented by 1 � 127, or 128ten � 1000 0000two. Th e exponent bias for 
double precision is 1023. Biased exponent means that the value represented by a 
fl oating-point number is really

(�1)S  � (1 � Fraction) � 2(Exponent � Bias)

Th e range of single precision numbers is then from as small as

�1.00000000000000000000000two  � 2�126

to as large as

�1.11111111111111111111111two  � 2�127.

Let’s demonstrate.
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Floating-Point Representation

Show the IEEE 754 binary representation of the number �0.75ten in single and 
double precision.

Th e number �0.75ten is also

�3/4ten or � 3/22
ten

It is also represented by the binary fraction

�11two /22
ten or � 0.11two

In scientifi c notation, the value is

� 0.11two � 20

and in normalized scientifi c notation, it is

�1.1two � 2�1

Th e general representation for a single precision number is

(�1)S � (1 � Fraction) � 2(Exponent�127)

Subtracting the bias 127 from the exponent of �1.1two � 2�1 yields

(�1)1 � (1 � .1000 0000 0000 0000 0000 000two) � 2(126�127)

Th e single precision binary representation of �0.75ten is then

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 bit 8 bits 23 bits

Th e double precision representation is

EXAMPLE

ANSWER

(�1)1 � (1 � .1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000two) � 2(1022�1023)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 bit 11 bits 20 bits

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 bits
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Now let’s try going the other direction.

Converting Binary to Decimal Floating Point

What decimal number is represented by this single precision fl oat?
EXAMPLE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

Th e sign bit is 1, the exponent fi eld contains 129, and the fraction fi eld contains 
1 � 2�2 � 1/4, or 0.25. Using the basic equation,

(�1)S � (1 � Fraction) � 2(Exponent�Bias) � (�1)1 � (1 � 0.25) � 2(129�127)

   � �1 � 1.25 � 22

   � �1.25 � 4
   � �5.0

In the next few subsections, we will give the algorithms for fl oating-point 
addition and multiplication. At their core, they use the corresponding integer 
operations on the signifi cands, but extra bookkeeping is necessary to handle the 
exponents and normalize the result. We fi rst give an intuitive derivation of the 
algorithms in decimal and then give a more detailed, binary version in the fi gures.

Elaboration: Following IEEE guidelines, the IEEE 754 committee was reformed 20 
years after the standard to see what changes, if any, should be made. The revised 
standard IEEE 754-2008 includes nearly all the IEEE 754-1985 and adds a 16-bit format 
(“half precision”) and a 128-bit format (“quadruple precision”). No hardware has yet been 
built that supports quadruple precision, but it will surely come. The revised standard 
also add decimal fl oating point arithmetic, which IBM mainframes have implemented.

Elaboration: In an attempt to increase range without removing bits from the signifi cand, 
some computers before the IEEE 754 standard used a base other than 2. For example, 
the IBM 360 and 370 mainframe computers use base 16. Since changing the IBM 
exponent by one means shifting the signifi cand by 4 bits, “normalized” base 16 numbers 
can have up to 3 leading bits of 0s! Hence, hexadecimal digits mean that up to 3 bits must 
be dropped from the signifi cand, which leads to surprising problems in the accuracy of 
fl oating-point arithmetic. IBM mainframes now support IEEE 754 as well as the hex format.

ANSWER
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Floating-Point Addition
Let’s add numbers in scientifi c notation by hand to illustrate the problems in 
fl oating-point addition: 9.999ten � 101 � 1.610ten � 10�1. Assume that we can store 
only four decimal digits of the signifi cand and two decimal digits of the exponent.

 Step 1. To be able to add these numbers properly, we must align the decimal 
point of the number that has the smaller exponent. Hence, we need 
a form of the smaller number, 1.610ten � 10�1, that matches the 
larger exponent. We obtain this by observing that there are multiple 
representations of an unnormalized fl oating-point number in 
scientifi c notation:

 1.610ten � 10�1 � 0.1610ten � 100 � 0.01610ten � 101

  Th e number on the right is the version we desire, since its exponent 
matches the exponent of the larger number, 9.999ten � 101. Th us, the 
fi rst step shift s the signifi cand of the smaller number to the right until 
its corrected exponent matches that of the larger number. But we can 
represent only four decimal digits so, aft er shift ing, the number is 
really

 0.016 � 101

 Step 2. Next comes the addition of the signifi cands:

 9.999ten
 + 0.016ten

 10.015ten

  Th e sum is 10.015ten � 101.

 Step 3. Th is sum is not in normalized scientifi c notation, so we need to 
adjust it:

 10.015ten � 101 � 1.0015ten � 102

  Th us, aft er the addition we may have to shift  the sum to put it into 
normalized form, adjusting the exponent appropriately. Th is example 
shows shift ing to the right, but if one number were positive and the 
other were negative, it would be possible for the sum to have many 
leading 0s, requiring left  shift s. Whenever the exponent is increased 
or decreased, we must check for overfl ow or underfl ow—that is, we 
must make sure that the exponent still fi ts in its fi eld.

 Step 4. Since we assumed that the signifi cand can be only four digits long 
(excluding the sign), we must round the number. In our grammar 
school algorithm, the rules truncate the number if the digit to the 
right of the desired point is between 0 and 4 and add 1 to the digit if 
the number to the right is between 5 and 9. Th e number

 1.0015ten � 102
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  is rounded to four digits in the signifi cand to

 1.002ten � 102

  since the fourth digit to the right of the decimal point was between 5 
and 9. Notice that if we have bad luck on rounding, such as adding 1 
to a string of 9s, the sum may no longer be normalized and we would 
need to perform step 3 again.

Figure 3.14 shows the algorithm for binary fl oating-point addition that follows 
this decimal example. Steps 1 and 2 are similar to the example just discussed: 
adjust the signifi cand of the number with the smaller exponent and then add the 
two signifi cands. Step 3 normalizes the results, forcing a check for overfl ow or 
underfl ow. Th e test for overfl ow and underfl ow in step 3 depends on the precision 
of the operands. Recall that the pattern of all 0 bits in the exponent is reserved and 
used for the fl oating-point representation of zero. Moreover, the pattern of all 1 bits 
in the exponent is reserved for indicating values and situations outside the scope of 
normal fl oating-point numbers (see the Elaboration on page 222). For the example 
below, remember that for single precision, the maximum exponent is 127, and the 
minimum exponent is �126.

Binary Floating-Point Addition

Try adding the numbers 0.5ten and �0.4375ten in binary using the algorithm in 
Figure 3.14.

Let’s fi rst look at the binary version of the two numbers in normalized scientifi c 
notation, assuming that we keep 4 bits of precision:

 0.5ten � 1/2ten  � 1/21
ten

 � 0.1two � 0.1two � 20 � 1.000two � 2�1

�0.4375ten � �7/16ten � �7/24
ten

 � �0.0111two � �0.0111two � 20 � �1.110two � 2�2

Now we follow the algorithm:

 Step 1. Th e signifi cand of the number with the lesser exponent (�1.11two 
� 2�2) is shift ed right until its exponent matches the larger number:

�1.110two � 2�2 � �0.111two � 2�1

 Step 2. Add the signifi cands:

1.000two � 2�1 � (�0.111two � 2�1) � 0.001two � 2�1

EXAMPLE

ANSWER
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Still normalized?

4. Round the significand to the appropriate

number of bits

YesOverflow or

underflow?

Start

No

Yes

Done

1.  Compare the exponents of the two numbers;

shift the smaller number to the right until its

exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

No Exception

FIGURE 3.14 Floating-point addition. Th e normal path is to execute steps 3 and 4 once, but if 
rounding causes the sum to be unnormalized, we must repeat step 3.
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 Step 3. Normalize the sum, checking for overfl ow or underfl ow:

0.001two � 2�1 � 0.010two � 2�2 � 0.100two � 2�3

 � 1.000two � 2�4

  Since 127 � �4 � �126, there is no overfl ow or underfl ow. (Th e 
biased exponent would be �4 � 127, or 123, which is between 1 and 
254, the smallest and largest unreserved biased exponents.)

 Step 4. Round the sum:

 1.000two � 2�4

  Th e sum already fi ts exactly in 4 bits, so there is no change to the bits 
due to rounding.

  Th is sum is then

1.000two � 2�4 � 0.0001000two � 0.0001two

 � 1/24
ten � 1/16ten � 0.0625ten

Th is sum is what we would expect from adding 0.5ten to �0.4375ten.

Many computers dedicate hardware to run fl oating-point operations as fast as possible. 
Figure 3.15 sketches the basic organization of hardware for fl oating-point addition.

Floating-Point Multiplication
Now that we have explained fl oating-point addition, let’s try fl oating-point 
multiplication. We start by multiplying decimal numbers in scientifi c notation by 
hand: 1.110ten � 1010 � 9.200ten � 10�5. Assume that we can store only four digits 
of the signifi cand and two digits of the exponent.

 Step 1. Unlike addition, we calculate the exponent of the product by simply 
adding the exponents of the operands together:

New exponent � 10 � (�5) � 5

  Let’s do this with the biased exponents as well to make sure we obtain 
the same result: 10 + 127 = 137, and �5 + 127 = 122, so

New exponent � 137 � 122� 259

  Th is result is too large for the 8-bit exponent fi eld, so something is 
amiss! Th e problem is with the bias because we are adding the biases 
as well as the exponents:

New exponent � (10 � 127) � (�5 � 127) � (5 � 2 � 127) � 259

  Accordingly, to get the correct biased sum when we add biased numbers, 
we must subtract the bias from the sum:
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Compare

exponents
Small ALU

Exponent
difference

Control

ExponentSign Fraction

Big ALU

ExponentSign Fraction

0 1 0 1 0 1

Shift right

0 1 0 1

Increment or
decrement

Shift left or right

Rounding hardware

ExponentSign Fraction

Shift smaller

number right

Add

Normalize

Round

FIGURE 3.15 Block diagram of an arithmetic unit dedicated to fl oating-point addition. Th e steps of Figure 3.14 correspond 
to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to determine which is 
larger and by how much. Th is diff erence controls the three multiplexors; from left  to right, they select the larger exponent, the signifi cand of the 
smaller number, and the signifi cand of the larger number. Th e smaller signifi cand is shift ed right, and then the signifi cands are added together 
using the big ALU. Th e normalization step then shift s the sum left  or right and increments or decrements the exponent. Rounding then creates 
the fi nal result, which may require normalizing again to produce the actual fi nal result.
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New exponent � 137 � 122 � 127 � 259 � 127 � 132 � (5 � 127)

  and 5 is indeed the exponent we calculated initially.

 Step 2. Next comes the multiplication of the signifi cands:

     1.110ten
   ×  9.200ten

     0000
    0000
   2220
  9990
 10212000ten

  Th ere are three digits to the right of the decimal point for each 
operand, so the decimal point is placed six digits from the right in the 
product signifi cand:

 10.212000ten

  Assuming that we can keep only three digits to the right of the decimal 
point, the product is 10.212 � 105.

 Step 3. Th is product is unnormalized, so we need to normalize it:

10.212ten � 105 � 1.0212ten � 106

  Th us, aft er the multiplication, the product can be shift ed right one digit 
to put it in normalized form, adding 1 to the exponent. At this point, 
we can check for overfl ow and underfl ow. Underfl ow may occur if both 
operands are small—that is, if both have large negative exponents.

 Step 4. We assumed that the signifi cand is only four digits long (excluding the 
sign), so we must round the number. Th e number

1.0212ten � 106

  is rounded to four digits in the signifi cand to

1.021ten � 106

 Step 5. Th e sign of the product depends on the signs of the original operands. 
If they are both the same, the sign is positive; otherwise, it’s negative. 
Hence, the product is

�1.021ten � 106

  Th e sign of the sum in the addition algorithm was determined by 
addition of the signifi cands, but in multiplication, the sign of the 
product is determined by the signs of the operands.
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5. Set the sign of the product to positive if the

signs of the original operands are the same;

if they differ make the sign negative

Still normalized?

4. Round the significand to the appropriate

number of bits

YesOverflow or

underflow?

Start

No

Yes

Done

1.  Add the biased exponents of the two

numbers, subtracting the bias from the sum

to get the new biased exponent

2. Multiply the significands

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

No Exception

FIGURE 3.16 Floating-point multiplication. Th e normal path is to execute steps 3 and 4 once, but if 
rounding causes the sum to be unnormalized, we must repeat step 3.
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Once again, as Figure 3.16 shows, multiplication of binary fl oating-point numbers 
is quite similar to the steps we have just completed. We start with calculating 
the new exponent of the product by adding the biased exponents, being sure to 
subtract one bias to get the proper result. Next is multiplication of signifi cands, 
followed by an optional normalization step. Th e size of the exponent is checked 
for overfl ow or underfl ow, and then the product is rounded. If rounding leads to 
further normalization, we once again check for exponent size. Finally, set the sign 
bit to 1 if the signs of the operands were diff erent (negative product) or to 0 if they 
were the same (positive product).

Binary Floating-Point Multiplication

Let’s try multiplying the numbers 0.5ten and �0.4375ten, using the steps in 
Figure 3.16.

In binary, the task is multiplying 1.000two � 2�1 by �1.110two � 2�2.

 Step 1. Adding the exponents without bias:

�1 � (�2) � �3

  or, using the biased representation:

(�1 � 127) � (�2 � 127) � 127 � (�1 � 2) � (127 � 127 � 127) 
� �3 � 127 � 124 

 Step 2. Multiplying the signifi cands:

     1.000two
  �  1.110two

     0000
    1000
   1000
  1000
 1110000two

  Th e product is 1.110000two � 2�3, but we need to keep it to 4 bits, so it 
is 1.110two � 2�3.

 Step 3. Now we check the product to make sure it is normalized, and then 
check the exponent for overfl ow or underfl ow. Th e product is already 
normalized and, since 127 � �3 � �126, there is no overfl ow or 
underfl ow. (Using the biased representation, 254 � 124 � 1, so the 
exponent fi ts.)

 Step 4. Rounding the product makes no change:

1.110two � 2�3

EXAMPLE

ANSWER
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 Step 5. Since the signs of the original operands diff er, make the sign of the 
product negative. Hence, the product is

�1.110two � 2�3

  Converting to decimal to check our results:

�1.110two � 2�3 � �0.001110two � �0.00111two
 � �7/25

ten � �7/32ten � �0.21875ten

  Th e product of 0.5ten and �0.4375ten is indeed �0.21875ten.

Floating-Point Instructions in MIPS
MIPS supports the IEEE 754 single precision and double precision formats with 
these instructions:

■ Floating-point addition, single (add.s) and addition, double (add.d)

■ Floating-point subtraction, single (sub.s) and subtraction, double (sub.d)

■ Floating-point multiplication, single (mul.s) and multiplication, double (mul.d)

■ Floating-point division, single (div.s) and division, double (div.d)

■ Floating-point comparison, single (c.x.s) and comparison, double (c.x.d), 
where x may be equal (eq), not equal (neq), less than (lt), less than or equal 
(le), greater than (gt), or greater than or equal (ge)

■ Floating-point branch, true (bc1t) and branch, false (bc1f)

Floating-point comparison sets a bit to true or false, depending on the comparison 
condition, and a fl oating-point branch then decides whether or not to branch, 
depending on the condition.

Th e MIPS designers decided to add separate fl oating-point registers—called 
$f0, $f1, $f2, …—used either for single precision or double precision. Hence, 
they included separate loads and stores for fl oating-point registers: lwc1 and 
swc1. Th e base registers for fl oating-point data transfers which are used for 
addresses remain integer registers. Th e MIPS code to load two single precision 
numbers from memory, add them, and then store the sum might look like this:

lwc1      $f4,c($sp)  # Load 32-bit F.P. number into F4
lwc1      $f6,a($sp)  # Load 32-bit F.P. number into F6
add.s     $f2,$f4,$f6 # F2 = F4 + F6 single precision
swc1      $f2,b($sp)  # Store 32-bit F.P. number from F2

A double precision register is really an even-odd pair of single precision registers, 
using the even register number as its name. Th us, the pair of single precision 
registers $f2 and $f3 also form the double precision register named $f2.

Figure 3.17 summarizes the fl oating-point portion of the MIPS architecture revealed 
in this chapter, with the additions to support fl oating point shown in color. Similar to 
Figure 2.19 in Chapter 2, Figure 3.18 shows the encoding of these instructions.
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MIPS floating-point operands

Name Example Comments

32 floating- 
point registers

$f0, $f1, $f2, . . . , $f31 MIPS floating-point registers are used in pairs for double precision numbers.

230 memory words Memory[0],  
Memory[4], . . . , 
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so 
sequential word addresses differ by 4. Memory holds data structures, such 
as arrays, and spilled registers, such as those saved on procedure calls. 

MIPS floating-point assembly language

Category Instruction Example Meaning Comments

Arithmetic

FP add single add.s   $f2,$f4,$f6 $f2 = $f4 + $f6 FP add (single precision)

FP subtract single sub.s   $f2,$f4,$f6 $f2 = $f4 – $f6 FP sub (single precision)

FP multiply single mul.s   $f2,$f4,$f6 $f2 = $f4 × $f6 FP multiply (single precision)

FP divide single div.s   $f2,$f4,$f6 $f2 = $f4 / $f6 FP divide (single precision)

FP add double add.d   $f2,$f4,$f6 $f2 = $f4 + $f6 FP add (double precision)

FP subtract double sub.d   $f2,$f4,$f6 $f2 = $f4 – $f6 FP sub (double precision)

FP multiply double mul.d   $f2,$f4,$f6 $f2 = $f4 × $f6 FP multiply (double 
precision)

FP divide double div.d   $f2,$f4,$f6 $f2 = $f4 / $f6 FP divide (double precision)

Data 
transfer

load word copr. 1 lwc1    $f1,100($s2) $f1 = Memory[$s2 + 100] 32-bit data to FP register

store word copr. 1 swc1    $f1,100($s2) Memory[$s2 + 100] = $f1 32-bit data to memory

Condi- 
tional 
branch

branch on FP true bc1t    25 if (cond == 1) go to PC + 4 
+ 100

PC-relative branch if FP  
cond.

branch on FP false bc1f    25 if (cond == 0) go to PC + 4 
+ 100

PC-relative branch if not  
cond.

FP compare single 
(eq,ne,lt,le,gt,ge)

c.lt.s $f2,$f4 if ($f2 < $f4) 
    cond = 1; else cond = 0

FP compare less than 
single precision

FP compare double 
(eq,ne,lt,le,gt,ge)

c.lt.d $f2,$f4 if ($f2 < $f4) 
    cond = 1; else cond = 0

FP compare less than 
double precision

MIPS floating-point machine language

Name Format Example Comments

add.s R 17 16 6 4 2 0 add.s  $f2,$f4,$f6

sub.s R 17 16 6 4 2 1 sub.s  $f2,$f4,$f6

mul.s R 17 16 6 4 2 2 mul.s  $f2,$f4,$f6

div.s R 17 16 6 4 2 3 div.s  $f2,$f4,$f6

add.d R 17 17 6 4 2 0 add.d  $f2,$f4,$f6

sub.d R 17 17 6 4 2 1 sub.d  $f2,$f4,$f6

mul.d R 17 17 6 4 2 2 mul.d  $f2,$f4,$f6

div.d R 17 17 6 4 2 3 div.d  $f2,$f4,$f6

lwc1 I 49 20 2 100 lwc1   $f2,100($s4)

swc1 I 57 20 2 100 swc1   $f2,100($s4)

bc1t I 17 8 1 25 bc1t   25

bc1f I 17 8 0 25 bc1f   25

c.lt.s R 17 16 4 2 0 60 c.lt.s $f2,$f4

c.lt.d R 17 17 4 2 0 60 c.lt.d $f2,$f4

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

FIGURE 3.17 MIPS fl oating-point architecture revealed thus far. See Appendix A, Section A.10, for more detail. Th is information 
is also found in column 2 of the MIPS Reference Data Card at the front of this book.
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op(31:26):

28–26

31–29

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) Rfmt Bltz/gez j jal beq bne blez bgtz

1(001) addi addiu slti sltiu ANDi ORi xORi lui
2(010) TLB FlPt

3(011)

4(100) lb lh lwl lw lbu lhu lwr

5(101) sb sh swl sw swr

6(110) lwc0 lwc1

7(111) swc0 swc1

op(31:26) = 010001 (FlPt), (rt(16:16) = 0 => c = f, rt(16:16) = 1 => c = t), rs(25:21):

23–21

25–24

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(00) mfc1 cfc1 mtc1 ctc1

1(01) bc1.c
2(10) f = single f = double

3(11)

op(31:26) = 010001 (FlPt), (f above: 10000 => f = s, 10001 => f = d), funct(5:0):

2–0

5–3

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) add.f sub.f mul.f div.f abs.f mov.f neg.f
1(001)

2(010)

3(011)

4(100) cvt.s.f cvt.d.f cvt.w.f
5(101)

6(110) c.f.f c.un.f c.eq.f c.ueq.f c.olt.f c.ult.f c.ole.f c.ule.f
7(111) c.sf.f c.ngle.f c.seq.f c.ngl.f c.lt.f c.nge.f c.le.f c.ngt.f

FIGURE 3.18 MIPS fl oating-point instruction encoding. Th is notation gives the value of a fi eld by row and by column. For example, 
in the top portion of the fi gure, lw is found in row number 4 (100two for bits 31–29 of the instruction) and column number 3 (011two for bits 
28–26 of the instruction), so the corresponding value of the op fi eld (bits 31–26) is 100011two. Underscore means the fi eld is used elsewhere. 
For example, FlPt in row 2 and column 1 (op � 010001two) is defi ned in the bottom part of the fi gure. Hence sub.f in row 0 and column 1 of 
the bottom section means that the funct fi eld (bits 5–0) of the instruction) is 000001two and the op fi eld (bits 31–26) is 010001two. Note that the 
5-bit rs fi eld, specifi ed in the middle portion of the fi gure, determines whether the operation is single precision (f � s, so rs � 10000) or double 
precision (f � d, so rs � 10001). Similarly, bit 16 of the instruction determines if the bc1.c instruction tests for true (bit 16 � 1 � 	bc1.t) 
or false (bit 16 � 0 � 	 bc1.f). Instructions in color are described in Chapter 2 or this chapter, with Appendix A covering all instructions. 
Th is information is also found in column 2 of the MIPS Reference Data Card at the front of this book.
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One issue that architects face in supporting fl oating-point arithmetic is whether 
to use the same registers used by the integer instructions or to add a special set 
for fl oating point. Because programs normally perform integer operations and 
fl oating-point operations on diff erent data, separating the registers will only 
slightly increase the number of instructions needed to execute a program. Th e 
major impact is to create a separate set of data transfer instructions to move data 
between fl oating-point registers and memory.

Th e benefi ts of separate fl oating-point registers are having twice as many 
registers without using up more bits in the instruction format, having twice the 
register bandwidth by having separate integer and fl oating-point register sets, and 
being able to customize registers to fl oating point; for example, some computers 
convert all sized operands in registers into a single internal format.

Compiling a Floating-Point C Program into MIPS Assembly Code

Let’s convert a temperature in Fahrenheit to Celsius:

   float f2c (float fahr)
           {
                  return ((5.0/9.0) *(fahr – 32.0));
           }

Assume that the fl oating-point argument fahr is passed in $f12 and the 
result should go in $f0. (Unlike integer registers, fl oating-point register 0 can 
contain a number.) What is the MIPS assembly code?

We assume that the compiler places the three fl oating-point constants in 
memory within easy reach of the global pointer $gp. Th e fi rst two instruc-
tions load the constants 5.0 and 9.0 into fl oating-point registers:

f2c:
    lwc1 $f16,const5($gp) # $f16 = 5.0 (5.0 in memory)
    lwc1 $f18,const9($gp) # $f18 = 9.0 (9.0 in memory)

Th ey are then divided to get the fraction 5.0/9.0:

   div.s $f16, $f16, $f18 # $f16 = 5.0 / 9.0

Hardware/
Software 
Interface

EXAMPLE

ANSWER
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(Many compilers would divide 5.0 by 9.0 at compile time and save the single 
constant 5.0/9.0 in memory, thereby avoiding the divide at runtime.) Next, we 
load the constant 32.0 and then subtract it from fahr ($f12):

   lwc1 $f18, const32($gp)# $f18 = 32.0
   sub.s $f18, $f12, $f18 # $f18 = fahr – 32.0

Finally, we multiply the two intermediate results, placing the product in $f0 as 
the return result, and then return

   mul.s $f0, $f16, $f18 # $f0 = (5/9)*(fahr – 32.0)
   jr $ra                # return

Now let’s perform fl oating-point operations on matrices, code commonly 
found in scientifi c programs.

Compiling Floating-Point C Procedure with Two-Dimensional 
Matrices into MIPS

Most fl oating-point calculations are performed in double precision. Let’s per-
form matrix multiply of C � C � A * B. It is commonly called DGEMM, 
for Double precision, General Matrix Multiply. We’ll see versions of DGEMM 
again in Section 3.8 and subsequently in Chapters 4, 5, and 6. Let’s assume C, 
A, and B are all square matrices with 32 elements in each dimension.

   void mm (double c[][], double a[][], double b[][])
   {
           int i, j, k;
           for (i = 0; i != 32; i = i + 1)
           for (j = 0; j != 32; j = j + 1)
           for (k = 0; k != 32; k = k + 1)
             c[i][j] = c[i][j] + a[i][k] *b[k][j];
   }

Th e array starting addresses are parameters, so they are in $a0, $a1, and $a2. 
Assume that the integer variables are in $s0, $s1, and $s2, respectively. 
What is the MIPS assembly code for the body of the procedure?

Note that c[i][j] is used in the innermost loop above. Since the loop index 
is k, the index does not aff ect c[i][j], so we can avoid loading and storing 
c[i][j] each iteration. Instead, the compiler loads c[i][j] into a register 
outside the loop, accumulates the sum of the products of a[i][k] and 

EXAMPLE

ANSWER
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b[k][j] in that same register, and then stores the sum into c[i][j] upon 
termination of the innermost loop.

We keep the code simpler by using the assembly language pseudoinstructions 
li (which loads a constant into a register), and l.d and s.d (which the 
assembler turns into a pair of data transfer instructions, lwc1 or swc1, to a 
pair of fl oating-point registers).

Th e body of the procedure starts with saving the loop termination value of 
32 in a temporary register and then initializing the three for loop variables:

   mm:... 
      li     $t1, 32  # $t1 = 32 (row size/loop end)
      li     $s0, 0   # i = 0; initialize 1st for loop
L1:   li     $s1, 0   # j = 0; restart 2nd for loop
L2:   li     $s2, 0   # k = 0; restart 3rd for loop

To calculate the address of c[i][j], we need to know how a 32 � 32, two-
dimensional array is stored in memory. As you might expect, its layout is the 
same as if there were 32 single-dimension arrays, each with 32 elements. So the 
fi rst step is to skip over the i “single-dimensional arrays,” or rows, to get the 
one we want. Th us, we multiply the index in the fi rst dimension by the size of 
the row, 32. Since 32 is a power of 2, we can use a shift  instead:

sll  $t2, $s0, 5      # $t2 = i * 25 (size of row of c)

Now we add the second index to select the jth element of the desired row:

   addu  $t2, $t2, $s1   # $t2 = i * size(row) + j

To turn this sum into a byte index, we multiply it by the size of a matrix element 
in bytes. Since each element is 8 bytes for double precision, we can instead shift  
left  by 3:

   sll  $t2, $t2, 3      # $t2 = byte offset of [i][j]

Next we add this sum to the base address of c, giving the address of c[i][j], 
and then load the double precision number c[i][j] into $f4:

addu  $t2, $a0, $t2   # $t2 = byte address of c[i][j]
l.d   $f4, 0($t2)     # $f4 = 8 bytes of c[i][j]

Th e following fi ve instructions are virtually identical to the last fi ve: calculate 
the address and then load the double precision number b[k][j].

L3: sll $t0, $s2, 5    # $t0 = k * 25 (size of row of b)
    addu $t0, $t0, $s1 # $t0 = k * size(row) + j
    sll $t0, $t0, 3    # $t0 = byte offset of [k][j]
    addu $t0, $a2, $t0 # $t0 = byte address of b[k][j]
    l.d $f16, 0($t0)   # $f16 = 8 bytes of b[k][j]

Similarly, the next fi ve instructions are like the last fi ve: calculate the address 
and then load the double precision number a[i][k].
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sll     $t0, $s0, 5    # $t0 = i * 25 (size of row of a)
addu    $t0, $t0, $s2  # $t0 = i * size(row) + k
sll     $t0, $t0, 3    # $t0 = byte offset of [i][k]
addu    $t0, $a1, $t0  # $t0 = byte address of a[i][k]
l.d     $f18, 0($t0)   # $f18 = 8 bytes of a[i][k]

Now that we have loaded all the data, we are fi nally ready to do some fl oating-
point operations! We multiply elements of a and b located in registers $f18 
and $f16, and then accumulate the sum in $f4.

mul.d $f16, $f18, $f16 # $f16 = a[i][k] * b[k][j]
add.d $f4, $f4, $f16   # f4 = c[i][j] + a[i][k] * b[k][j]

Th e fi nal block increments the index k and loops back if the index is not 32. 
If it is 32, and thus the end of the innermost loop, we need to store the sum 
accumulated in $f4 into c[i][j].

addiu  $s2, $s2, 1     # $k = k + 1
bne    $s2, $t1, L3    # if (k != 32) go to L3
s.d    $f4, 0($t2)     # c[i][j] = $f4

Similarly, these fi nal four instructions increment the index variable of the 
middle and outermost loops, looping back if the index is not 32 and exiting if 
the index is 32.

addiu  $s1, $s1, 1     # $j = j + 1
bne    $s1, $t1, L2    # if (j != 32) go to L2
addiu  $s0, $s0, 1     # $i = i + 1
bne    $s0, $t1, L1    # if (i != 32) go to L1
…

Figure 3.22 below shows the x86 assembly language code for a slightly diff erent 
version of DGEMM in Figure 3.21.

Elaboration: The array layout discussed in the example, called row-major order, is 
used by C and many other programming languages. Fortran instead uses column-major 
order, whereby the array is stored column by column.

Elaboration: Only 16 of the 32 MIPS fl oating-point registers could originally be used 
for double precision operations: $f0, $f2, $f4, …, $f30. Double precision is computed 
using pairs of these single precision registers. The odd-numbered fl oating-point registers 
were used only to load and store the right half of 64-bit fl oating-point numbers. MIPS-32 
added l.d and s.d to the instruction set. MIPS-32 also added “paired single” versions of 
all fl oating-point instructions, where a single instruction results in two parallel fl oating-point 
operations on two 32-bit operands inside 64-bit registers (see Section 3.6). For example, 
add.ps $f0, $f2, $f4 is equivalent to add.s $f0, $f2, $f4 followed by add.s 
$f1, $f3, $f5.
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Elaboration: Another reason for separate integers and fl oating-point registers is that 
microprocessors in the 1980s didn’t have enough transistors to put the fl oating-point unit 
on the same chip as the integer unit. Hence, the fl oating-point unit, including the fl oating-
point registers, was optionally available as a second chip. Such optional accelerator 
chips are called coprocessors, and explain the acronym for fl oating-point loads in MIPS: 
lwc1 means load word to coprocessor 1, the fl oating-point unit. (Coprocessor 0 deals 
with virtual memory, described in Chapter 5.) Since the early 1990s, microprocessors 
have integrated fl oating point (and just about everything else) on chip, and hence the term 
coprocessor joins accumulator and core memory as quaint terms that date the speaker.

Elaboration: As mentioned in Section 3.4, accelerating division is more challenging 
than multiplication. In addition to SRT, another technique to leverage a fast multiplier 
is Newton’s iteration, where division is recast as fi nding the zero of a function to fi nd 
the reciprocal 1/c, which is then multiplied by the other operand. Iteration techniques 
cannot be rounded properly without calculating many extra bits. A TI chip solved this 
problem by calculating an extra-precise reciprocal.

Elaboration: Java embraces IEEE 754 by name in its defi nition of Java fl oating-point 
data types and operations. Thus, the code in the fi rst example could have well been 
generated for a class method that converted Fahrenheit to Celsius.

The second example above uses multiple dimensional arrays, which are not explicitly 
supported in Java. Java allows arrays of arrays, but each array may have its own length, 
unlike multiple dimensional arrays in C. Like the examples in Chapter 2, a Java version 
of this second example would require a good deal of checking code for array bounds, 
including a new length calculation at the end of row access. It would also need to check 
that the object reference is not null.

Accurate Arithmetic
Unlike integers, which can represent exactly every number between the smallest and 
largest number, fl oating-point numbers are normally approximations for a number 
they can’t really represent. Th e reason is that an infi nite variety of real numbers 
exists between, say, 0 and 1, but no more than 253 can be represented exactly in 
double precision fl oating point. Th e best we can do is getting the fl oating-point 
representation close to the actual number. Th us, IEEE 754 off ers several modes of 
rounding to let the programmer pick the desired approximation.

Rounding sounds simple enough, but to round accurately requires the hardware 
to include extra bits in the calculation. In the preceding examples, we were vague 
on the number of bits that an intermediate representation can occupy, but clearly, 
if every intermediate result had to be truncated to the exact number of digits, there 
would be no opportunity to round. IEEE 754, therefore, always keeps two extra bits 
on the right during intermediate additions, called guard and round, respectively. 
Let’s do a decimal example to illustrate their value.

guard Th e fi rst of two 
extra bits kept on the 
right during intermediate 
calculations of fl oating-
point numbers; used 
to improve rounding 
accuracy.

round Method to 
make the intermediate 
fl oating-point result fi t 
the fl oating-point format; 
the goal is typically to fi nd 
the nearest number that 
can be represented in the 
format.
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Rounding with Guard Digits

Add 2.56ten � 100 to 2.34ten � 102, assuming that we have three signifi cant 
decimal digits. Round to the nearest decimal number with three signifi cant 
decimal digits, fi rst with guard and round digits, and then without them.

First we must shift  the smaller number to the right to align the exponents, so 
2.56ten � 100 becomes 0.0256ten � 102. Since we have guard and round digits, 
we are able to represent the two least signifi cant digits when we align expo-
nents. Th e guard digit holds 5 and the round digit holds 6. Th e sum is

2.3400ten
+ 0.0256ten

2.3656ten

Th us the sum is 2.3656ten � 102. Since we have two digits to round, we want 
values 0 to 49 to round down and 51 to 99 to round up, with 50 being the 
tiebreaker. Rounding the sum up with three signifi cant digits yields 2.37ten � 102.

Doing this without guard and round digits drops two digits from the 
calculation. Th e new sum is then

2.34ten
+ 0.02ten

2.36ten

Th e answer is 2.36ten � 102, off  by 1 in the last digit from the sum above.

Since the worst case for rounding would be when the actual number is halfway 
between two fl oating-point representations, accuracy in fl oating point is normally 
measured in terms of the number of bits in error in the least signifi cant bits of the 
signifi cand; the measure is called the number of units in the last place, or ulp. If 
a number were off  by 2 in the least signifi cant bits, it would be called off  by 2 ulps. 
Provided there is no overfl ow, underfl ow, or invalid operation exceptions, IEEE 
754 guarantees that the computer uses the number that is within one-half ulp.

Elaboration: Although the example above really needed just one extra digit, multiply 
can need two. A binary product may have one leading 0 bit; hence, the normalizing step 
must shift the product one bit left. This shifts the guard digit into the least signifi cant bit 
of the product, leaving the round bit to help accurately round the product.

IEEE 754 has four rounding modes: always round up (toward +∞), always round down 
(toward �∞), truncate, and round to nearest even. The fi nal mode determines what to 
do if the number is exactly halfway in between. The U.S. Internal Revenue Service (IRS) 
always rounds 0.50 dollars up, possibly to the benefi t of the IRS. A more equitable way 
would be to round up this case half the time and round down the other half. IEEE 754 
says that if the least signifi cant bit retained in a halfway case would be odd, add one; 

EXAMPLE

ANSWER

units in the last place 
(ulp) Th e number of 
bits in error in the least 
signifi cant bits of the 
signifi cand between 
the actual number and 
the number that can be 
represented.
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if it’s even, truncate. This method always creates a 0 in the least signifi cant bit in the 
tie-breaking case, giving the rounding mode its name. This mode is the most commonly 
used, and the only one that Java supports.

The goal of the extra rounding bits is to allow the computer to get the same results 
as if the intermediate results were calculated to infi nite precision and then rounded. To 
support this goal and round to the nearest even, the standard has a third bit in addition 
to guard and round; it is set whenever there are nonzero bits to the right of the round 
bit. This sticky bit allows the computer to see the difference between 0.50 … 00 ten and 
0.50 … 01ten when rounding.

The sticky bit may be set, for example, during addition, when the smaller number is 
shifted to the right. Suppose we added 5.01ten � 10�1 to 2.34ten � 102 in the example 
above. Even with guard and round, we would be adding 0.0050 to 2.34, with a sum of 
2.3450. The sticky bit would be set, since there are nonzero bits to the right. Without the 
sticky bit to remember whether any 1s were shifted off, we would assume the number 
is equal to 2.345000 … 00 and round to the nearest even of 2.34. With the sticky bit 
to remember that the number is larger than 2.345000 … 00, we round instead to 2.35.

Elaboration: PowerPC, SPARC64, AMD SSE5, and Intel AVX architectures provide a 
single instruction that does a multiply and add on three registers: a � a � (b � c). 
Obviously, this instruction allows potentially higher fl oating-point performance for this 
common operation. Equally important is that instead of performing two roundings—after 
the multiply and then after the add—which would happen with separate instructions, 
the multiply add instruction can perform a single rounding after the add. A single 
rounding step increases the precision of multiply add. Such operations with a single 
rounding are called fused multiply add. It was added to the IEEE 754-2008  standard 
(see  Section 3.11).

Summary
Th e Big Picture that follows reinforces the stored-program concept from Chapter 2; 
the meaning of the information cannot be determined just by looking at the bits, for 
the same bits can represent a variety of objects. Th is section shows that computer 
arithmetic is fi nite and thus can disagree with natural arithmetic. For example, the 
IEEE 754 standard fl oating-point representation

(�1)5 � (1 � Fraction) � 2(Exponent �Bias)

is almost always an approximation of the real number. Computer systems must 
take care to minimize this gap between computer arithmetic and arithmetic in the 
real world, and programmers at times need to be aware of the implications of this 
approximation.

sticky bit A bit used in 
rounding in addition to 
guard and round that is 
set whenever there are 
nonzero bits to the right 
of the round bit.

fused multiply add 
A fl oating-point 
instruction that performs 
both a multiply and an 
add, but rounds only once 
aft er the add.

Bit patterns have no inherent meaning. Th ey may represent signed integers, 
unsigned integers, fl oating-point numbers, instructions, and so on. What is 
represented depends on the instruction that operates on the bits in the word.

The BIG
Picture
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C type Java type Data transfers Operations

int int lw, sw, lui addu, addiu, subu, mult, div, AND, 
ANDi, OR, ORi, NOR, slt, slti

unsigned int — lw, sw, lui addu, addiu, subu, multu, divu, AND, 
ANDi, OR, ORi, NOR, sltu, sltiu

char — lb, sb, lui add, addi, sub, mult, div AND, ANDi, 
OR, ORi, NOR, slt, slti

— char lh, sh, lui addu, addiu, subu, multu, divu, AND, 
ANDi, OR, ORi, NOR, sltu, sltiu

float float lwc1, swc1 add.s, sub.s, mult.s, div.s, c.eq.s, 
c.lt.s, c.le.s

double double l.d, s.d add.d, sub.d, mult.d, div.d, c.eq.d, 
c.lt.d, c.le.d

In the last chapter, we presented the storage classes of the programming language C 
(see the Hardware/Soft ware Interface section in Section 2.7). Th e table above shows 
some of the C and Java data types, the MIPS data transfer instructions, and instructions 
that operate on those types that appear in Chapter 2 and this chapter. Note that Java 
omits unsigned integers.

Th e revised IEEE 754-2008 standard added a 16-bit fl oating-point format with fi ve 
exponent bits. What do you think is the likely range of numbers it could represent?

1.     1.0000 00 � 20             to     1.1111 1111 11 � 231, 0

2. �1.0000 0000 0 � 2�14   to �1.1111 1111 1 � 215, �0, �∞, NaN

3. �1.0000 0000 00 � 2�14 to �1.1111 1111 11 � 215, �0, �∞, NaN

4. �1.0000 0000 00 � 2�15 to �1.1111 1111 11 � 214, �0, �∞, NaN

Elaboration: To accommodate comparisons that may include NaNs, the standard 
includes ordered and unordered as options for compares. Hence, the full MIPS instruction 
set has many fl avors of compares to support NaNs. (Java does not support unordered 
compares.)

Hardware/ 
Software 
Interface

Check 
Yourself

Th e major diff erence between computer numbers and numbers in the 
real world is that computer numbers have limited size and hence limited 
precision; it’s possible to calculate a number too big or too small to be 
represented in a word. Programmers must remember these limits and 
write programs accordingly.
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In an attempt to squeeze every last bit of precision from a fl oating-point operation, 
the standard allows some numbers to be represented in unnormalized form. Rather than 
having a gap between 0 and the smallest normalized number, IEEE allows denormalized  
numbers (also known as denorms or subnormals). They have the same exponent as 
zero but a nonzero fraction. They allow a number to degrade in signifi cance until it 
becomes 0, called gradual underfl ow. For example, the smallest positive single precision 
normalized number is

1.0000 0000 0000 0000 0000 000two � 2�126

but the smallest single precision denormalized number is

0.0000 0000 0000 0000 0000 001two � 2�126, or 1.0two � 2�149

For double precision, the denorm gap goes from 1.0 � 2�1022 to 1.0 � 2�1074.
The possibility of an occasional unnormalized operand has given headaches to 

fl oating-point designers who are trying to build fast fl oating-point units. Hence, many 
computers cause an exception if an operand is denormalized, letting software complete 
the operation. Although software implementations are perfectly valid, their lower 
performance has lessened the popularity of denorms in portable fl oating-point software. 
Moreover, if programmers do not expect denorms, their programs may surprise them.

 3.6  Parallelism and Computer Arithmetic: 
Subword Parallelism

Since every desktop microprocessor by defi nition has its own graphical displays, 
as transistor budgets increased it was inevitable that support would be added for 
graphics operations.

Many graphics systems originally used 8 bits to represent each of the three 
primary colors plus 8 bits for a location of a pixel. Th e addition of speakers and 
microphones for teleconferencing and video games suggested support of sound as 
well. Audio samples need more than 8 bits of precision, but 16 bits are suffi  cient.

Every microprocessor has special support so that bytes and halfwords take up 
less space when stored in memory (see Section 2.9), but due to the infrequency of 
arithmetic operations on these data sizes in typical integer programs, there was 
little support beyond data transfers. Architects recognized that many graphics 
and audio applications would perform the same operation on vectors of this data. 
By partitioning the carry chains within a 128-bit adder, a processor could use 
parallelism to perform simultaneous operations on short vectors of sixteen 8-bit 
operands, eight 16-bit operands, four 32-bit operands, or two 64-bit operands. Th e 
cost of such partitioned adders was small.

Given that the parallelism occurs within a wide word, the extensions are 
classifi ed as subword parallelism. It is also classifi ed under the more general name 
of data level parallelism. Th ey have been also called vector or SIMD, for single 
instruction, multiple data (see Section 6.6). Th e rising popularity of multimedia 
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applications led to arithmetic instructions that support narrower operations that 
can easily operate in parallel.

For example, ARM added more than 100 instructions in the NEON multimedia 
instruction extension to support subword parallelism, which can be used either 
with ARMv7 or ARMv8. It added 256 bytes of new registers for NEON that can be 
viewed as 32 registers 8 bytes wide or 16 registers 16 bytes wide. NEON supports 
all the subword data types you can imagine except 64-bit fl oating point numbers:

■ 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers

■ 32-bit fl oating point numbers

Figure 3.19 gives a summary of the basic NEON instructions.

FIGURE 3.19 Summary of ARM NEON instructions for subword parallelism. We use the curly brackets {} to show optional 
variations of the basic operations: {S8,U8,8} stand for signed and unsigned 8-bit integers or 8-bit data where type doesn’t matter, of which 16 
fi t in a 128-bit register; {S16,U16,16} stand for signed and unsigned 16-bit integers or 16-bit type-less data, of which 8 fi t in a 128-bit register; 
{S32,U32,32} stand for signed and unsigned 32-bit integers or 32-bit type-less data, of which 4 fi t in a 128-bit register; {S64,U64,64} stand for 
signed and unsigned 64-bit integers or type-less 64-bit data, of which 2 fi t in a 128-bit register; {F32} stand for signed and unsigned 32-bit 
fl oating point numbers, of which 4 fi t in a 128-bit register. Vector Load reads one n-element structure from memory into 1, 2, 3, or 4 NEON 
registers. It loads a single n-element structure to one lane (See Section 6.6), and elements of the register that are not loaded are unchanged. 
Vector Store writes one n-element structure into memory from 1, 2, 3, or 4 NEON registers.

Elaboration: In addition to signed and unsigned integers, ARM includes “fi xed-point” 
format of four sizes called I8, I16, I32, and I64, of which 16, 8, 4, and 2 fi t in a 128-
bit register, respectively. A portion of the fi xed point is for the fraction (to the right of 
the binary point) and the rest of the data is the integer portion (to the left of the binary 
point).  The location of the binary point is up to the software. Many ARM processors do 
not have fl oating point hardware and thus fl oating point operations must be performed by 
library routines. Fixed point arithmetic can be signifi cantly faster than software fl oating 
point routines, but more work for the programmer.

Data transfer Arithmetic Logical/Compare

821.DNAV,46.DNAV}23U,23S,61U,61S,8U,8S{}W,L{DDAV,23F.DDAV23F.RDLV

821.RROV,46.RROV}23U,23S,61U,61S,8U,8S{}W,L{BUSV,23F.BUSV23F.RTSV

VLD{1,2,3.4}.{I8,I16,I32} VMUL.F32, VMULL{S8,U8,S16,U16,S32,U32} VEOR.64, VEOR.128

VST{1,2,3.4}.{I8,I16,I32} VMLA.F32, VMLAL{S8,U8,S16,U16,S32,U32} VBIC.64, VBIC.128

VMOV.{I8,I16,I32,F32}, #imm VMLS.F32, VMLSL{S8,U8,S16,U16,S32,U32} VORN.64, VORN.128

VMVN.{I8,I16,I32,F32}, #imm VMAX.{S8,U8,S16,U16,S32,U32,F32} VCEQ.{I8,I16,I32,F32}

VMOV.{I64,I128} VMIN.{S8,U8,S16,U16,S32,U32,F32} VCGE.{S8,U8,S16,U16,S32,U32,F32}

}23F,23U,23S,61U,61S,8U,8S{.TGCV}23F,23S,61S,8S{.SBAV}821I,46I{.NVMV
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 3.7  Real Stuff:  Streaming SIMD Extensions 
and Advanced Vector Extensions in x86

Th e original MMX (MultiMedia eXtension) and SSE (Streaming SIMD Extension) 
instructions for the x86 included similar operations to those found in ARM NEON. 
Chapter 2 notes that in 2001 Intel added 144 instructions to its architecture as 
part of SSE2, including double precision fl oating-point registers and operations. It 
includes eight 64-bit registers that can be used for fl oating-point operands. AMD 
expanded the number to 16 registers, called XMM, as part of AMD64, which 
Intel relabeled EM64T for its use. Figure 3.20 summarizes the SSE and SSE2 
instructions.

In addition to holding a single precision or double precision number in a 
register, Intel allows multiple fl oating-point operands to be packed into a single 
128-bit SSE2 register: four single precision or two double precision. Th us, the 16 
fl oating-point registers for SSE2 are actually 128 bits wide. If the operands can be 
arranged in memory as 128-bit aligned data, then 128-bit data transfers can load 
and store multiple operands per instruction. Th is packed fl oating-point format is 
supported by arithmetic operations that can operate simultaneously on four singles 
(PS) or two doubles (PD). 

Data transfer Arithmetic Compare

MOV{A/U}{SS/PS/SD/
PD} xmm, mem/xmm

ADD{SS/PS/SD/PD} xmm,mem/xmm  CMP{SS/PS/SD/PD}

SUB{SS/PS/SD/PD} xmm,mem/xmm  

MOV {H/L} {PS/PD}  
xmm, mem/xmm 

MUL{SS/PS/SD/PD} xmm,mem/xmm 

DIV{SS/PS/SD/PD} xmm,mem/xmm 

SQRT{SS/PS/SD/PD} mem/xmm

MAX {SS/PS/SD/PD} mem/xmm

MIN{SS/PS/SD/PD} mem/xmm

FIGURE 3.20 The SSE/SSE2 fl oating-point instructions of the x86. xmm means one operand is 
a 128-bit SSE2 register, and mem/xmm means the other operand is either in memory or it is an SSE2 register. 
We use the curly brackets {} to show optional variations of the basic operations: {SS} stands for Scalar Single 
precision fl oating point, or one 32-bit operand in a 128-bit register; {PS} stands for Packed Single precision 
fl oating point, or four 32-bit operands in a 128-bit register; {SD} stands for Scalar Double precision fl oating 
point, or one 64-bit operand in a 128-bit register; {PD} stands for Packed Double precision fl oating point, or 
two 64-bit operands in a 128-bit register; {A} means the 128-bit operand is aligned in memory; {U} means 
the 128-bit operand is unaligned in memory; {H} means move the high half of the 128-bit operand; and {L} 
means move the low half of the 128-bit operand.
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In 2011 Intel doubled the width of the registers again, now called YMM, with 
Advanced Vector Extensions (AVX). Th us, a single operation can now specify eight 
32-bit fl oating-point operations or four 64-bit fl oating-point operations. Th e 
legacy SSE and SSE2 instructions now operate on the lower 128 bits of the YMM 
registers. Th us, to go from 128-bit and 256-bit operations, you prepend the letter 
“v” (for vector) in front of the SSE2 assembly language operations and then use the 
YMM register names instead of the XMM register name. For example, the SSE2 
instruction to perform two 64-bit fl oating-point multiplies

addpd  %xmm0, %xmm4

It becomes

vaddpd  %ymm0, %ymm4 

which now produces four 64-bit fl oating-point multiplies.

Elaboration: AVX also added three address instructions to x86. For example, vaddpd 
can now specify 

vaddpd %ymm0, %ymm1, %ymm4 # %ymm4 = %ymm1 + %ymm2

instead of the standard two address version

addpd  %xmm0, %xmm4 # %xmm4 = %xmm4 + %xmm0

(Unlike MIPS, the destination is on the right in x86.) Three addresses can reduce the 
number of registers and instructions needed for a computation.

 3.8  Going Faster:  Subword Parallelism and 
Matrix Multiply

To demonstrate the performance impact of subword parallelism, we’ll run the same 
code on the Intel Core i7 fi rst without AVX and then with it. Figure 3.21 shows an 
unoptimized version of a matrix-matrix multiply written in C.  As we saw in Section 
3.5, this program is commonly called DGEMM, which stands for Double precision 
GEneral Matrix Multiply. Starting with this edition, we have added a new section 
entitled “Going Faster” to demonstrate the performance benefi t of adapting soft ware 
to the underlying hardware, in this case the Sandy Bridge version of the Intel Core 
i7 microprocessor. Th is new section in Chapters 3, 4, 5, and 6 will incrementally 
improve DGEMM performance using the ideas that each chapter introduces.

Figure 3.22 shows the x86 assembly language output for the inner loop of Figure 
3.21. Th e fi ve fl oating point-instructions start with a v like the AVX instructions, 
but note that they use the XMM registers instead of YMM, and they include sd in 
the name, which stands for scalar double precision. We’ll defi ne the subword parallel 
instructions shortly.
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FIGURE 3.22 The x86 assembly language for the body of the nested loops generated by compiling the 
optimized C code in Figure 3.21. Although it is dealing with just 64-bits of data, the compiler uses the AVX version of 
the instructions instead of SSE2 presumably so that it can use three address per instruction instead of two (see the Elaboration 
in Section 3.7).

FIGURE 3.21 Unoptimized C version of a double precision matrix multiply, widely known as DGEMM for 
Double-precision GEneral Matrix Multiply (GEMM). Because we are passing the matrix dimension as the parameter 
n, this version of DGEMM uses single dimensional versions of matrices C, A, and B and address arithmetic to get better 
performance instead of using the more intuitive two-dimensional arrays that we saw in Section 3.5. Th e comments remind 
us of this more intuitive notation.

 1.  void dgemm (int n, double* A, double* B, double* C)

 2. {

 3. for (int i = 0; i < n; ++i)

 4. for (int j = 0; j < n; ++j) 

 5. {

 6. double cij = C[i+j*n]; /* cij = C[i][j] */

 7. for( int k = 0; k < n; k++ )

 8.  cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */

 9. C[i+j*n] = cij; /* C[i][j] = cij */

10. }

11. }

 1.  vmovsd (%r10),%xmm0 # Load 1 element of C into %xmm0

 2. mov    %rsi,%rcx # register %rcx = %rsi

 3. xor    %eax,%eax # register %eax = 0

 4.  vmovsd (%rcx),%xmm1 # Load 1 element of B into %xmm1

 5. add    %r9,%rcx # register %rcx = %rcx + %r9

 6.  vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1, element of A

 7. add    $0x1,%rax # register %rax = %rax + 1

 8. cmp    %eax,%edi # compare %eax to %edi

 9. vaddsd %xmm1,%xmm0,%xmm0 # Add %xmm1, %xmm0

10. jg     30 <dgemm+0x30> # jump if %eax > %edi

11. add    $0x1,%r11d # register %r11 = %r11 + 1

12. vmovsd %xmm0,(%r10) # Store %xmm0 into C element
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FIGURE 3.23 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel 
instructions for the x86. Figure 3.24 shows the assembly language produced by the compiler for the inner loop.

While compiler writers may eventually be able to routinely produce high-
quality code that uses the AVX instructions of the x86, for now we must “cheat” by 
using C intrinsics that more or less tell the compiler exactly how to produce good 
code. Figure 3.23 shows the enhanced version of Figure 3.21 for which the Gnu C 
compiler produces AVX code. Figure 3.24 shows annotated x86 code that is the 
output of compiling using gcc with the –O3 level of optimization.

Th e declaration on line 6 of Figure 3.23 uses the __m256d data type, which tells 
the compiler the variable will hold 4 double-precision fl oating-point values. Th e 
intrinsic _mm256_load_pd() also on line 6 uses AVX instructions to load 4 
double-precision fl oating-point numbers in parallel (_pd) from the matrix C into 
c0.  Th e address calculation C+i+j*n on line 6 represents element C[i+j*n]. 
Symmetrically, the fi nal step on line 11 uses the intrinsic _mm256_store_pd() 
to store 4 double-precision fl oating-point numbers from c0 into the matrix C. 
As we’re going through 4 elements each iteration, the outer for loop on line 4 
increments i by 4 instead of by 1 as on line 3 of Figure 3.21.

Inside the loops, on line 9 we fi rst load 4 elements of A again using _mm256_
load_pd(). To multiply these elements by one element of B, on line 10 we fi rst 
use the intrinsic _mm256_broadcast_sd(), which makes 4 identical copies 
of the scalar double precision number—in this case an element of B—in one of the 
YMM registers. We then use _mm256_mul_pd() on line 9 to multiply the four 
double-precision results in parallel. Finally, _mm256_add_pd() on line 8 adds 
the 4 products to the 4 sums in c0.

Figure 3.24 shows resulting x86 code for the body of the inner loops produced 
by the compiler. You can see the fi ve AVX instructions—they all start with v and 

 1. #include <x86intrin.h>

 2. void dgemm (int n, double* A, double* B, double* C)

 3. {

 4.   for ( int i = 0; i < n; i+=4 )

 5.     for ( int j = 0; j < n; j++ ) {

 6.        __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j] */

 7.       for( int k = 0; k < n; k++ )

 8. c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */

 9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n), 

10. _mm256_broadcast_sd(B+k+j*n)));

11.  _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */

12.     }

13. }
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four of the fi ve use pd for parallel double precision—that correspond to the C 
intrinsics mentioned above. Th e code is very similar to that in Figure 3.22 above: 
both use 12 instructions, the integer instructions are nearly identical (but diff erent 
registers), and the fl oating-point instruction diff erences are generally just going 
from scalar double (sd) using XMM registers to parallel double (pd) with YMM 
registers. Th e one exception is line 4 of Figure 3.24. Every element of A must be 
multiplied by one element of B. One solution is to place four identical copies of the 
64-bit B element side-by-side into the 256-bit YMM register, which is just what the 
instruction vbroadcastsd does.

For matrices of dimensions of 32 by 32, the unoptimized DGEMM in Figure 3.21 
runs at 1.7 GigaFLOPS (FLoating point Operations Per Second) on one core of a 
2.6 GHz Intel Core i7 (Sandy Bridge).  Th e optimized code in Figure 3.23 performs 
at 6.4 GigaFLOPS. Th e AVX version is 3.85 times as fast, which is very close to the 
factor of 4.0 increase that you might hope for from performing 4 times as many 
operations at a time by using subword parallelism.

Elaboration: As mentioned in the Elaboration in Section 1.6, Intel offers Turbo mode 
that temporarily runs at a higher clock rate until the chip gets too hot. This Intel Core i7 
(Sandy Bridge) can increase from 2.6 GHz to 3.3 GHz in Turbo mode. The results above 
are with Turbo mode turned off. If we turn it on, we improve all the results by the increase 
in the clock rate of 3.3/2.6 = 1.27 to  2.1 GFLOPS for unoptimized DGEMM and 8.1 
GFLOPS with AVX. Turbo mode works particularly well when using only a single core of 
an eight-core chip, as in this case, as it lets that single core use much more than its fair 
share of power since the other cores are idle.

FIGURE 3.24 The x86 assembly language for the body of the nested loops generated by compiling 
the optimized C code in Figure 3.23. Note the similarities to Figure 3.22, with the primary diff erence being that the 
fi ve fl oating-point operations are now using YMM registers and using the pd versions of the instructions for parallel double 
precision instead of the sd version for scalar double precision.

 1.  vmovapd (%r11),%ymm0 # Load 4 elements of C into %ymm0

 2. mov    %rbx,%rcx # register %rcx = %rbx

 3. xor    %eax,%eax  # register %eax = 0

 4.  vbroadcastsd (%rax,%r8,1),%ymm1 # Make 4 copies of B element

 5. add    $0x8,%rax # register %rax = %rax + 8

 6.  vmulpd (%rcx),%ymm1,%ymm1 # Parallel mul %ymm1,4 A elements

 7. add    %r9,%rcx # register %rcx = %rcx + %r9

 8. cmp    %r10,%rax # compare %r10 to %rax

 9.  vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0

10.  jne    50 <dgemm+0x50> # jump if not %r10 != %rax

11. add    $0x1,%esi # register % esi = % esi + 1

12.  vmovapd %ymm0,(%r11) # Store %ymm0 into 4 C elements
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 3.9 Fallacies and Pitfalls

Arithmetic fallacies and pitfalls generally stem from the diff erence between the 
limited precision of computer arithmetic and the unlimited precision of natural 
arithmetic.

 Fallacy: Just as a left  shift  instruction can replace an integer multiply by a 
power of 2, a right shift  is the same as an integer division by a power of 2.

Recall that a binary number c, where xi means the ith bit, represents the number

… � (x3 � 23) � (x2 � 22) 1 (x1 � 21) � (x0 � 20)

Shift ing the bits of c right by n bits would seem to be the same as dividing by 
2n. And this is true for unsigned integers. Th e problem is with signed integers. For 
example, suppose we want to divide �5ten by 4ten; the quotient should be �1ten. Th e 
two’s complement representation of �5ten is

1111  1111  1111  1111  1111  1111  1111  1011two

According to this fallacy, shift ing right by two should divide by 4ten (22):

0011  1111  1111  1111  1111  1111  1111  1110two

With a 0 in the sign bit, this result is clearly wrong. Th e value created by the shift  
right is actually 1,073,741,822ten instead of �1ten.

A solution would be to have an arithmetic right shift  that extends the sign bit 
instead of shift ing in 0s. A 2-bit arithmetic shift  right of �5ten produces

1111  1111  1111  1111  1111  1111  1111  1110two

Th e result is �2ten instead of �1ten; close, but no cigar.

Pitfall: Floating-point addition is not associative. 

Associativity holds for a sequence of two’s complement integer additions, even if the 
computation overfl ows. Alas, because fl oating-point numbers are approximations 
of real numbers and because computer arithmetic has limited precision, it does 
not hold for fl oating-point numbers. Given the great range of numbers that can be 
represented in fl oating point, problems occur when adding two large numbers of 
opposite signs plus a small number. For example, let’s see if c � (a � b) � (c � a) 
� b. Assume c � �1.5ten � 1038, a � 1.5ten � 1038, and b � 1.0, and that these are 
all single precision numbers.

Th us mathematics 
may be defi ned as the 
subject in which we 
never know what we 
are talking about, nor 
whether what we are 
saying is true.
Bertrand Russell, Recent 
Words on the Principles 
of Mathematics, 1901
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Since fl oating-point numbers have limited precision and result in approximations 
of real results, 1.5ten � 1038 is so much larger than 1.0ten that 1.5ten � 1038 � 1.0 is still 
1.5ten � 1038. Th at is why the sum of c, a, and b is 0.0 or 1.0, depending on the order 
of the fl oating-point additions, so c � (a � b) � (c � a) � b. Th erefore, fl oating-
point addition is not associative.

 Fallacy: Parallel execution strategies that work for integer data types also work 
for fl oating-point data types. 

Programs have typically been written fi rst to run sequentially before being rewritten 
to run concurrently, so a natural question is, “Do the two versions get the same 
answer?” If the answer is no, you presume there is a bug in the parallel version that 
you need to track down.

Th is approach assumes that computer arithmetic does not aff ect the results when 
going from sequential to parallel. Th at is, if you were to add a million numbers 
together, you would get the same results whether you used 1 processor or 1000 
processors. Th is assumption holds for two’s complement integers, since integer 
addition is associative. Alas, since fl oating-point addition is not associative, the 
assumption does not hold.

A more vexing version of this fallacy occurs on a parallel computer where the 
operating system scheduler may use a diff erent number of processors depending 
on what other programs are running on a parallel computer. As the varying 
number of processors from each run would cause the fl oating-point sums to be 
calculated in diff erent orders,  getting slightly diff erent answers each time  despite 
running identical code with identical input may fl ummox unaware parallel 
programmers.

Given this quandary, programmers who write parallel code with fl oating-point 
numbers need to verify whether the results are credible even if they don’t give the 
same exact answer as the sequential code. Th e fi eld that deals with such issues is 
called numerical analysis, which is the subject of textbooks in its own right. Such 
concerns are one reason for the popularity of numerical libraries such as LAPACK 
and SCALAPAK, which have been validated in both their sequential and parallel 
forms.

 Pitfall: Th e MIPS instruction add immediate unsigned (addiu) sign-extends 
its 16-bit immediate fi eld.
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Despite its name, add immediate unsigned (addiu) is used to add constants to 
signed integers when we don’t care about overfl ow. MIPS has no subtract immediate 
instruction, and negative numbers need sign extension, so the MIPS architects 
decided to sign-extend the immediate fi eld.

 Fallacy: Only theoretical mathematicians care about fl oating-point accuracy.

Newspaper headlines of November 1994 prove this statement is a fallacy (see 
Figure 3.25). Th e following is the inside story behind the headlines.

Th e Pentium used a standard fl oating-point divide algorithm that generates 
multiple quotient bits per step, using the most signifi cant bits of divisor and 
dividend to guess the next 2 bits of the quotient. Th e guess is taken from a lookup 
table containing �2, �1, 0, �1, or �2. Th e guess is multiplied by the divisor and 
subtracted from the remainder to generate a new remainder. Like nonrestoring 
division, if a previous guess gets too large a remainder, the partial remainder is 
adjusted in a subsequent pass.

Evidently, there were fi ve elements of the table from the 80486 that Intel 
engineers thought could never be accessed, and they optimized the logic to return 
0 instead of 2 in these situations on the Pentium. Intel was wrong: while the fi rst 11 

FIGURE 3.25 A sampling of newspaper and magazine articles from November 1994, 
including the New York Times, San Jose Mercury News, San Francisco Chronicle, and 
Infoworld. Th e Pentium fl oating-point divide bug even made the “Top 10 List” of the David Letterman 
Late Show on television. Intel eventually took a $300 million write-off  to replace the buggy chips.



232 Chapter 3 Arithmetic for Computers

bits were always correct, errors would show up occasionally in bits 12 to 52, or the 
4th to 15th decimal digits.

A math professor at Lynchburg College in Virginia, Th omas Nicely, discovered the 
bug in September 1994. Aft er calling Intel technical support and getting no offi  cial 
reaction, he posted his discovery on the Internet. Th is post led to a story in a trade 
magazine, which in turn caused Intel to issue a press release. It called the bug a glitch 
that would aff ect only theoretical mathematicians, with the average spreadsheet 
user seeing an error every 27,000 years. IBM Research soon counterclaimed that the 
average spreadsheet user would see an error every 24 days. Intel soon threw in the 
towel by making the following announcement on December 21:

“We at Intel wish to sincerely apologize for our handling of the recently publicized 
Pentium processor fl aw. Th e Intel Inside symbol means that your computer has 
a microprocessor second to none in quality and performance. Th ousands of Intel 
employees work very hard to ensure that this is true. But no microprocessor is 
ever perfect. What Intel continues to believe is technically an extremely minor 
problem has taken on a life of its own. Although Intel fi rmly stands behind the 
quality of the current version of the Pentium processor, we recognize that many 
users have concerns. We want to resolve these concerns. Intel will exchange the 
current version of the Pentium processor for an updated version, in which this 
fl oating-point divide fl aw is corrected, for any owner who requests it, free of 
charge anytime during the life of their computer.”

Analysts estimate that this recall cost Intel $500 million, and Intel engineers did not 
get a Christmas bonus that year.

Th is story brings up a few points for everyone to ponder. How much cheaper 
would it have been to fi x the bug in July 1994? What was the cost to repair the 
damage to Intel’s reputation? And what is the corporate responsibility in disclosing 
bugs in a product so widely used and relied upon as a microprocessor?

 3.10 Concluding Remarks

Over the decades, computer arithmetic has become largely standardized, greatly 
enhancing the portability of programs. Two’s complement binary integer arithmetic is 
found in every computer sold today, and if it includes fl oating point support, it off ers 
the IEEE 754 binary fl oating-point arithmetic.

Computer arithmetic is distinguished from paper-and-pencil arithmetic by the 
constraints of limited precision. Th is limit may result in invalid operations through 
calculating numbers larger or smaller than the predefi ned limits. Such anomalies, called 
“overfl ow” or “underfl ow,” may result in exceptions or interrupts, emergency events 
similar to unplanned subroutine calls. Chapters 4 and 5 discuss exceptions in more detail.

Floating-point arithmetic has the added challenge of being an approximation 
of real numbers, and care needs to be taken to ensure that the computer number 
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selected is the representation closest to the actual number. Th e challenges of 
imprecision and limited representation of fl oating point are part of the inspiration 
for the fi eld of numerical analysis. Th e recent switch to parallelism shines the 
searchlight on numerical analysis again, as solutions that were long considered 
safe on sequential computers must be reconsidered when trying to fi nd the fastest 
algorithm for parallel computers that still achieves a correct result.

Data-level parallelism, specifi cally subword parallelism, off ers a simple path to 
higher performance for programs that are intensive in arithmetic operations for 
either integer or fl oating-point data. We showed that we could speed up matrix 
multiply nearly fourfold by using instructions that could execute four fl oating-
point operations at a time.

With the explanation of computer arithmetic in this chapter comes a description 
of much more of the MIPS instruction set. One point of confusion is the instructions 
covered in these chapters versus instructions executed by MIPS chips versus the 
instructions accepted by MIPS assemblers. Two fi gures try to make this clear.

Figure 3.26 lists the MIPS instructions covered in this chapter and Chapter 2. 
We call the set of instructions on the left -hand side of the fi gure the MIPS core. Th e 
instructions on the right we call the MIPS arithmetic core. On the left  of Figure 3.27 
are the instructions the MIPS processor executes that are not found in Figure 3.26. 
We call the full set of hardware instructions MIPS-32. On the right of Figure 3.27 
are the instructions accepted by the assembler that are not part of MIPS-32. We call 
this set of instructions Pseudo MIPS.

Figure 3.28 gives the popularity of the MIPS instructions for SPEC CPU2006 
integer and fl oating-point benchmarks. All instructions are listed that were 
responsible for at least 0.2% of the instructions executed.

Note that although programmers and compiler writers may use MIPS-32 to 
have a richer menu of options, MIPS core instructions dominate integer SPEC 
CPU2006 execution, and the integer core plus arithmetic core dominate SPEC 
CPU2006 fl oating point, as the table below shows.

Instruction subset Integer Fl. pt.

MIPS core 98% 31%

MIPS arithmetic core 2% 66%

Remaining MIPS-32 0% 3%

For the rest of the book, we concentrate on the MIPS core instructions—the integer 
instruction set excluding multiply and divide—to make the explanation of computer 
design easier. As you can see, the MIPS core includes the most popular MIPS 
instructions; be assured that understanding a computer that runs the MIPS core 
will give you suffi  cient background to understand even more ambitious computers. 
No matter what the instruction set or its size—MIPS, ARM, x86—never forget that 
bit patterns have no inherent meaning. Th e same bit pattern may represent a signed 
integer, unsigned integer, fl oating-point number, string, instruction, and so on. In 
stored program computers, it is the operation on the bit pattern that determines its 
meaning.
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 MIPS core instructions Name Format MIPS arithmetic core Name Format

add add R multiply mult R

add immediate addi I multiply unsigned multu R

add unsigned addu R divide div R

add immediate unsigned addiu I divide unsigned divu R

subtract sub R move from Hi mfhi R

subtract unsigned subu R move from Lo mflo R

AND AND R move from system control (EPC) mfc0 R

AND immediate ANDi I floating-point add single add.s R

OR OR R floating-point add double add.d R

OR immediate ORi I floating-point subtract single sub.s R

NOR NOR R floating-point subtract double sub.d R

shift left logical sll R floating-point multiply single mul.s R

shift right logical srl R floating-point multiply double mul.d R

load upper immediate lui I floating-point divide single div.s R

load word lw I floating-point divide double div.d R

store word sw I load word to floating-point single lwc1 I

load halfword unsigned lhu I store word to floating-point single swc1 I

store halfword sh I load word to floating-point double ldc1 I

load byte unsigned lbu I store word to floating-point double sdc1 I

store byte sb I branch on floating-point true bc1t I

load linked (atomic update) ll I branch on floating-point false bc1f I

store cond. (atomic update) sc I floating-point compare single c.x.s R

branch on equal beq I (x = eq, neq, lt, le, gt, ge)

branch on not equal bne I floating-point compare double c.x.d R

jump j J (x = eq, neq, lt, le, gt, ge)

jump and link jal J

jump register jr R

set less than slt R

set less than immediate slti I

set less than unsigned sltu R

set less than immediate unsigned sltiu I

FIGURE 3.26 The MIPS instruction set. Th is book concentrates on the instructions in the left  column. Th is information is also found 
in columns 1 and 2 of the MIPS Reference Data Card at the front of this book.
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Remaining MIPS-32 Name Format Pseudo MIPS Name Format

exclusive or (rs ⊕ rt) xor R absolute value abs rd,rs
exclusive or immediate xori I negate (signed or unsigned) negs rd,rs

shift right arithmetic sra R rotate left rol rd,rs,rt
shift left logical variable sllv R rotate right ror rd,rs,rt
shift right logical variable srlv R multiply and don’t check oflw (signed or uns.) muls rd,rs,rt

shift right arithmetic variable srav R multiply and check oflw (signed or uns.) mulos rd,rs,rt

move to Hi mthi R divide and check overflow div rd,rs,rt
move to Lo mtlo R divide and don’t check overflow divu rd,rs,rt
load halfword lh I remainder (signed or unsigned) rems rd,rs,rt

load byte lb I load immediate li rd,imm
load word left (unaligned) lwl I load address la rd,addr
load word right (unaligned) lwr I load double ld rd,addr
store word left (unaligned) swl I store double sd rd,addr
store word right (unaligned) swr I unaligned load word ulw rd,addr
load linked (atomic update) ll I unaligned store word usw rd,addr
store cond. (atomic update) sc I unaligned load halfword (signed or uns.) ulhs rd,addr

move if zero movz R unaligned store halfword ush rd,addr
move if not zero movn R branch b Label
multiply and add (S or uns.) madds R branch on equal zero beqz rs,L

multiply and subtract (S or uns.) msubs I branch on compare (signed or unsigned) bxs rs,rt,L

branch on ≥ zero and link bgezal I (x = lt, le, gt, ge)

branch on < zero and link bltzal I set equal seq rd,rs,rt
jump and link register jalr R set not equal sne rd,rs,rt
branch compare to zero bxz I set on compare (signed or unsigned) sxs rd,rs,rt

branch compare to zero likely bxzl I (x = lt, le, gt, ge)

(x = lt, le, gt, ge) load to floating point (s or d) l.f rd,addr

branch compare reg likely bxl I store from floating point (s or d) s.f rd,addr
trap if compare reg tx R

trap if compare immediate txi I

(x = eq, neq, lt, le, gt, ge)

return from exception rfe R

system call syscall I

break (cause exception) break I

move from FP to integer mfc1 R

move to FP from integer mtc1 R

FP move (s or d) mov.f R

FP move if zero (s or d) movz.f R

FP move if not zero (s or d) movn.f R

FP square root (s or d) sqrt.f R

FP absolute value (s or d) abs.f R

FP negate (s or d) neg.f R

FP convert (w, s, or d) cvt.f.f R

FP compare un (s or d) c.xn.f R

FIGURE 3.27 Remaining MIPS-32 and Pseudo MIPS instruction sets. f means single (s) or double (d) precision fl oating-point 
instructions, and s means signed and unsigned (u) versions. MIPS-32 also has FP instructions for multiply and add/sub (madd.f/ msub.f), 
ceiling (ceil.f), truncate (trunc.f), round (round.f), and reciprocal (recip.f). Th e underscore represents the letter to include to represent 
that datatype.
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Core MIPS Name Integer Fl. pt. Arithmetic core + MIPS-32 Name Integer Fl. pt.

add add 0.0% 0.0% FP add double add.d 0.0% 10.6%

add immediate addi 0.0% 0.0% FP subtract double sub.d 0.0% 4.9%

add unsigned addu 5.2% 3.5% FP multiply double mul.d 0.0% 15.0%

add immediate unsigned addiu 9.0% 7.2% FP divide double div.d 0.0% 0.2%

subtract unsigned subu 2.2% 0.6% FP add single add.s 0.0% 1.5%

AND AND 0.2% 0.1% FP subtract single sub.s 0.0% 1.8%

AND immediate ANDi 0.7% 0.2% FP multiply single mul.s 0.0% 2.4%

OR OR 4.0% 1.2% FP divide single div.s 0.0% 0.2%

OR immediate ORi 1.0% 0.2% load word to FP double l.d 0.0% 17.5%

NOR NOR 0.4% 0.2% store word to FP double s.d 0.0% 4.9%

shift left logical sll 4.4% 1.9% load word to FP single l.s 0.0% 4.2%

shift right logical srl 1.1% 0.5% store word to FP single s.s 0.0% 1.1%

load upper immediate lui 3.3% 0.5% branch on floating-point true bc1t 0.0% 0.2%

load word lw 18.6% 5.8% branch on floating-point false bc1f 0.0% 0.2%

store word sw 7.6% 2.0% floating-point compare double c.x.d 0.0% 0.6%

load byte lbu 3.7% 0.1% multiply mul 0.0% 0.2%

store byte sb 0.6% 0.0% shift right arithmetic sra 0.5% 0.3%

branch on equal (zero) beq 8.6% 2.2% load half lhu 1.3% 0.0%

branch on not equal (zero) bne 8.4% 1.4% store half sh 0.1% 0.0%

jump and link jal 0.7% 0.2%

jump register jr 1.1% 0.2%

set less than slt 9.9% 2.3%

set less than immediate slti 3.1% 0.3%

set less than unsigned sltu 3.4% 0.8%

set less than imm. uns. sltiu 1.1% 0.1%

FIGURE 3.28 The frequency of the MIPS instructions for SPEC CPU2006 integer and fl oating point. All instructions that 
accounted for at least 0.2% of the instructions are included in the table. Pseudoinstructions are converted into MIPS-32 before execution, and 
hence do not appear here.

 3.11   Historical Perspective and Further 
Reading

This section surveys the history of the floating point going back to von 
Neumann, including the surprisingly controversial IEEE standards effort, plus 
the rationale for the 80-bit stack architecture for floating point in the x86. See 
the rest of  Section 3.11 online.

Gresham’s Law (“Bad 
money drives out 
Good”) for computers 
would say, “Th e Fast 
drives out the Slow 
even if the Fast is 
wrong.”
W. Kahan, 1992
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 3.12 Exercises

3.1 [5] <§3.2> What is 5ED4 � 07A4 when these values represent unsigned 16-
bit hexadecimal numbers? Th e result should be written in hexadecimal. Show your 
work.

3.2 [5] <§3.2> What is 5ED4 � 07A4 when these values represent signed 16-
bit hexadecimal numbers stored in sign-magnitude format? Th e result should be 
written in hexadecimal. Show your work.

3.3 [10] <§3.2> Convert 5ED4 into a binary number. What makes base 16 
(hexadecimal) an attractive numbering system for representing values in 
computers?

3.4 [5] <§3.2> What is 4365 � 3412 when these values represent unsigned 12-bit 
octal numbers? Th e result should be written in octal. Show your work.

3.5 [5] <§3.2> What is 4365 � 3412 when these values represent signed 12-bit 
octal numbers stored in sign-magnitude format? Th e result should be written in 
octal. Show your work.

3.6 [5] <§3.2> Assume 185 and 122 are unsigned 8-bit decimal integers. Calculate 
185 – 122. Is there overfl ow, underfl ow, or neither?

3.7 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored in 
sign-magnitude format. Calculate 185 � 122. Is there overfl ow, underfl ow, or 
neither?

3.8 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored in 
sign-magnitude format. Calculate 185 � 122. Is there overfl ow, underfl ow, or 
neither?

3.9 [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in 
two’s complement format. Calculate 151 � 214 using saturating arithmetic. Th e 
result should be written in decimal. Show your work.

3.10 [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in 
two’s complement format. Calculate 151 � 214 using saturating arithmetic. Th e 
result should be written in decimal. Show your work.

3.11 [10] <§3.2> Assume 151 and 214 are unsigned 8-bit integers. Calculate 151 
� 214 using saturating arithmetic. Th e result should be written in decimal. Show 
your work.

3.12 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the 
product of the octal unsigned 6-bit integers 62 and 12 using the hardware described 
in Figure 3.3. You should show the contents of each register on each step.

Never give in, never 
give in, never, never, 
never—in nothing, 
great or small, large or 
petty—never give in.
Winston Churchill, 
address at Harrow 
School, 1941
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3.13 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the 
product of the hexadecimal unsigned 8-bit integers 62 and 12 using the hardware 
described in Figure 3.5. You should show the contents of each register on each step.

3.14 [10] <§3.3> Calculate the time necessary to perform a multiply using the 
approach given in Figures 3.3 and 3.4 if an integer is 8 bits wide and each step 
of the operation takes 4 time units. Assume that in step 1a an addition is always 
performed—either the multiplicand will be added, or a zero will be. Also assume 
that the registers have already been initialized (you are just counting how long it 
takes to do the multiplication loop itself). If this is being done in hardware, the 
shift s of the multiplicand and multiplier can be done simultaneously. If this is being 
done in soft ware, they will have to be done one aft er the other. Solve for each case.

3.15 [10] <§3.3> Calculate the time necessary to perform a multiply using the 
approach described in the text (31 adders stacked vertically) if an integer is 8 bits 
wide and an adder takes 4 time units.

3.16 [20] <§3.3> Calculate the time necessary to perform a multiply using the 
approach given in Figure 3.7 if an integer is 8 bits wide and an adder takes 4 time 
units.

3.17 [20] <§3.3> As discussed in the text, one possible performance enhancement 
is to do a shift  and add instead of an actual multiplication. Since 9 � 6, for example, 
can be written (2 � 2 � 2 � 1) � 6, we can calculate 9 � 6 by shift ing 6 to the left  3 
times and then adding 6 to that result. Show the best way to calculate 0�33 � 0�55 
using shift s and adds/subtracts. Assume both inputs are 8-bit unsigned integers.

3.18 [20] <§3.4> Using a table similar to that shown in Figure 3.10, calculate 
74 divided by 21 using the hardware described in Figure 3.8. You should show 
the contents of each register on each step. Assume both inputs are unsigned 6-bit 
integers.

3.19 [30] <§3.4> Using a table similar to that shown in Figure 3.10, calculate 
74 divided by 21 using the hardware described in Figure 3.11. You should show 
the contents of each register on each step. Assume A and B are unsigned 6-bit 
integers. Th is algorithm requires a slightly diff erent approach than that shown in 
Figure 3.9. You will want to think hard about this, do an experiment or two, or else 
go to the web to fi gure out how to make this work correctly. (Hint: one possible 
solution involves using the fact that Figure 3.11 implies the remainder register can 
be shift ed either direction.)

3.20 [5] <§3.5> What decimal number does the bit pattern 0×0C000000 
represent if it is a two’s complement integer? An unsigned integer?

3.21 [10] <§3.5> If the bit pattern 0×0C000000 is placed into the Instruction 
Register, what MIPS instruction will be executed?

3.22 [10] <§3.5> What decimal number does the bit pattern 0×0C000000 
represent if it is a fl oating point number? Use the IEEE 754 standard.
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3.23 [10] <§3.5> Write down the binary representation of the decimal number 
63.25 assuming the IEEE 754 single precision format.

3.24 [10] <§3.5> Write down the binary representation of the decimal number 
63.25 assuming the IEEE 754 double precision format.

3.25 [10] <§3.5> Write down the binary representation of the decimal number 
63.25 assuming it was stored using the single precision IBM format (base 16, 
instead of base 2, with 7 bits of exponent).

3.26 [20] <§3.5> Write down the binary bit pattern to represent �1.5625 � 10�1 
assuming a format similar to that employed by the DEC PDP-8 (the left most 12 
bits are the exponent stored as a two’s complement number, and the rightmost 24 
bits are the fraction stored as a two’s complement number). No hidden 1 is used. 
Comment on how the range and accuracy of this 36-bit pattern compares to the 
single and double precision IEEE 754 standards.

3.27 [20] <§3.5> IEEE 754-2008 contains a half precision that is only 16 bits 
wide. Th e left most bit is still the sign bit, the exponent is 5 bits wide and has a bias 
of 15, and the mantissa is 10 bits long. A hidden 1 is assumed. Write down the 
bit pattern to represent �1.5625 � 10�1 assuming a version of this format, which 
uses an excess-16 format to store the exponent. Comment on how the range and 
accuracy of this 16-bit fl oating point format compares to the single precision IEEE 
754 standard.

3.28 [20] <§3.5> Th e Hewlett-Packard 2114, 2115, and 2116 used a format 
with the left most 16 bits being the fraction stored in two’s complement format, 
followed by another 16-bit fi eld which had the left most 8 bits as an extension of the 
fraction (making the fraction 24 bits long), and the rightmost 8 bits representing 
the exponent. However, in an interesting twist, the exponent was stored in sign-
magnitude format with the sign bit on the far right! Write down the bit pattern to 
represent �1.5625 � 10�1 assuming this format. No hidden 1 is used. Comment on 
how the range and accuracy of this 32-bit pattern compares to the single precision 
IEEE 754 standard.

3.29 [20] <§3.5> Calculate the sum of 2.6125 � 101 and 4.150390625 � 10�1 
by hand, assuming A and B are stored in the 16-bit half precision described in 
Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the 
nearest even. Show all the steps.

3.30 [30] <§3.5> Calculate the product of –8.0546875 � 100 and �1.79931640625 
� 10–1 by hand, assuming A and B are stored in the 16-bit half precision format 
described in Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round 
to the nearest even. Show all the steps; however, as is done in the example in the 
text, you can do the multiplication in human-readable format instead of using the 
techniques described in Exercises 3.12 through 3.14. Indicate if there is overfl ow 
or underfl ow. Write your answer in both the 16-bit fl oating point format described 
in Exercise 3.27 and also as a decimal number. How accurate is your result? How 
does it compare to the number you get if you do the multiplication on a calculator?
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3.31 [30] <§3.5> Calculate by hand 8.625 � 101 divided by �4.875 � 100. Show 
all the steps necessary to achieve your answer. Assume there is a guard, a round bit, 
and a sticky bit, and use them if necessary. Write the fi nal answer in both the 16-bit 
fl oating point format described in Exercise 3.27 and in decimal and compare the 
decimal result to that which you get if you use a calculator.

3.32 [20] <§3.9> Calculate (3.984375 � 10�1 � 3.4375 � 10�1) � 1.771 � 103 
by hand, assuming each of the values are stored in the 16-bit half precision format 
described in Exercise 3.27 (and also described in the text).  Assume 1 guard, 1 
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 
write your answer in both the 16-bit fl oating point format and in decimal.

3.33 [20] <§3.9> Calculate 3.984375 � 10�1 � (3.4375 � 10�1 � 1.771 � 103) 
by hand, assuming each of the values are stored in the 16-bit half precision format 
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1 
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 
write your answer in both the 16-bit fl oating point format and in decimal.

3.34 [10] <§3.9> Based on your answers to 3.32 and 3.33, does (3.984375 � 10�1 
� 3.4375 � 10�1) � 1.771 � 103 = 3.984375 � 10�1 � (3.4375 � 10�1 � 1.771 � 
103)?

3.35 [30] <§3.9> Calculate (3.41796875 10�3 � 6.34765625 � 10�3) � 1.05625 
� 102 by hand, assuming each of the values are stored in the 16-bit half precision 
format described in Exercise 3.27 (and also described in the text). Assume 1 guard, 
1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 
write your answer in both the 16-bit fl oating point format and in decimal.

3.36 [30] <§3.9> Calculate 3.41796875 10�3 � (6.34765625 � 10�3 � 1.05625 
� 102) by hand, assuming each of the values are stored in the 16-bit half precision 
format described in Exercise 3.27 (and also described in the text). Assume 1 guard, 
1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 
write your answer in both the 16-bit fl oating point format and in decimal.

3.37 [10] <§3.9> Based on your answers to 3.35 and 3.36, does (3.41796875 10�3 
� 6.34765625 � 10�3) � 1.05625 � 102 = 3.41796875 � 10�3 � (6.34765625 � 
10�3 � 1.05625 � 102)?

3.38 [30] <§3.9> Calculate 1.666015625 � 100� (1.9760 � 104 � �1.9744 � 
104) by hand, assuming each of the values are stored in the 16-bit half precision 
format described in Exercise 3.27 (and also described in the text). Assume 1 guard, 
1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 
write your answer in both the 16-bit fl oating point format and in decimal.

3.39 [30] <§3.9> Calculate (1.666015625 � 100 � 1.9760 � 104) � (1.666015625 
� 100 � �1.9744 � 104) by hand, assuming each of the values are stored in the 
16-bit half precision format described in Exercise 3.27 (and also described in the 
text). Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the nearest even. 
Show all the steps, and write your answer in both the 16-bit fl oating point format 
and in decimal.
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3.40 [10] <§3.9> Based on your answers to 3.38 and 3.39, does (1.666015625 � 
100 � 1.9760 � 104) � (1.666015625 � 100 � �1.9744 � 104) = 1.666015625 � 
100 � (1.9760 � 104 � �1.9744 � 104)?

3.41 [10] <§3.5> Using the IEEE 754 fl oating point format, write down the bit 
pattern that would represent �1/4. Can you represent �1/4 exactly?

3.42 [10] <§3.5> What do you get if you add �1/4 to itself 4 times? What is �1/4 
� 4? Are they the same? What should they be?

3.43 [10] <§3.5> Write down the bit pattern in the fraction of value 1/3 assuming 
a fl oating point format that uses binary numbers in the fraction. Assume there are 
24 bits, and you do not need to normalize. Is this representation exact?

3.44 [10] <§3.5> Write down the bit pattern in the fraction assuming a fl oating 
point format that uses Binary Coded Decimal (base 10) numbers in the fraction 
instead of base 2. Assume there are 24 bits, and you do not need to normalize. Is 
this representation exact?

3.45 [10] <§3.5> Write down the bit pattern assuming that we are using base 15 
numbers in the fraction instead of base 2. (Base 16 numbers use the symbols 0–9 
and A–F. Base 15 numbers would use 0–9 and A–E.) Assume there are 24 bits, and 
you do not need to normalize. Is this representation exact?

3.46 [20] <§3.5> Write down the bit pattern assuming that we are using base 30 
numbers in the fraction instead of base 2. (Base 16 numbers use the symbols 0–9 
and A–F. Base 30 numbers would use 0–9 and A–T.) Assume there are 20 bits, and 
you do not need to normalize. Is this representation exact?

3.47 [45] <§§3.6, 3.7> Th e following C code implements a four-tap FIR fi lter on 
input array sig_in.  Assume that all arrays are 16-bit fi xed-point values.

for (i 3;i< 128;i )
sig_out[i] sig_in[i-3] * f[0] sig_in[i-22] * f[1]

sig_in[i-1] * f[2] sig_in[i] * f[3];

Assume you are to write an optimized implementation this code in assembly 
language on a processor that has SIMD instructions and 128-bit registers.  Without 
knowing the details of the instruction set, briefl y describe how you would 
implement this code, maximizing the use of sub-word operations and minimizing 
the amount of data that is transferred between registers and memory.  State all your 
assumptions about the instructions you use.

§3.2, page 182: 2.
§3.5, page 221: 3.

Answers to 
Check Yourself
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 4.1 Introduction

Chapter 1 explains that the performance of a computer is determined by three key 
factors: instruction count, clock cycle time, and clock cycles per instruction (CPI). 
Chapter 2 explains that the compiler and the instruction set architecture determine 
the instruction count required for a given program. However, the implementation 
of the processor determines both the clock cycle time and the number of clock 
cycles per instruction. In this chapter, we construct the datapath and control unit 
for two diff erent implementations of the MIPS instruction set.

Th is chapter contains an explanation of the principles and techniques used in 
implementing a processor, starting with a highly abstract and simplifi ed overview 
in this section. It is followed by a section that builds up a datapath and constructs a 
simple version of a processor suffi  cient to implement an instruction set like MIPS. 
Th e bulk of the chapter covers a more realistic pipelined MIPS implementation, 
followed by a section that develops the concepts necessary to implement more 
complex instruction sets, like the x86.

For the reader interested in understanding the high-level interpretation of 
instructions and its impact on program performance, this initial section and Section 
4.5 present the basic concepts of pipelining. Recent trends are covered in Section 
4.10, and Section 4.11 describes the recent Intel Core i7 and ARM Cortex-A8 
architectures. Section 4.12 shows how to use instruction-level parallelism to more 
than double the performance of the matrix multiply from Section 3.8. Th ese sections 
provide enough background to understand the pipeline concepts at a high level.

For the reader interested in understanding the processor and its performance in 
more depth, Sections 4.3, 4.4, and 4.6 will be useful. Th ose interested in learning 
how to build a processor should also cover 4.2, 4.7, 4.8, and 4.9. For readers with 
an interest in modern hardware design,  Section 4.13 describes how hardware 
design languages and CAD tools are used to implement hardware, and then how 
to use a hardware design language to describe a pipelined implementation. It also 
gives several more illustrations of how pipelining hardware executes.

A Basic MIPS Implementation
We will be examining an implementation that includes a subset of the core MIPS 
instruction set:

■ Th e memory-reference instructions load word (lw) and store word (sw)

■ Th e arithmetic-logical instructions add, sub, AND, OR, and slt

■ Th e instructions branch equal (beq) and jump (j), which we add last

Th is subset does not include all the integer instructions (for example, shift , 
multiply, and divide are missing), nor does it include any fl oating-point instructions. 
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However, it illustrates the key principles used in creating a datapath and designing 
the control. Th e implementation of the remaining instructions is similar.

In examining the implementation, we will have the opportunity to see how the 
instruction set architecture determines many aspects of the implementation, and 
how the choice of various implementation strategies aff ects the clock rate and CPI 
for the computer. Many of the key design principles introduced in Chapter 1 can 
be illustrated by looking at the implementation, such as Simplicity favors regularity. 
In addition, most concepts used to implement the MIPS subset in this chapter are 
the same basic ideas that are used to construct a broad spectrum of computers, 
from high-performance servers to general-purpose microprocessors to embedded 
processors.

An Overview of the Implementation

In Chapter 2, we looked at the core MIPS instructions, including the integer 
arithmetic-logical instructions, the memory-reference instructions, and the branch 
instructions. Much of what needs to be done to implement these instructions is the 
same, independent of the exact class of instruction. For every instruction, the fi rst 
two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and 
fetch the instruction from that memory.

2. Read one or two registers, using fi elds of the instruction to select the registers 
to read. For the load word instruction, we need to read only one register, but 
most other instructions require reading two registers.

Aft er these two steps, the actions required to complete the instruction depend 
on the instruction class. Fortunately, for each of the three instruction classes 
(memory-reference, arithmetic-logical, and branches), the actions are largely the 
same, independent of the exact instruction. Th e simplicity and regularity of the 
MIPS instruction set simplifi es the implementation by making the execution of 
many of the instruction classes similar.

For example, all instruction classes, except jump, use the arithmetic-logical unit 
(ALU) aft er reading the registers. Th e memory-reference instructions use the ALU 
for an address calculation, the arithmetic-logical instructions for the operation 
execution, and branches for comparison. Aft er using the ALU, the actions required 
to complete various instruction classes diff er. A memory-reference instruction 
will need to access the memory either to read data for a load or write data for a 
store. An arithmetic-logical or load instruction must write the data from the ALU 
or memory back into a register. Lastly, for a branch instruction, we may need to 
change the next instruction address based on the comparison; otherwise, the PC 
should be incremented by 4 to get the address of the next instruction.

Figure 4.1 shows the high-level view of a MIPS implementation, focusing on 
the various functional units and their interconnection. Although this fi gure shows 
most of the fl ow of data through the processor, it omits two important aspects of 
instruction execution.
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First, in several places, Figure 4.1 shows data going to a particular unit as coming 
from two diff erent sources. For example, the value written into the PC can come 
from one of two adders, the data written into the register fi le can come from either 
the ALU or the data memory, and the second input to the ALU can come from 
a register or the immediate fi eld of the instruction. In practice, these data lines 
cannot simply be wired together; we must add a logic element that chooses from 
among the multiple sources and steers one of those sources to its destination. Th is 
selection is commonly done with a device called a multiplexor, although this device 
might better be called a data selector. Appendix B describes the multiplexor, which 
selects from among several inputs based on the setting of its control lines. Th e 
control lines are set based primarily on information taken from the instruction 
being executed.

Th e second omission in Figure 4.1 is that several of the units must be controlled 
depending on the type of instruction. For example, the data memory must read 

FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the 
major functional units and the major connections between them. All instructions start by using 
the program counter to supply the instruction address to the instruction memory. Aft er the instruction is 
fetched, the register operands used by an instruction are specifi ed by fi elds of that instruction. Once the 
register operands have been fetched, they can be operated on to compute a memory address (for a load or 
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a 
branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to 
a register. If the operation is a load or store, the ALU result is used as an address to either store a value from 
the registers or load a value from memory into the registers. Th e result from the ALU or memory is written 
back into the register fi le. Branches require the use of the ALU output to determine the next instruction 
address, which comes either from the ALU (where the PC and branch off set are summed) or from an adder 
that increments the current PC by 4. Th e thick lines interconnecting the functional units represent buses, 
which consist of multiple signals. Th e arrows are used to guide the reader in knowing how information fl ows. 
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot 
where the lines cross.
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on a load and written on a store. Th e register fi le must be written only on a load 
or an arithmetic-logical instruction. And, of course, the ALU must perform one 
of several operations. (Appendix B describes the detailed design of the ALU.) 
Like the multiplexors, control lines that are set on the basis of various fi elds in the 
instruction direct these operations.

Figure 4.2 shows the datapath of Figure 4.1 with the three required multiplexors 
added, as well as control lines for the major functional units. A control unit, 
which has the instruction as an input, is used to determine how to set the control 
lines for the functional units and two of the multiplexors. Th e third multiplexor, 
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FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines. 
Th e top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled 
by the gate that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. Th e middle 
multiplexor, whose output returns to the register fi le, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or 
the output of the data memory (in the case of a load) for writing into the register fi le. Finally, the bottommost multiplexor is used to determine 
whether the second ALU input is from the registers (for an arithmetic-logical instruction or a branch) or from the off set fi eld of the instruction 
(for a load or store). Th e added control lines are straightforward and determine the operation performed at the ALU, whether the data memory 
should read or write, and whether the registers should perform a write operation. Th e control lines are shown in color to make them easier to 
see.
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which determines whether PC + 4 or the branch destination address is written 
into the PC, is set based on the Zero output of the ALU, which is used to perform 
the comparison of a beq instruction. Th e regularity and simplicity of the MIPS 
instruction set means that a simple decoding process can be used to determine how 
to set the control lines.

In the remainder of the chapter, we refi ne this view to fi ll in the details, which 
requires that we add further functional units, increase the number of connections 
between units, and, of course, enhance a control unit to control what actions 
are taken for diff erent instruction classes. Sections 4.3 and 4.4 describe a simple 
implementation that uses a single long clock cycle for every instruction and follows 
the general form of Figures 4.1 and 4.2. In this fi rst design, every instruction begins 
execution on one clock edge and completes execution on the next clock edge.

While easier to understand, this approach is not practical, since the clock cycle 
must be severely stretched to accommodate the longest instruction. Aft er designing 
the control for this simple computer, we will look at pipelined implementation with 
all its complexities, including exceptions.

How many of the fi ve classic components of a computer—shown on page 243—do 
Figures 4.1 and 4.2 include?

 4.2 Logic Design Conventions

To discuss the design of a computer, we must decide how the hardware logic 
implementing the computer will operate and how the computer is clocked. Th is 
section reviews a few key ideas in digital logic that we will use extensively in this 
chapter. If you have little or no background in digital logic, you will fi nd it helpful 
to read  Appendix B before continuing.

Th e datapath elements in the MIPS implementation consist of two diff erent types 
of logic elements: elements that operate on data values and elements that contain 
state. Th e elements that operate on data values are all combinational, which means 
that their outputs depend only on the current inputs. Given the same input, a 
combinational element always produces the same output. Th e ALU shown in Figure 
4.1 and discussed in  Appendix B is an example of a combinational element. Given 
a set of inputs, it always produces the same output because it has no internal storage.

Other elements in the design are not combinational, but instead contain state. An 
element contains state if it has some internal storage. We call these elements state 
elements because, if we pulled the power plug on the computer, we could restart it 
accurately by loading the state elements with the values they contained before we 
pulled the plug. Furthermore, if we saved and restored the state elements, it would 
be as if the computer had never lost power. Th us, these state elements completely 
characterize the computer. In Figure 4.1, the instruction and data memories, as 
well as the registers, are all examples of state elements.

Check 
Yourself

combinational 
element An operational 
element, such as an AND 
gate or an ALU.

state element A memory 
element, such as a register 
or a memory.
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A state element has at least two inputs and one output. Th e required inputs are 
the data value to be written into the element and the clock, which determines when 
the data value is written. Th e output from a state element provides the value that 
was written in an earlier clock cycle. For example, one of the logically simplest state 
elements is a D-type fl ip-fl op (see  Appendix B), which has exactly these two 
inputs (a value and a clock) and one output. In addition to fl ip-fl ops, our MIPS 
implementation uses two other types of state elements: memories and registers, 
both of which appear in Figure 4.1. Th e clock is used to determine when the state 
element should be written; a state element can be read at any time.

Logic components that contain state are also called sequential, because their 
outputs depend on both their inputs and the contents of the internal state. For 
example, the output from the functional unit representing the registers depends 
both on the register numbers supplied and on what was written into the registers 
previously. Th e operation of both the combinational and sequential elements and 
their construction are discussed in more detail in  Appendix B.

Clocking Methodology

A clocking methodology defi nes when signals can be read and when they can be 
written. It is important to specify the timing of reads and writes, because if a signal 
is written at the same time it is read, the value of the read could correspond to the 
old value, the newly written value, or even some mix of the two! Computer designs 
cannot tolerate such unpredictability. A clocking methodology is designed to make 
hardware predictable.

For simplicity, we will assume an edge-triggered clocking methodology. An 
edge-triggered clocking methodology means that any values stored in a sequential 
logic element are updated only on a clock edge, which is a quick transition from 
low to high or vice versa (see Figure 4.3). Because only state elements can store a 
data value, any collection of combinational logic must have its inputs come from a 
set of state elements and its outputs written into a set of state elements. Th e inputs 
are values that were written in a previous clock cycle, while the outputs are values 
that can be used in a following clock cycle.

clocking 
methodology Th e 
approach used to 
determine when data is 
valid and stable relative to 
the clock.

edge-triggered 
clocking A clocking 
scheme in which all state 
changes occur on a clock 
edge.

State
element

1

State
element

2
Combinational logic

Clock cycle

FIGURE 4.3 Combinational logic, state elements, and the clock are closely related.
In a synchronous digital system, the clock determines when elements with state will write values into internal 
storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which they 
will not change until aft er the clock edge) before the active clock edge causes the state to be updated. All state 
elements in this chapter, including memory, are assumed to be positive edge-triggered; that is, they change 
on the rising clock edge.
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Figure 4.3 shows the two state elements surrounding a block of combinational 
logic, which operates in a single clock cycle: all signals must propagate from state 
element 1, through the combinational logic, and to state element 2 in the time of 
one clock cycle. Th e time necessary for the signals to reach state element 2 defi nes 
the length of the clock cycle.

For simplicity, we do not show a write control signal when a state element is 
written on every active clock edge. In contrast, if a state element is not updated on 
every clock, then an explicit write control signal is required. Both the clock signal 
and the write control signal are inputs, and the state element is changed only when 
the write control signal is asserted and a clock edge occurs.

We will use the word asserted to indicate a signal that is logically high and assert 
to specify that a signal should be driven logically high, and deassert or deasserted 
to represent logically low. We use the terms assert and deassert because when 
we implement hardware, at times 1 represents logically high and at times it can 
represent logically low.

An edge-triggered methodology allows us to read the contents of a register, 
send the value through some combinational logic, and write that register in the 
same clock cycle. Figure 4.4 gives a generic example. It doesn’t matter whether we 
assume that all writes take place on the rising clock edge (from low to high) or on 
the falling clock edge (from high to low), since the inputs to the combinational 
logic block cannot change except on the chosen clock edge. In this book we use 
the rising clock edge. With an edge-triggered timing methodology, there is no 
feedback within a single clock cycle, and the logic in Figure 4.4 works correctly. In 

 Appendix B, we briefl y discuss additional timing constraints (such as setup and 
hold times) as well as other timing methodologies.

For the 32-bit MIPS architecture, nearly all of these state and logic elements will 
have inputs and outputs that are 32 bits wide, since that is the width of most of the 
data handled by the processor. We will make it clear whenever a unit has an input 
or output that is other than 32 bits in width. Th e fi gures will indicate buses, which 
are signals wider than 1 bit, with thicker lines. At times, we will want to combine 
several buses to form a wider bus; for example, we may want to obtain a 32-bit bus 
by combining two 16-bit buses. In such cases, labels on the bus lines will make it 

control signal A signal 
used for multiplexor 
selection or for directing 
the operation of a 
functional unit; contrasts 
with a data signal, which 
contains information 
that is operated on by a 
functional unit.

asserted Th e signal is 
logically high or true.

deasserted Th e signal is 
logically low or false.

State
element

Combinational logic

FIGURE 4.4 An edge-triggered methodology allows a state element to be read and 
written in the same clock cycle without creating a race that could lead to indeterminate 
data values. Of course, the clock cycle still must be long enough so that the input values are stable when 
the active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggered 
update of the state element. If feedback were possible, this design could not work properly. Our designs 
in this chapter and the next rely on the edge-triggered timing methodology and on structures like the one 
shown in this fi gure.
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clear that we are concatenating buses to form a wider bus. Arrows are also added 
to help clarify the direction of the fl ow of data between elements. Finally, color 
indicates a control signal as opposed to a signal that carries data; this distinction 
will become clearer as we proceed through this chapter.

True or false: Because the register fi le is both read and written on the same clock 
cycle, any MIPS datapath using edge-triggered writes must have more than one 
copy of the register fi le.

Elaboration: There is also a 64-bit version of the MIPS architecture, and, naturally 
enough, most paths in its implementation would be 64 bits wide. 

 4.3 Building a Datapath

A reasonable way to start a datapath design is to examine the major components 
required to execute each class of MIPS instructions. Let’s start at the top by looking 
at which datapath elements each instruction needs, and then work our way down 
through the levels of abstraction. When we show the datapath elements, we will 
also show their control signals. We use abstraction in this explanation, starting 
from the bottom up.

Figure 4.5a shows the fi rst element we need: a memory unit to store the 
instructions of a program and supply instructions given an address. Figure 
4.5b also shows the program counter (PC), which as we saw in Chapter 2 
is a register that holds the address of the current instruction. Lastly, we will 
need an adder to increment the PC to the address of the next instruction. Th is 
adder, which is combinational, can be built from the ALU described in detail 
in  Appendix B simply by wiring the control lines so that the control always 
specifi es an add operation. We will draw such an ALU with the label Add, as in 
Figure 4.5, to indicate that it has been permanently made an adder and cannot 
perform the other ALU functions.

To execute any instruction, we must start by fetching the instruction from 
memory. To prepare for executing the next instruction, we must also increment 
the program counter so that it points at the next instruction, 4 bytes later. Figure 
4.6 shows how to combine the three elements from Figure 4.5 to form a datapath 
that fetches instructions and increments the PC to obtain the address of the next 
sequential instruction.

Now let’s consider the R-format instructions (see Figure 2.20 on page 120). 
Th ey all read two registers, perform an ALU operation on the contents of the 
registers, and write the result to a register. We call these instructions either R-type 
instructions or arithmetic-logical instructions (since they perform arithmetic or 
logical operations). Th is instruction class includes add, sub, AND, OR, and slt, 

Check 
Yourself

datapath element 
A unit used to operate 
on or hold data within a 
processor. In the MIPS 
implementation, the 
datapath elements include 
the instruction and data 
memories, the register 
fi le, the ALU, and adders.

program counter 
(PC) Th e register 
containing the address 
of the instruction in the 
program being executed.
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which were introduced in Chapter 2. Recall that a typical instance of such an 
instruction is add $t1,$t2,$t3, which reads $t2 and $t3 and writes $t1.

Th e processor’s 32 general-purpose registers are stored in a structure called a 
register fi le. A register fi le is a collection of registers in which any register can be 
read or written by specifying the number of the register in the fi le. Th e register fi le 
contains the register state of the computer. In addition, we will need an ALU to 
operate on the values read from the registers.

R-format instructions have three register operands, so we will need to read two 
data words from the register fi le and write one data word into the register fi le for 
each instruction. For each data word to be read from the registers, we need an input 
to the register fi le that specifi es the register number to be read and an output from 
the register fi le that will carry the value that has been read from the registers. To 
write a data word, we will need two inputs: one to specify the register number to be 
written and one to supply the data to be written into the register. Th e register fi le 
always outputs the contents of whatever register numbers are on the Read register 
inputs. Writes, however, are controlled by the write control signal, which must be 
asserted for a write to occur at the clock edge. Figure 4.7a shows the result; we 
need a total of four inputs (three for register numbers and one for data) and two 
outputs (both for data). Th e register number inputs are 5 bits wide to specify one 
of 32 registers (32 = 25), whereas the data input and two data output buses are each 
32 bits wide.

Figure 4.7b shows the ALU, which takes two 32-bit inputs and produces a 32-bit 
result, as well as a 1-bit signal if the result is 0. Th e 4-bit control signal of the ALU is 
described in detail in  Appendix B; we will review the ALU control shortly when 
we need to know how to set it.

register fi le A state 
element that consists 
of a set of registers that 
can be read and written 
by supplying a register 
number to be accessed.
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Instruction

Instruction

memory

a. Instruction memory

PC

b. Program counter

Add Sum

c. Adder

FIGURE 4.5 Two state elements are needed to store and access instructions, and an 
adder is needed to compute the next instruction address. Th e state elements are the instruction 
memory and the program counter. Th e instruction memory need only provide read access because the 
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational 
logic: the output at any time refl ects the contents of the location specifi ed by the address input, and no read 
control signal is needed. (We will need to write the instruction memory when we load the program; this is 
not hard to add, and we ignore it for simplicity.) Th e program counter is a 32-bit register that is written at the 
end of every clock cycle and thus does not need a write control signal. Th e adder is an ALU wired to always 
add its two 32-bit inputs and place the sum on its output.
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FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing 
the program counter. Th e fetched instruction is used by other parts of the datapath.
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FIGURE 4.7 The two elements needed to implement R-format ALU operations are the 
register fi le and the ALU. Th e register fi le contains all the registers and has two read ports and one write 
port. Th e design of multiported register fi les is discussed in Section B.8 of   Appendix B. Th e register fi le 
always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no 
other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the 
write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to 
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes 
to the register fi le are edge-triggered, our design can legally read and write the same register within a clock 
cycle: the read will get the value written in an earlier clock cycle, while the value written will be available 
to a read in a subsequent clock cycle. Th e inputs carrying the register number to the register fi le are all 5 
bits wide, whereas the lines carrying data values are 32 bits wide. Th e operation to be performed by the 
ALU is controlled with the ALU operation signal, which will be 4 bits wide, using the ALU designed in 

 Appendix B. We will use the Zero detection output of the ALU shortly to implement branches. Th e 
overfl ow output will not be needed until Section 4.9, when we discuss exceptions; we omit it until then.
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Next, consider the MIPS load word and store word instructions, which have the 
general form lw $t1,offset_value($t2) or sw $t1,offset_value 
($t2). Th ese instructions compute a memory address by adding the base register, 
which is $t2, to the 16-bit signed off set fi eld contained in the instruction. If the 
instruction is a store, the value to be stored must also be read from the register fi le 
where it resides in $t1. If the instruction is a load, the value read from memory 
must be written into the register fi le in the specifi ed register, which is $t1. Th us, 
we will need both the register fi le and the ALU from Figure 4.7.

In addition, we will need a unit to sign-extend the 16-bit off set fi eld in the 
instruction to a 32-bit signed value, and a data memory unit to read from or write 
to. Th e data memory must be written on store instructions; hence, data memory 
has read and write control signals, an address input, and an input for the data to be 
written into memory. Figure 4.8 shows these two elements.

Th e beq instruction has three operands, two registers that are compared for 
equality, and a 16-bit off set used to compute the branch target address relative 
to the branch instruction address. Its form is beq $t1,$t2,offset. To 
implement this instruction, we must compute the branch target address by adding 
the sign-extended off set fi eld of the instruction to the PC. Th ere are two details in 
the defi nition of branch instructions (see Chapter 2) to which we must pay attention:

■ Th e instruction set architecture specifi es that the base for the branch address 
calculation is the address of the instruction following the branch. Since we 
compute PC + 4 (the address of the next instruction) in the instruction fetch 
datapath, it is easy to use this value as the base for computing the branch 
target address.

■ Th e architecture also states that the off set fi eld is shift ed left  2 bits so that it 
is a word off set; this shift  increases the eff ective range of the off set fi eld by a 
factor of 4.

To deal with the latter complication, we will need to shift  the off set fi eld by 2.
As well as computing the branch target address, we must also determine whether 

the next instruction is the instruction that follows sequentially or the instruction 
at the branch target address. When the condition is true (i.e., the operands are 
equal), the branch target address becomes the new PC, and we say that the branch 
is taken. If the operands are not equal, the incremented PC should replace the 
current PC (just as for any other normal instruction); in this case, we say that the 
branch is not taken.

Th us, the branch datapath must do two operations: compute the branch target 
address and compare the register contents. (Branches also aff ect the instruction 
fetch portion of the datapath, as we will deal with shortly.) Figure 4.9 shows the 
structure of the datapath segment that handles branches. To compute the branch 
target address, the branch datapath includes a sign extension unit, from Figure 4.8 
and an adder. To perform the compare, we need to use the register fi le shown in 
Figure 4.7a to supply the two register operands (although we will not need to write 
into the register fi le). In addition, the comparison can be done using the ALU we 

sign-extend To increase 
the size of a data item by 
replicating the high-order 
sign bit of the original 
data item in the high-
order bits of the larger, 
destination data item.

branch target 
address Th e address 
specifi ed in a branch, 
which becomes the new 
program counter (PC) 
if the branch is taken. In 
the MIPS architecture the 
branch target is given by 
the sum of the off set fi eld 
of the instruction and the 
address of the instruction 
following the branch.

branch taken 
A branch where the 
branch condition is 
satisfi ed and the program 
counter (PC) becomes 
the branch target. All 
unconditional jumps are 
taken branches.

branch not taken or 
(untaken branch) 
A branch where the 
branch condition is false 
and the program counter 
(PC) becomes the address 
of the instruction that 
sequentially follows the 
branch.
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designed in  Appendix B. Since that ALU provides an output signal that indicates 
whether the result was 0, we can send the two register operands to the ALU with 
the control set to do a subtract. If the Zero signal out of the ALU unit is asserted, 
we know that the two values are equal. Although the Zero output always signals 
if the result is 0, we will be using it only to implement the equal test of branches. 
Later, we will show exactly how to connect the control signals of the ALU for use 
in the datapath.

Th e jump instruction operates by replacing the lower 28 bits of the PC with the 
lower 26 bits of the instruction shift ed left  by 2 bits. Simply concatenating 00 to the 
jump off set accomplishes this shift , as described in Chapter 2.

Elaboration: In the MIPS instruction set, branches are delayed, meaning that the 
instruction immediately following the branch is always executed, independent of whether 
the branch condition is true or false. When the condition is false, the execution looks 
like a normal branch. When the condition is true, a delayed branch fi rst executes the 
instruction immediately following the branch in sequential instruction order before 
jumping to the specifi ed branch target address. The motivation for delayed branches 
arises from how pipelining affects branches (see Section 4.8). For simplicity, we generally 
ignore delayed branches in this chapter and implement a nondelayed beq instruction.

branch A type of branch 
where the instruction 
immediately following the 
branch is always executed, 
independent of whether 
the branch condition is 
true or false.
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FIGURE 4.8 The two units needed to implement loads and stores, in addition to the 
register fi le and ALU of Figure 4.7, are the data memory unit and the sign extension unit. 
Th e memory unit is a state element with inputs for the address and the write data, and a single output for 
the read result. Th ere are separate read and write controls, although only one of these may be asserted on 
any given clock. Th e memory unit needs a read signal, since, unlike the register fi le, reading the value of 
an invalid address can cause problems, as we will see in Chapter 5. Th e sign extension unit has a 16-bit 
input that is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the 
data memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is 
used for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be 
adapted to work with real memory chips. See Section B.8 of  Appendix B for further discussion of how 
real memory chips work.
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Creating a Single Datapath
Now that we have examined the datapath components needed for the individual 
instruction classes, we can combine them into a single datapath and add the control 
to complete the implementation. Th is simplest datapath will attempt to execute all 
instructions in one clock cycle. Th is means that no datapath resource can be used 
more than once per instruction, so any element needed more than once must be 
duplicated. We therefore need a memory for instructions separate from one for 
data. Although some of the functional units will need to be duplicated, many of the 
elements can be shared by diff erent instruction fl ows.

To share a datapath element between two diff erent instruction classes, we may 
need to allow multiple connections to the input of an element, using a multiplexor 
and control signal to select among the multiple inputs.
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RegWrite
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data 1
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data 2

ALU operation
4
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control logic
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Branch
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PC + 4 from instruction datapath
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FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition and 
a separate adder to compute the branch target as the sum of the incremented PC and the 
sign-extended, lower 16 bits of the instruction (the branch displacement), shifted left 2 
bits. Th e unit labeled Shift  left  2 is simply a routing of the signals between input and output that adds 00two 
to the low-order end of the sign-extended off set fi eld; no actual shift  hardware is needed, since the amount of 
the “shift ” is constant. Since we know that the off set was sign-extended from 16 bits, the shift  will throw away 
only “sign bits.” Control logic is used to decide whether the incremented PC or branch target should replace 
the PC, based on the Zero output of the ALU.
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Building a Datapath

Th e operations of arithmetic-logical (or R-type) instructions and the memory 
instructions datapath are quite similar. Th e key diff erences are the following:

■ Th e arithmetic-logical instructions use the ALU, with the inputs coming 
from the two registers. Th e memory instructions can also use the ALU 
to do the address calculation, although the second input is the sign-
extended 16-bit off set fi eld from the instruction.

■ Th e value stored into a destination register comes from the ALU (for an 
R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the memory-
reference and arithmetic-logical instructions that uses a single register fi le 
and a single ALU to handle both types of instructions, adding any necessary 
multiplexors.

To create a datapath with only a single register fi le and a single ALU, we must 
support two diff erent sources for the second ALU input, as well as two diff erent 
sources for the data stored into the register fi le. Th us, one multiplexor is placed 
at the ALU input and another at the data input to the register fi le. Figure 4.10 
shows the operational portion of the combined datapath.

Now we can combine all the pieces to make a simple datapath for the core 
MIPS architecture by adding the datapath for instruction fetch (Figure 4.6), the 
datapath from R-type and memory instructions (Figure 4.10), and the datapath 
for branches (Figure 4.9). Figure 4.11 shows the datapath we obtain by composing 
the separate pieces. Th e branch instruction uses the main ALU for comparison of 
the register operands, so we must keep the adder from Figure 4.9 for computing 
the branch target address. An additional multiplexor is required to select either the 
sequentially following instruction address (PC + 4) or the branch target address to 
be written into the PC.

Now that we have completed this simple datapath, we can add the control unit. 
Th e control unit must be able to take inputs and generate a write signal for each 
state element, the selector control for each multiplexor, and the ALU control. Th e 
ALU control is diff erent in a number of ways, and it will be useful to design it fi rst 
before we design the rest of the control unit.

I. Which of the following is correct for a load instruction? Refer to Figure 4.10.

a. MemtoReg should be set to cause the data from memory to be sent to the 
register fi le.
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FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. Th is example shows how a single 
datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors are needed, as described in the 
example.
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FIGURE 4.11 The simple datapath for the core MIPS architecture combines the elements required by different 
instruction classes. Th e components come from Figures 4.6, 4.9, and 4.10. Th is datapath can execute the basic instructions (load-store 
word, ALU operations, and branches) in a single clock cycle. Just one additional multiplexor is needed to integrate branches. Th e support for 
jumps will be added later.
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b. MemtoReg should be set to cause the correct register destination to be 
sent to the register fi le.

c. We do not care about the setting of MemtoReg for loads.

II. Th e single-cycle datapath conceptually described in this section must have 
separate instruction and data memories, because

a. the formats of data and instructions are diff erent in MIPS, and hence 
diff erent memories are needed.

b. having separate memories is less expensive.
c. the processor operates in one cycle and cannot use a single-ported 

memory for two diff erent accesses within that cycle

 4.4 A Simple Implementation Scheme

In this section, we look at what might be thought of as the simplest possible 
implementation of our MIPS subset. We build this simple implementation using 
the datapath of the last section and adding a simple control function. Th is simple 
implementation covers load word (lw), store word (sw), branch equal (beq), and 
the arithmetic-logical instructions add, sub, AND, OR, and set on less 
than. We will later enhance the design to include a jump instruction (j).

The ALU Control
Th e MIPS ALU in  Appendix B defi nes the 6 following combinations of four 
control inputs:

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR

Depending on the instruction class, the ALU will need to perform one of these 
fi rst fi ve functions. (NOR is needed for other parts of the MIPS instruction set not 
found in the subset we are implementing.) For load word and store word instructions, 
we use the ALU to compute the memory address by addition. For the R-type 
instructions, the ALU needs to perform one of the fi ve actions (AND, OR, subtract, 
add, or set on less than), depending on the value of the 6-bit funct (or function) fi eld 
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in the low-order bits of the instruction (see Chapter 2). For branch equal, the ALU 
must perform a subtraction.

We can generate the 4-bit ALU control input using a small control unit that has 
as inputs the function fi eld of the instruction and a 2-bit control fi eld, which we 
call ALUOp. ALUOp indicates whether the operation to be performed should be 
add (00) for loads and stores, subtract (01) for beq, or determined by the operation 
encoded in the funct fi eld (10). Th e output of the ALU control unit is a 4-bit signal 
that directly controls the ALU by generating one of the 4-bit combinations shown 
previously.

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit 
ALUOp control and the 6-bit function code. Later in this chapter we will see how 
the ALUOp bits are generated from the main control unit.

Th is style of using multiple levels of decoding—that is, the main control unit 
generates the ALUOp bits, which then are used as input to the ALU control that 
generates the actual signals to control the ALU unit—is a common implementation 
technique. Using multiple levels of control can reduce the size of the main control 
unit. Using several smaller control units may also potentially increase the speed of 
the control unit. Such optimizations are important, since the speed of the control 
unit is oft en critical to clock cycle time.

Th ere are several diff erent ways to implement the mapping from the 2-bit 
ALUOp fi eld and the 6-bit funct fi eld to the four ALU operation control bits. 
Because only a small number of the 64 possible values of the function fi eld are of 
interest and the function fi eld is used only when the ALUOp bits equal 10, we can 
use a small piece of logic that recognizes the subset of possible values and causes 
the correct setting of the ALU control bits.

As a step in designing this logic, it is useful to create a truth table for the 
interesting combinations of the function code fi eld and the ALUOp bits, as we’ve 

Instruction 
opcode ALUOp

Instruction 
operation Funct field

Desired 
ALU action

ALU control 
input

LW 00 load word XXXXXX add 0010

SW 00 store word XXXXXX add 0010

Branch equal 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 AND 100100 AND 0000

R-type 10 OR 100101 OR 0001

R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and 
the different function codes for the R-type instruction. Th e opcode, listed in the fi rst column, 
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the 
ALUOp code is 00 or 01, the desired ALU action does not depend on the function code fi eld; in this case, we 
say that we “don’t care” about the value of the function code, and the funct fi eld is shown as XXXXXX. When 
the ALUOp value is 10, then the function code is used to set the ALU control input. See  Appendix B.
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done in Figure 4.13; this truth table shows how the 4-bit ALU control is set 
depending on these two input fi elds. Since the full truth table is very large (28 = 256 
entries) and we don’t care about the value of the ALU control for many of these input 
combinations, we show only the truth table entries for which the ALU control must 
have a specifi c value. Th roughout this chapter, we will use this practice of showing 
only the truth table entries for outputs that must be asserted and not showing those 
that are all deasserted or don’t care. (Th is practice has a disadvantage, which we 
discuss in Section D.2 of  Appendix D.)

Because in many instances we do not care about the values of some of the inputs, 
and because we wish to keep the tables compact, we also include don’t-care terms. 
A don’t-care term in this truth table (represented by an X in an input column) 
indicates that the output does not depend on the value of the input corresponding 
to that column. For example, when the ALUOp bits are 00, as in the fi rst row of 
Figure 4.13, we always set the ALU control to 0010, independent of the function 
code. In this case, then, the function code inputs will be don’t cares in this line of 
the truth table. Later, we will see examples of another type of don’t-care term. If you 
are unfamiliar with the concept of don’t-care terms, see  Appendix B for more 
information.

Once the truth table has been constructed, it can be optimized and then turned 
into gates. Th is process is completely mechanical. Th us, rather than show the fi nal 
steps here, we describe the process and the result in Section D.2 of  Appendix D.

Designing the Main Control Unit
Now that we have described how to design an ALU that uses the function code and 
a 2-bit signal as its control inputs, we can return to looking at the rest of the control. 
To start this process, let’s identify the fi elds of an instruction and the control lines 
that are needed for the datapath we constructed in Figure 4.11. To understand 
how to connect the fi elds of an instruction to the datapath, it is useful to review 

truth table From logic, a 
representation of a logical 
operation by listing all the 
values of the inputs and 
then in each case showing 
what the resulting outputs 
should be.

don’t-care term An 
element of a logical 
function in which the 
output does not depend 
on the values of all the 
inputs. Don’t-care terms 
may be specifi ed in 
diff erent ways.

ALUOp Funct field

OperationALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 0010

X 1 X X X X X X 0110 

1 X X X 0 0 0 0 0010 

1 X X X 0 0 1 0 0110 

1 X X X 0 1 0 0 0000

1 X X X 0 1 0 1 0001 

1 X X X 1 0 1 0 0111 

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). Th e inputs are the 
ALUOp and function code fi eld. Only the entries for which the ALU control is asserted are shown. Some 
don’t-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table 
can contain entries 1X and X1, rather than 10 and 01. Note that when the function fi eld is used, the fi rst 2 
bits (F5 and F4) of these instructions are always 10, so they are don’t-care terms and are replaced with XX 
in the truth table.
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the formats of the three instruction classes: the R-type, branch, and load-store 
instructions. Figure 4.14 shows these formats.

Th ere are several major observations about this instruction format that we will 
rely on:

■ Th e op fi eld, which as we saw in Chapter 2 is called the opcode, is always 
contained in bits 31:26. We will refer to this fi eld as Op[5:0].

■ Th e two registers to be read are always specifi ed by the rs and rt fi elds, at 
positions 25:21 and 20:16. Th is is true for the R-type instructions, branch 
equal, and store.

■ Th e base register for load and store instructions is always in bit positions 
25:21 (rs).

■ Th e 16-bit off set for branch equal, load, and store is always in positions 15:0.

■ Th e destination register is in one of two places. For a load it is in bit positions 
20:16 (rt), while for an R-type instruction it is in bit positions 15:11 (rd). 
Th us, we will need to add a multiplexor to select which fi eld of the instruction 
is used to indicate the register number to be written.

Th e fi rst design principle from Chapter 2—simplicity favors regularity—pays off  
here in specifying control.

opcode Th e fi eld that 
denotes the operation and 
format of an instruction.

Field 0 rs rt rd shamt funct

Bit positions 31:26 25:21 20:16 15:11 10:6 5:0

a. R-type instruction

Field 35 or 43 rs rt address

Bit positions 31:26 25:21 20:16 15:0

b. Load or store instruction

Field 4 rs rt address

Bit positions 31:26 25:21 20:16 15:0

c. Branch instruction

FIGURE 4.14 The three instruction classes (R-type, load and store, and branch) use two 
different instruction formats. Th e jump instructions use another format, which we will discuss shortly. 
(a) Instruction format for R-format instructions, which all have an opcode of 0. Th ese instructions have three 
register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. Th e ALU function is 
in the funct fi eld and is decoded by the ALU control design in the previous section. Th e R-type instructions 
that we implement are add, sub, AND, OR, and slt. Th e shamt fi eld is used only for shift s; we will ignore it 
in this chapter. (b) Instruction format for load (opcode = 35ten) and store (opcode = 43ten) instructions. Th e 
register rs is the base register that is added to the 16-bit address fi eld to form the memory address. For loads, 
rt is the destination register for the loaded value. For stores, rt is the source register whose value should be 
stored into memory. (c) Instruction format for branch equal (opcode =4). Th e registers rs and rt are the 
source registers that are compared for equality. Th e 16-bit address fi eld is sign-extended, shift ed, and added 
to the PC + 4 to compute the branch target address.
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Using this information, we can add the instruction labels and extra multiplexor 
(for the Write register number input of the register fi le) to the simple datapath. 
Figure 4.15 shows these additions plus the ALU control block, the write signals for 
state elements, the read signal for the data memory, and the control signals for the 
multiplexors. Since all the multiplexors have two inputs, they each require a single 
control line.

Figure 4.15 shows seven single-bit control lines plus the 2-bit ALUOp control 
signal. We have already defi ned how the ALUOp control signal works, and it is 
useful to defi ne what the seven other control signals do informally before we 
determine how to set these control signals during instruction execution. Figure 
4.16 describes the function of these seven control lines.

Now that we have looked at the function of each of the control signals, we can 
look at how to set them. Th e control unit can set all but one of the control signals 
based solely on the opcode fi eld of the instruction. Th e PCSrc control line is the 
exception. Th at control line should be asserted if the instruction is branch on equal 
(a decision that the control unit can make) and the Zero output of the ALU, which 
is used for equality comparison, is asserted. To generate the PCSrc signal, we will 
need to AND together a signal from the control unit, which we call Branch, with 
the Zero signal out of the ALU.
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FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control lines identifi ed. Th e control 
lines are shown in color. Th e ALU control block has also been added. Th e PC does not require a write control, since it is written once at the end 
of every clock cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address.
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Signal 

name Effect when deasserted Effect when asserted

RegDst The register destination number for the 
Write register comes from the rt field 
(bits 20:16).

The register destination number for the Write 
register comes from the rd field (bits 15:11).

RegWrite None. The register on the Write register input is 
written with the value on the Write data input. 

ALUSrc The second ALU operand comes from the 
second register file output (Read data 2).

The second ALU operand is the sign-
extended, lower 16 bits of the instruction.

PCSrc The PC is replaced by the output of the 
adder that computes the value of PC + 4.

The PC is replaced by the output of the adder 
that computes the branch target.

MemRead None. Data memory contents designated by the 
address input are put on the Read data output. 

MemWrite None. Data memory contents designated by the 
address input are replaced by the value on 
the Write data input.

MemtoReg The value fed to the register Write data 
input comes from the ALU.

The value fed to the register Write data input 
comes from the data memory.

FIGURE 4.16 The effect of each of the seven control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control 
is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an 
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element 
can create timing problems. (See  Appendix B for further discussion of this problem.)

Th ese nine control signals (seven from Figure 4.16 and two for ALUOp) can 
now be set on the basis of six input signals to the control unit, which are the opcode 
bits 31 to 26. Figure 4.17 shows the datapath with the control unit and the control 
signals.

Before we try to write a set of equations or a truth table for the control unit, it 
will be useful to try to defi ne the control function informally. Because the setting 
of the control lines depends only on the opcode, we defi ne whether each control 
signal should be 0, 1, or don’t care (X) for each of the opcode values. Figure 4.18 
defi nes how the control signals should be set for each opcode; this information 
follows directly from Figures 4.12, 4.16, and 4.17.

Operation of the Datapath

With the information contained in Figures 4.16 and 4.18, we can design the control 
unit logic, but before we do that, let’s look at how each instruction uses the datapath. 
In the next few fi gures, we show the fl ow of three diff erent instruction classes 
through the datapath. Th e asserted control signals and active datapath elements 
are highlighted in each of these. Note that a multiplexor whose control is 0 has 
a defi nite action, even if its control line is not highlighted. Multiple-bit control 
signals are highlighted if any constituent signal is asserted.

Figure 4.19 shows the operation of the datapath for an R-type instruction, such 
as add $t1,$t2,$t3. Although everything occurs in one clock cycle, we can 
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think of four steps to execute the instruction; these steps are ordered by the fl ow 
of information:

1. Th e instruction is fetched, and the PC is incremented.

2. Two registers, $t2 and $t3, are read from the register fi le; also, the main 
control unit computes the setting of the control lines during this step.

3. Th e ALU operates on the data read from the register fi le, using the function 
code (bits 5:0, which is the funct fi eld, of the instruction) to generate the 
ALU function.
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FIGURE 4.17 The simple datapath with the control unit. Th e input to the control unit is the 6-bit opcode fi eld from the instruction. 
Th e outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three 
signals for controlling reads and writes in the register fi le and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in 
determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the 
branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now 
a derived signal, rather than one coming directly from the control unit. Th us, we drop the signal name in subsequent fi gures.
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Instruction RegDst ALUSrc
Memto- 

Reg
Reg- 
Write

Mem- 
Read

Mem- 
Write Branch ALUOp1 ALUOp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

FIGURE 4.18 The setting of the control lines is completely determined by the opcode fi elds of the instruction. Th e fi rst 
row of the table corresponds to the R-format instructions (add, sub, AND, OR, and slt). For all these instructions, the source register fi elds 
are rs and rt, and the destination register fi eld is rd; this defi nes how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction 
writes a register (Reg-Write = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally 
replaced with PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. Th e ALUOp fi eld for R-type 
instructions is set to 10 to indicate that the ALU control should be generated from the funct fi eld. Th e second and third rows of this table give the 
control signal settings for lw and sw. Th ese ALUSrc and ALUOp fi elds are set to perform the address calculation. Th e MemRead and MemWrite 
are set to perform the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt register. Th e 
branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the ALU. Th e ALUOp fi eld for branch is set for a 
subtract (ALU control = 01), which is used to test for equality. Notice that the MemtoReg fi eld is irrelevant when the RegWrite signal is 0: since 
the register is not being written, the value of the data on the register data write port is not used. Th us, the entry MemtoReg in the last two rows 
of the table is replaced with X for don’t care. Don’t cares can also be added to RegDst when RegWrite is 0. Th is type of don’t care must be added 
by the designer, since it depends on knowledge of how the datapath works.
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4. Th e result from the ALU is written into the register fi le using bits 15:11 of the 
instruction to select the destination register ($t1).

Similarly, we can illustrate the execution of a load word, such as

lw $t1, offset($t2)

in a style similar to Figure 4.19. Figure 4.20 shows the active functional units and 
asserted control lines for a load. We can think of a load instruction as operating in 
fi ve steps (similar to how the R-type executed in four):

1. An instruction is fetched from the instruction memory, and the PC is 
incremented.

2. A register ($t2) value is read from the register fi le.
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FIGURE 4.20 The datapath in operation for a load instruction. Th e control lines, datapath units, and connections that are active 
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rather than a read, the second register value read would be used for the data to store, and the operation of writing the data memory value to 
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3. Th e ALU computes the sum of the value read from the register fi le and the 
sign-extended, lower 16 bits of the instruction (offset).

4. Th e sum from the ALU is used as the address for the data memory.

5. Th e data from the memory unit is written into the register fi le; the register 
destination is given by bits 20:16 of the instruction ($t1).

Finally, we can show the operation of the branch-on-equal instruction, such as 
beq $t1, $t2, offset, in the same fashion. It operates much like an R-format 
instruction, but the ALU output is used to determine whether the PC is written with 
PC + 4 or the branch target address. Figure 4.21 shows the four steps in execution:

1. An instruction is fetched from the instruction memory, and the PC is 
incremented.

Read
register 1

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign-

extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift

left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU

control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data
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2. Two registers, $t1 and $t2, are read from the register fi le.

3. Th e ALU performs a subtract on the data values read from the register fi le. Th e 
value of PC + 4 is added to the sign-extended, lower 16 bits of the instruction 
(offset) shift ed left  by two; the result is the branch target address.

4. Th e Zero result from the ALU is used to decide which adder result to store 
into the PC.

Finalizing Control

Now that we have seen how the instructions operate in steps, let’s continue with 
the control implementation. Th e control function can be precisely defi ned using 
the contents of Figure 4.18. Th e outputs are the control lines, and the input is the 
6-bit opcode fi eld, Op [5:0]. Th us, we can create a truth table for each of the outputs 
based on the binary encoding of the opcodes.

Figure 4.22 shows the logic in the control unit as one large truth table that 
combines all the outputs and that uses the opcode bits as inputs. It completely 
specifi es the control function, and we can implement it directly in gates in an 
automated fashion. We show this fi nal step in Section D.2 in  Appendix D.

Input or output Signal name R-format lw sw beq

Inputs Op5 0 1 1 0
Op4 0 0 0 0
Op3 0 0 1 0
Op2 0 0 0 1
Op1 0 1 1 0
Op0 0 1 1 0

Outputs RegDst 1 0 X X
ALUSrc 0 1 1 0

MemtoReg 0 1 X X
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0

Branch 0 0 0 1
ALUOp1 1 0 0 0
ALUOp0 0 0 0 1

FIGURE 4.22 The control function for the simple single-cycle implementation is 
completely specifi ed by this truth table. Th e top half of the table gives the combinations of input 
signals that correspond to the four opcodes, one per column, that determine the control output settings. 
(Remember that Op [5:0] corresponds to bits 31:26 of the instruction, which is the op fi eld.) Th e bottom 
portion of the table gives the outputs for each of the four opcodes. Th us, the output RegWrite is asserted for 
two diff erent combinations of the inputs. If we consider only the four opcodes shown in this table, then we 
can simplify the truth table by using don’t cares in the input portion. For example, we can detect an R-format 
instruction with the expression Op5  � Op2 , since this is suffi  cient to distinguish the R-format instructions 
from lw, sw, and beq. We do not take advantage of this simplifi cation, since the rest of the MIPS opcodes 
are used in a full implementation.
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Now that we have a single-cycle implementation of most of the MIPS core 
instruction set, let’s add the jump instruction to show how the basic datapath and 
control can be extended to handle other instructions in the instruction set.

Implementing Jumps

Figure 4.17 shows the implementation of many of the instructions we looked at 
in Chapter 2. One class of instructions missing is that of the jump instruction. 
Extend the datapath and control of Figure 4.17 to include the jump instruction. 
Describe how to set any new control lines.

Th e jump instruction, shown in Figure 4.23, looks somewhat like a branch 
instruction but computes the target PC diff erently and is not conditional. Like 
a branch, the low-order 2 bits of a jump address are always 00two. Th e next 
lower 26 bits of this 32-bit address come from the 26-bit immediate fi eld in the 
instruction. Th e upper 4 bits of the address that should replace the PC come 
from the PC of the jump instruction plus 4. Th us, we can implement a jump by 
storing into the PC the concatenation of

■ the upper 4 bits of the current PC + 4 (these are bits 31:28 of the 
sequentially following instruction address)

■ the 26-bit immediate fi eld of the jump instruction

■ the bits 00two

Figure 4.24 shows the addition of the control for jump added to Figure 4.17. An 
additional multiplexor is used to select the source for the new PC value, which 
is either the incremented PC (PC + 4), the branch target PC, or the jump target 
PC. One additional control signal is needed for the additional multiplexor. Th is 
control signal, called Jump, is asserted only when the instruction is a jump—
that is, when the opcode is 2.

EXAMPLE

ANSWER

Field 000010 address
Bit positions 31:26 25:0

FIGURE 4.23 Instruction format for the jump instruction (opcode = 2). Th e destination 
address for a jump instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the 26-bit 
address fi eld in the jump instruction and adding 00 as the 2 low-order bits.

single-cycle 
implementation Also 
called single clock cycle 
implementation. An 
implementation in which 
an instruction is executed 
in one clock cycle. While 
easy to understand, it is 
too slow to be practical.
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Why a Single-Cycle Implementation Is Not Used Today
Although the single-cycle design will work correctly, it would not be used in 
modern designs because it is ineffi  cient. To see why this is so, notice that the clock 
cycle must have the same length for every instruction in this single-cycle design. 
Of course, the longest possible path in the processor determines the clock cycle. 
Th is path is almost certainly a load instruction, which uses fi ve functional units 
in series: the instruction memory, the register fi le, the ALU, the data memory, and 
the register fi le. Although the CPI is 1 (see Chapter 1), the overall performance of 
a single-cycle implementation is likely to be poor, since the clock cycle is too long.

Th e penalty for using the single-cycle design with a fi xed clock cycle is signifi cant, 
but might be considered acceptable for this small instruction set. Historically, early 
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FIGURE 4.24 The simple control and datapath are extended to handle the jump instruction. An additional multiplexor (at 
the upper right) is used to choose between the jump target and either the branch target or the sequential instruction following this one. Th is 
multiplexor is controlled by the jump control signal. Th e jump target address is obtained by shift ing the lower 26 bits of the jump instruction 
left  2 bits, eff ectively adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a 
32-bit address.
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computers with very simple instruction sets did use this implementation technique. 
However, if we tried to implement the fl oating-point unit or an instruction set with 
more complex instructions, this single-cycle design wouldn’t work well at all.

Because we must assume that the clock cycle is equal to the worst-case delay 
for all instructions, it’s useless to try implementation techniques that reduce the 
delay of the common case but do not improve the worst-case cycle time. A single-
cycle implementation thus violates the great idea from Chapter 1 of making the 
common case fast. 

In next section, we’ll look at another implementation technique, called 
pipelining, that uses a datapath very similar to the single-cycle datapath but is 
much more effi  cient by having a much higher throughput. Pipelining improves 
effi  ciency by executing multiple instructions simultaneously.

Look at the control signals in Figure 4.22. Can you combine any together? Can any 
control signal output in the fi gure be replaced by the inverse of another? (Hint: take 
into account the don’t cares.) If so, can you use one signal for the other without 
adding an inverter?

 4.5 An Overview of Pipelining

Pipelining is an implementation technique in which multiple instructions are 
overlapped in execution. Today, pipelining is nearly universal.

Th is section relies heavily on one analogy to give an overview of the pipelining 
terms and issues. If you are interested in just the big picture, you should concentrate 
on this section and then skip to Sections 4.10 and 4.11 to see an introduction to the 
advanced pipelining techniques used in recent processors such as the Intel Core i7 
and ARM Cortex-A8. If you are interested in exploring the anatomy of a pipelined 
computer, this section is a good introduction to Sections 4.6 through 4.9.

Anyone who has done a lot of laundry has intuitively used pipelining. Th e non-
pipelined approach to laundry would be as follows:

1. Place one dirty load of clothes in the washer.

2. When the washer is fi nished, place the wet load in the dryer.

3. When the dryer is fi nished, place the dry load on a table and fold.

4. When folding is fi nished, ask your roommate to put the clothes away.

When your roommate is done, start over with the next dirty load.
Th e pipelined approach takes much less time, as Figure 4.25 shows. As soon 

as the washer is fi nished with the fi rst load and placed in the dryer, you load the 
washer with the second dirty load. When the fi rst load is dry, you place it on the 
table to start folding, move the wet load to the dryer, and put the next dirty load 

Check 
Yourself

pipelining An 
implementation 
technique in which 
multiple instructions are 
overlapped in execution, 
much like an assembly 
line.

Never waste time.
American proverb
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into the washer. Next you have your roommate put the fi rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

Th e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are fi nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 
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FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. Th e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of diff erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.



274 Chapter 4 The Processor

pipeline, in this case four: washing, drying, folding, and putting away. Th erefore, 
pipelined laundry is potentially four times faster than nonpipelined: 20 loads would 
take about 5 times as long as 1 load, while 20 loads of sequential laundry takes 20 
times as long as 1 load. It’s only 2.3 times faster in Figure 4.25, because we only 
show 4 loads. Notice that at the beginning and end of the workload in the pipelined 
version in Figure 4.25, the pipeline is not completely full; this start-up and wind-
down aff ects performance when the number of tasks is not large compared to the 
number of stages in the pipeline. If the number of loads is much larger than 4, then 
the stages will be full most of the time and the increase in throughput will be very 
close to 4.

Th e same principles apply to processors where we pipeline instruction-execution. 
MIPS instructions classically take fi ve steps:

1. Fetch instruction from memory.

2. Read registers while decoding the instruction. Th e regular format of MIPS 
instructions allows reading and decoding to occur simultaneously.

3. Execute the operation or calculate an address.

4. Access an operand in data memory.

5. Write the result into a register.

Hence, the MIPS pipeline we explore in this chapter has fi ve stages. Th e following 
example shows that pipelining speeds up instruction execution just as it speeds up 
the laundry.

Single-Cycle versus Pipelined Performance

To make this discussion concrete, let’s create a pipeline. In this example, and in 
the rest of this chapter, we limit our attention to eight instructions: load word 
(lw), store word (sw), add (add), subtract (sub), AND (and), OR (or), set 
less than (slt), and branch on equal (beq).

Compare the average time between instructions of a single-cycle 
implementation, in which all instructions take one clock cycle, to a pipelined 
implementation. Th e operation times for the major functional units in this 
example are 200 ps for memory access, 200 ps for ALU operation, and 100 ps 
for register fi le read or write. In the single-cycle model, every instruction takes 
exactly one clock cycle, so the clock cycle must be stretched to accommodate 
the slowest instruction.

Figure 4.26 shows the time required for each of the eight instructions. 
Th e single-cycle design must allow for the slowest instruction—in Figure 
4.26 it is lw—so the time required for every instruction is 800 ps. Similarly 

EXAMPLE

ANSWER
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to Figure 4.25, Figure 4.27 compares nonpipelined and pipelined execution 
of three load word instructions. Th us, the time between the fi rst and fourth 
instructions in the nonpipelined design is 3 × 800 ns or 2400 ps.

All the pipeline stages take a single clock cycle, so the clock cycle must be long 
enough to accommodate the slowest operation. Just as the single-cycle design 
must take the worst-case clock cycle of 800 ps, even though some instructions 
can be as fast as 500 ps, the pipelined execution clock cycle must have the 
worst-case clock cycle of 200 ps, even though some stages take only 100 ps. 
Pipelining still off ers a fourfold performance improvement: the time between 
the fi rst and fourth instructions is 3 × 200 ps or 600 ps.

We can turn the pipelining speed-up discussion above into a formula. If the 
stages are perfectly balanced, then the time between instructions on the pipelined 
processor—assuming ideal conditions—is equal to

Time bet tions
Time between instructio

pipelinedween instruc �
nnnonpipelined

Number of pipe stages

Under ideal conditions and with a large number of instructions, the speed-up 
from pipelining is approximately equal to the number of pipe stages; a fi ve-stage 
pipeline is nearly fi ve times faster.

Th e formula suggests that a fi ve-stage pipeline should off er nearly a fi vefold 
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. Th e 
example shows, however, that the stages may be imperfectly balanced. Moreover, 
pipelining involves some overhead, the source of which will be clearer shortly. 
Th us, the time per instruction in the pipelined processor will exceed the minimum 
possible, and speed-up will be less than the number of pipeline stages.

Instruction class
Instruction 

fetch
Register 

read
ALU 

operation
Data 

access
Register 

write
Total 
time

Load word (lw) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps

R-format (add, sub, AND, 
OR, slt)

200 ps 100 ps 200 ps 100 ps 600 ps

Branch (beq) 200 ps 100 ps 200 ps 500 ps

FIGURE 4.26 Total time for each instruction calculated from the time for each component. 
Th is calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no 
delay.
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Moreover, even our claim of fourfold improvement for our example is not 
refl ected in the total execution time for the three instructions: it’s 1400 ps versus 
2400 ps. Of course, this is because the number of instructions is not large. What 
would happen if we increased the number of instructions? We could extend the 
previous fi gures to 1,000,003 instructions. We would add 1,000,000 instructions 
in the pipelined example; each instruction adds 200 ps to the total execution time. 
Th e total execution time would be 1,000,000 × 200 ps + 1400 ps, or 200,001,400 
ps. In the nonpipelined example, we would add 1,000,000 instructions, each 
taking 800 ps, so total execution time would be 1,000,000 × 800 ps + 2400 ps, or 
800,002,400 ps. Under these conditions, the ratio of total execution times for real 
programs on nonpipelined to pipelined processors is close to the ratio of times 
between instructions:

800 002 400
200 001 400

, ,
, ,

ps
ps

ps
ps

� �800
200

4.00

Program
execution
order
(in instructions)

lw  $1, 100($0)

lw  $2, 200($0)

lw  $3, 300($0)

Time
1000 1200 1400200 400 600 800

1000 1200 1400200 400 600 800

1600 1800

Instruction
fetch

Data
access

Reg

Instruction
fetch

Data
access

Reg

Instruction
fetch

800 ps

800 ps

800 ps

Program
execution
order
(in instructions)

lw  $1, 100($0)

lw  $2, 200($0)

lw  $3, 300($0)

Time

Instruction
fetch

Data
access

Reg

Instruction
fetch

Instruction
fetch

Data
access

Reg

Data
access

Reg

200 ps

200 ps

200 ps 200 ps 200 ps 200 ps 200 ps

ALUReg

ALUReg

ALU

ALU

ALU

Reg

Reg

Reg

FIGURE 4.27 Single-cycle, nonpipelined execution in top versus pipelined execution in 
bottom. Both use the same hardware components, whose time is listed in Figure 4.26. In this case, we see 
a fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this fi gure 
to Figure 4.25. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer 
stage would set the stage time. Th e pipeline stage times of a computer are also limited by the slowest resource, 
either the ALU operation or the memory access. We assume the write to the register fi le occurs in the fi rst 
half of the clock cycle and the read from the register fi le occurs in the second half. We use this assumption 
throughout this chapter.
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Pipelining improves performance by increasing instruction throughput, as 
opposed to decreasing the execution time of an individual instruction, but instruction 
throughput is the important metric because real programs execute billions of 
instructions.

Designing Instruction Sets for Pipelining
Even with this simple explanation of pipelining, we can get insight into the design 
of the MIPS instruction set, which was designed for pipelined execution.

First, all MIPS instructions are the same length. Th is restriction makes it much 
easier to fetch instructions in the fi rst pipeline stage and to decode them in the 
second stage. In an instruction set like the x86, where instructions vary from 1 byte 
to 15 bytes, pipelining is considerably more challenging. Recent implementations 
of the x86 architecture actually translate x86 instructions into simple operations 
that look like MIPS instructions and then pipeline the simple operations rather 
than the native x86 instructions! (See Section 4.10.)

Second, MIPS has only a few instruction formats, with the source register fi elds 
being located in the same place in each instruction. Th is symmetry means that the 
second stage can begin reading the register fi le at the same time that the hardware 
is determining what type of instruction was fetched. If MIPS instruction formats 
were not symmetric, we would need to split stage 2, resulting in six pipeline stages. 
We will shortly see the downside of longer pipelines.

Th ird, memory operands only appear in loads or stores in MIPS. Th is restriction 
means we can use the execute stage to calculate the memory address and then 
access memory in the following stage. If we could operate on the operands in 
memory, as in the x86, stages 3 and 4 would expand to an address stage, memory 
stage, and then execute stage.

Fourth, as discussed in Chapter 2, operands must be aligned in memory. Hence, 
we need not worry about a single data transfer instruction requiring two data 
memory accesses; the requested data can be transferred between processor and 
memory in a single pipeline stage.

Pipeline Hazards
Th ere are situations in pipelining when the next instruction cannot execute in the 
following clock cycle. Th ese events are called hazards, and there are three diff erent 
types.

Hazards

Th e fi rst hazard is called a structural hazard. It means that the hardware cannot 
support the combination of instructions that we want to execute in the same clock 
cycle. A structural hazard in the laundry room would occur if we used a washer-
dryer combination instead of a separate washer and dryer, or if our roommate was 
busy doing something else and wouldn’t put clothes away. Our carefully scheduled 
pipeline plans would then be foiled.

structural hazard When 
a planned instruction 
cannot execute in the 
proper clock cycle because 
the hardware does not 
support the combination 
of instructions that are set 
to execute.
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As we said above, the MIPS instruction set was designed to be pipelined, 
making it fairly easy for designers to avoid structural hazards when designing a 
pipeline. Suppose, however, that we had a single memory instead of two memories. 
If the pipeline in Figure 4.27 had a fourth instruction, we would see that in the 
same clock cycle the fi rst instruction is accessing data from memory while the 
fourth instruction is fetching an instruction from that same memory. Without two 
memories, our pipeline could have a structural hazard.

Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wait 
for another to complete. Suppose you found a sock at the folding station for which 
no match existed. One possible strategy is to run down to your room and search 
through your clothes bureau to see if you can fi nd the match. Obviously, while you 
are doing the search, loads must wait that have completed drying and are ready to 
fold as well as those that have fi nished washing and are ready to dry.

In a computer pipeline, data hazards arise from the dependence of one 
instruction on an earlier one that is still in the pipeline (a relationship that does not 
really exist when doing laundry). For example, suppose we have an add instruction 
followed immediately by a subtract instruction that uses the sum ($s0):

add   $s0, $t0, $t1
sub   $t2, $s0, $t3

Without intervention, a data hazard could severely stall the pipeline. Th e add 
instruction doesn’t write its result until the fi ft h stage, meaning that we would have 
to waste three clock cycles in the pipeline.

Although we could try to rely on compilers to remove all such hazards, the 
results would not be satisfactory. Th ese dependences happen just too oft en and the 
delay is just too long to expect the compiler to rescue us from this dilemma.

Th e primary solution is based on the observation that we don’t need to wait for 
the instruction to complete before trying to resolve the data hazard. For the code 
sequence above, as soon as the ALU creates the sum for the add, we can supply it as 
an input for the subtract. Adding extra hardware to retrieve the missing item early 
from the internal resources is called forwarding or bypassing.

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be connected 
by forwarding. Use the drawing in Figure 4.28 to represent the datapath during 
the fi ve stages of the pipeline. Align a copy of the datapath for each instruction, 
similar to the laundry pipeline in Figure 4.25.

data hazard Also 
called a pipeline data 
hazard. When a planned 
instruction cannot 
execute in the proper 
clock cycle because data 
that is needed to execute 
the instruction is not yet 
available.

forwarding Also called 
bypassing. A method of 
resolving a data hazard 
by retrieving the missing 
data element from 
internal buff ers rather 
than waiting for it to 
arrive from programmer-
visible registers or 
memory.

EXAMPLE
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Figure 4.29 shows the connection to forward the value in $s0 aft er the 
execution stage of the add instruction as input to the execution stage of the 
sub instruction.

In this graphical representation of events, forwarding paths are valid only if the 
destination stage is later in time than the source stage. For example, there cannot 
be a valid forwarding path from the output of the memory access stage in the fi rst 
instruction to the input of the execution stage of the following, since that would 
mean going backward in time.

Forwarding works very well and is described in detail in Section 4.7. It cannot 
prevent all pipeline stalls, however. For example, suppose the fi rst instruction was a 
load of $s0 instead of an add. As we can imagine from looking at Figure 4.29, the 
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add $s0, $t0, $t1 IF MEMID WBEX
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FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to 
the laundry pipeline in Figure 4.25. Here we use symbols representing the physical resources with 
the abbreviations for pipeline stages used throughout the chapter. Th e symbols for the fi ve stages: IF for 
the instruction fetch stage, with the box representing instruction memory; ID for the instruction decode/
register fi le read stage, with the drawing showing the register fi le being read; EX for the execution stage, 
with the drawing representing the ALU; MEM for the memory access stage, with the box representing data 
memory; and WB for the write-back stage, with the drawing showing the register fi le being written. Th e 
shading indicates the element is used by the instruction. Hence, MEM has a white background because add 
does not access the data memory. Shading on the right half of the register fi le or memory means the element 
is read in that stage, and shading of the left  half means it is written in that stage. Hence the right half of ID is 
shaded in the second stage because the register fi le is read, and the left  half of WB is shaded in the fi ft h stage 
because the register fi le is written.
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(in instructions)
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FIGURE 4.29 Graphical representation of forwarding. Th e connection shows the forwarding path 
from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register 
$s0 read in the second stage of sub.
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desired data would be available only aft er the fourth stage of the fi rst instruction 
in the dependence, which is too late for the input of the third stage of sub. Hence, 
even with forwarding, we would have to stall one stage for a load-use data hazard, 
as Figure 4.30 shows. Th is fi gure shows an important pipeline concept, offi  cially 
called a pipeline stall, but oft en given the nickname bubble. We shall see stalls 
elsewhere in the pipeline. Section 4.7 shows how we can handle hard cases like 
these, using either hardware detection and stalls or soft ware that reorders code to 
try to avoid load-use pipeline stalls, as this example illustrates.

Reordering Code to Avoid Pipeline Stalls

Consider the following code segment in C:

a = b + e;
c = b + f;

Here is the generated MIPS code for this segment, assuming all variables are in 
memory and are addressable as off sets from $t0:

lw    $t1, 0($t0)
lw    $t2, 4($t0)
add   $t3, $t1,$t2
sw    $t3, 12($t0)
lw    $t4, 8($t0)
add   $t5, $t1,$t4
sw    $t5, 16($t0)

load-use data hazard 
A specifi c form of data 
hazard in which the data 
being loaded by a load 
instruction has not yet 
become available when 
it is needed by another 
instruction.

pipeline stall Also called 
bubble. A stall initiated 
in order to resolve a 
hazard.

EXAMPLE
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lw $s0, 20($t1)

sub $t2, $s0, $t3 

IF MEMID WBEX

IF MEMID WBEX
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order
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FIGURE 4.30 We need a stall even with forwarding when an R-format instruction following 
a load tries to use the data. Without the stall, the path from memory access stage output to execution 
stage input would be going backward in time, which is impossible. Th is fi gure is actually a simplifi cation, 
since we cannot know until aft er the subtract instruction is fetched and decoded whether or not a stall will be 
necessary. Section 4.7 shows the details of what really happens in the case of a hazard.
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Find the hazards in the preceding code segment and reorder the instructions 
to avoid any pipeline stalls.

Both add instructions have a hazard because of their respective dependence 
on the immediately preceding lw instruction. Notice that bypassing eliminates 
several other potential hazards, including the dependence of the fi rst add on 
the fi rst lw and any hazards for store instructions. Moving up the third lw 
instruction to become the third instruction eliminates both hazards:

lw   $t1, 0($t0)
lw   $t2, 4($t0)
lw   $t4, 8($t0)
add  $t3, $t1,$t2
sw   $t3, 12($t0)
add  $t5, $t1,$t4
sw   $t5, 16($t0)

On a pipelined processor with forwarding, the reordered sequence will 
complete in two fewer cycles than the original version.

Forwarding yields another insight into the MIPS architecture, in addition to the 
four mentioned on page 277. Each MIPS instruction writes at most one result and 
does this in the last stage of the pipeline. Forwarding is harder if there are multiple 
results to forward per instruction or if there is a need to write a result early on in 
instruction execution.

Elaboration: The name “forwarding” comes from the idea that the result is passed 
forward from an earlier instruction to a later instruction. “Bypassing” comes from 
passing the result around the register fi le to the desired unit.

Control Hazards

Th e third type of hazard is called a control hazard, arising from the need to make a 
decision based on the results of one instruction while others are executing.

Suppose our laundry crew was given the happy task of cleaning the uniforms 
of a football team. Given how fi lthy the laundry is, we need to determine whether 
the detergent and water temperature setting we select is strong enough to get the 
uniforms clean but not so strong that the uniforms wear out sooner. In our laundry 
pipeline, we have to wait until aft er the second stage to examine the dry uniform to 
see if we need to change the washer setup or not. What to do?

Here is the fi rst of two solutions to control hazards in the laundry room and its 
computer equivalent.

Stall: Just operate sequentially until the fi rst batch is dry and then repeat until 
you have the right formula.

Th is conservative option certainly works, but it is slow.

ANSWER

control hazard Also 
called branch hazard. 
When the proper 
instruction cannot 
execute in the proper 
pipeline clock cycle 
because the instruction 
that was fetched is not the 
one that is needed; that 
is, the fl ow of instruction 
addresses is not what the 
pipeline expected.
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Th e equivalent decision task in a computer is the branch instruction. Notice that 
we must begin fetching the instruction following the branch on the very next clock 
cycle. Nevertheless, the pipeline cannot possibly know what the next instruction 
should be, since it only just received the branch instruction from memory! Just as 
with laundry, one possible solution is to stall immediately aft er we fetch a branch, 
waiting until the pipeline determines the outcome of the branch and knows what 
instruction address to fetch from.

Let’s assume that we put in enough extra hardware so that we can test registers, 
calculate the branch address, and update the PC during the second stage of the 
pipeline (see Section 4.8 for details). Even with this extra hardware, the pipeline 
involving conditional branches would look like Figure 4.31. Th e lw instruction, 
executed if the branch fails, is stalled one extra 200 ps clock cycle before starting.

Performance of “Stall on Branch”

Estimate the impact on the clock cycles per instruction (CPI) of stalling on 
branches. Assume all other instructions have a CPI of 1.

Figure 3.27 in Chapter 3 shows that branches are 17% of the instructions 
executed in SPECint2006. Since the other instructions run have a CPI of 1, 
and branches took one extra clock cycle for the stall, then we would see a CPI 
of 1.17 and hence a slowdown of 1.17 versus the ideal case.

EXAMPLE

ANSWER
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FIGURE 4.31 Pipeline showing stalling on every conditional branch as solution to control 
hazards. Th is example assumes the conditional branch is taken, and the instruction at the destination of 
the branch is the OR instruction. Th ere is a one-stage pipeline stall, or bubble, aft er the branch. In reality, the 
process of creating a stall is slightly more complicated, as we will see in Section 4.8. Th e eff ect on performance, 
however, is the same as would occur if a bubble were inserted.
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If we cannot resolve the branch in the second stage, as is oft en the case for longer 
pipelines, then we’d see an even larger slowdown if we stall on branches. Th e cost of 
this option is too high for most computers to use and motivates a second solution 
to the control hazard using one of our great ideas from Chapter 1:

Predict: If you’re pretty sure you have the right formula to wash uniforms, then 
just predict that it will work and wash the second load while waiting for the fi rst 
load to dry.

Th is option does not slow down the pipeline when you are correct. When you are 
wrong, however, you need to redo the load that was washed while guessing the 
decision.

Computers do indeed use prediction to handle branches. One simple approach 
is to predict always that branches will be untaken. When you’re right, the pipeline 
proceeds at full speed. Only when branches are taken does the pipeline stall. Figure 
4.32 shows such an example.
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FIGURE 4.32 Predicting that branches are not taken as a solution to control hazard. Th e 
top drawing shows the pipeline when the branch is not taken. Th e bottom drawing shows the pipeline when 
the branch is taken. As we noted in Figure 4.31, the insertion of a bubble in this fashion simplifi es what 
actually happens, at least during the fi rst clock cycle immediately following the branch. Section 4.8 will reveal 
the details.
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A more sophisticated version of branch prediction would have some branches 
predicted as taken and some as untaken. In our analogy, the dark or home uniforms 
might take one formula while the light or road uniforms might take another. In the 
case of programming, at the bottom of loops are branches that jump back to the top 
of the loop. Since they are likely to be taken and they branch backward, we could 
always predict taken for branches that jump to an earlier address.

Such rigid approaches to branch prediction rely on stereotypical behavior 
and don’t account for the individuality of a specifi c branch instruction. Dynamic 
hardware predictors, in stark contrast, make their guesses depending on the 
behavior of each branch and may change predictions for a branch over the life of 
a program. Following our analogy, in dynamic prediction a person would look at 
how dirty the uniform was and guess at the formula, adjusting the next prediction 
depending on the success of recent guesses.

One popular approach to dynamic prediction of branches is keeping a history 
for each branch as taken or untaken, and then using the recent past behavior 
to predict the future. As we will see later, the amount and type of history kept 
have become extensive, with the result being that dynamic branch predictors can 
correctly predict branches with more than 90% accuracy (see Section 4.8). When 
the guess is wrong, the pipeline control must ensure that the instructions following 
the wrongly guessed branch have no eff ect and must restart the pipeline from the 
proper branch address. In our laundry analogy, we must stop taking new loads so 
that we can restart the load that we incorrectly predicted.

As in the case of all other solutions to control hazards, longer pipelines exacerbate 
the problem, in this case by raising the cost of misprediction. Solutions to control 
hazards are described in more detail in Section 4.8.

Elaboration: There is a third approach to the control hazard, called delayed decision. 
In our analogy, whenever you are going to make such a decision about laundry, just place 
a load of nonfootball clothes in the washer while waiting for football uniforms to dry. As 
long as you have enough dirty clothes that are not affected by the test, this solution 
works fi ne.

Called the delayed branch in computers, and mentioned above, this is the solution 
actually used by the MIPS architecture. The delayed branch always executes the next 
sequential instruction, with the branch taking place after that one instruction delay. 
It is hidden from the MIPS assembly language programmer because the assembler 
can automatically arrange the instructions to get the branch behavior desired by the 
programmer. MIPS software will place an instruction immediately after the delayed 
branch instruction that is not affected by the branch, and a taken branch changes 
the address of the instruction that follows this safe instruction. In our example, the 
add instruction before the branch in Figure 4.31 does not affect the branch and can 
be moved after the branch to fully hide the branch delay. Since delayed branches are 
useful when the branches are short, no processor uses a delayed branch of more 
than one cycle. For longer branch delays, hardware-based branch prediction is usually 
used.

branch prediction 
A method of resolving 
a branch hazard that 
assumes a given outcome 
for the branch and 
proceeds from that 
assumption rather than 
waiting to ascertain the 
actual outcome.
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Pipeline Overview Summary
Pipelining is a technique that exploits parallelism among the instructions in 
a sequential instruction stream. It has the substantial advantage that, unlike 
programming a multiprocessor, it is fundamentally invisible to the programmer.

In the next few sections of this chapter, we cover the concept of pipelining using 
the MIPS instruction subset from the single-cycle implementation in Section 4.4 
and show a simplifi ed version of its pipeline. We then look at the problems that 
pipelining introduces and the performance attainable under typical situations.

If you wish to focus more on the soft ware and the performance implications of 
pipelining, you now have suffi  cient background to skip to Section 4.10. Section 
4.10 introduces advanced pipelining concepts, such as superscalar and dynamic 
scheduling, and Section 4.11 examines the pipelines of recent microprocessors.

Alternatively, if you are interested in understanding how pipelining is 
implemented and the challenges of dealing with hazards, you can proceed to 
examine the design of a pipelined datapath and the basic control, explained in 
Section 4.6. You can then use this understanding to explore the implementation of 
forwarding and stalls in Section 4.7. You can then read Section 4.8 to learn more 
about solutions to branch hazards, and then see how exceptions are handled in 
Section 4.9.

For each code sequence below, state whether it must stall, can avoid stalls using 
only forwarding, or can execute without stalling or forwarding.

Sequence 1 Sequence 2 Sequence 3

lw   $t0,0($t0) add   $t1,$t0,$t0 addi  $t1,$t0,#1

add  $t1,$t0,$t0 addi  $t2,$t0,#5 addi  $t2,$t0,#2

addi  $t4,$t1,#5 addi  $t3,$t0,#2

addi  $t3,$t0,#4

addi  $t5,$t0,#5

Outside the memory system, the eff ective operation of the pipeline is usually 
the most important factor in determining the CPI of the processor and hence its 
performance. As we will see in Section 4.10, understanding the performance of a 
modern multiple-issue pipelined processor is complex and requires understanding 
more than just the issues that arise in a simple pipelined processor. Nonetheless, 
structural, data, and control hazards remain important in both simple pipelines 
and more sophisticated ones.

For modern pipelines, structural hazards usually revolve around the fl oating-
point unit, which may not be fully pipelined, while control hazards are usually more 
of a problem in integer programs, which tend to have higher branch frequencies 
as well as less predictable branches. Data hazards can be performance bottlenecks 

Check 
Yourself

Understanding 
Program 
Performance
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in both integer and fl oating-point programs. Oft en it is easier to deal with data 
hazards in fl oating-point programs because the lower branch frequency and more 
regular memory access patterns allow the compiler to try to schedule instructions 
to avoid hazards. It is more diffi  cult to perform such optimizations in integer 
programs that have less regular memory access, involving more use of pointers. 
As we will see in Section 4.10, there are more ambitious compiler and hardware 
techniques for reducing data dependences through scheduling.

Pipelining increases the number of simultaneously executing instructions 
and the rate at which instructions are started and completed. Pipelining 
does not reduce the time it takes to complete an individual instruction, 
also called the latency. For example, the fi ve-stage pipeline still takes 5 
clock cycles for the instruction to complete. In the terms used in Chapter 
1, pipelining improves instruction throughput rather than individual 
instruction execution time or latency. 

The BIG
Picture

latency (pipeline) Th e 
number of stages in a 
pipeline or the number 
of stages between two 
instructions during 
execution.

Instruction sets can either simplify or make life harder for pipeline 
designers, who must already cope with structural, control, and data hazards. 
Branch prediction and forwarding help make a computer fast while still getting 
the right answers.

 4.6 Pipelined Datapath and Control

Figure 4.33 shows the single-cycle datapath from Section 4.4 with the pipeline 
stages identifi ed. Th e division of an instruction into fi ve stages means a fi ve-stage 
pipeline, which in turn means that up to fi ve instructions will be in execution 
during any single clock cycle. Th us, we must separate the datapath into fi ve pieces, 
with each piece named corresponding to a stage of instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register fi le read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

In Figure 4.33, these fi ve components correspond roughly to the way the data-
path is drawn; instructions and data move generally from left  to right through the 

Th ere is less in this 
than meets the eye.

Tallulah 
Bankhead, remark 
to Alexander 
Woollcott, 1922
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fi ve stages as they complete execution. Returning to our laundry analogy, clothes 
get cleaner, drier, and more organized as they move through the line, and they 
never move backward.

Th ere are, however, two exceptions to this left -to-right fl ow of instructions:

■ Th e write-back stage, which places the result back into the register fi le in the 
middle of the datapath

■ Th e selection of the next value of the PC, choosing between the incremented 
PC and the branch address from the MEM stage

Data fl owing from right to left  does not aff ect the current instruction; these 
reverse data movements infl uence only later instructions in the pipeline. Note that 
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the fi rst right-to-left  fl ow of data can lead to data hazards and the second leads to 
control hazards.

One way to show what happens in pipelined execution is to pretend that each 
instruction has its own datapath, and then to place these datapaths on a timeline to 
show their relationship. Figure 4.34 shows the execution of the instructions in Figure 
4.27 by displaying their private datapaths on a common timeline. We use a stylized 
version of the datapath in Figure 4.33 to show the relationships in Figure 4.34.

Figure 4.34 seems to suggest that three instructions need three datapaths. 
Instead, we add registers to hold data so that portions of a single datapath can be 
shared during instruction execution.

For example, as Figure 4.34 shows, the instruction memory is used during 
only one of the fi ve stages of an instruction, allowing it to be shared by following 
instructions during the other four stages. To retain the value of an individual 
instruction for its other four stages, the value read from instruction memory must 
be saved in a register. Similar arguments apply to every pipeline stage, so we must 
place registers wherever there are dividing lines between stages in Figure 4.33. 
Returning to our laundry analogy, we might have a basket between each pair of 
stages to hold the clothes for the next step.

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time (in clock cycles)

IM DMReg RegALU

IM DMReg RegALU

IM DMReg RegALU

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

FIGURE 4.34 Instructions being executed using the single-cycle datapath in Figure 4.33, 
assuming pipelined execution. Similar to Figures 4.28 through 4.30, this fi gure pretends that each 
instruction has its own datapath, and shades each portion according to use. Unlike those fi gures, each stage 
is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in Figure 
4.33. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands for the 
register fi le and sign extender in the instruction decode/register fi le read stage (ID), and so on. To maintain 
proper time order, this stylized datapath breaks the register fi le into two logical parts: registers read during 
register fetch (ID) and registers written during write back (WB). Th is dual use is represented by drawing 
the unshaded left  half of the register fi le using dashed lines in the ID stage, when it is not being written, and 
the unshaded right half in dashed lines in the WB stage, when it is not being read. As before, we assume the 
register fi le is written in the fi rst half of the clock cycle and the register fi le is read during the second half.
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Figure 4.35 shows the pipelined datapath with the pipeline registers high-
lighted. All instructions advance during each clock cycle from one pipeline register 
to the next. Th e registers are named for the two stages separated by that register. 
For example, the pipeline register between the IF and ID stages is called IF/ID.

Notice that there is no pipeline register at the end of the write-back stage. All 
instructions must update some state in the processor—the register fi le, memory, or 
the PC—so a separate pipeline register is redundant to the state that is updated. For 
example, a load instruction will place its result in 1 of the 32 registers, and any later 
instruction that needs that data will simply read the appropriate register.

Of course, every instruction updates the PC, whether by incrementing it or by 
setting it to a branch destination address. Th e PC can be thought of as a pipeline 
register: one that feeds the IF stage of the pipeline. Unlike the shaded pipeline 
registers in Figure 4.35, however, the PC is part of the visible architectural state; 
its contents must be saved when an exception occurs, while the contents of the 
pipeline registers can be discarded. In the laundry analogy, you could think of the 
PC as corresponding to the basket that holds the load of dirty clothes before the 
wash step.

To show how the pipelining works, throughout this chapter we show sequences 
of fi gures to demonstrate operation over time. Th ese extra pages would seem to 
require much more time for you to understand. Fear not; the sequences take much 

Add

Address

Instruction

memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data

memory

Add Add
result

ALU ALU
result

Zero

Shift

left 2

Sign-

extend

PC

4

ID/EXIF/ID EX/MEM

16 32

0
M

u

x
1

0
M

u

x
1

1
M

u

x
0

MEM/WB
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address. We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain 128, 97, and 64 
bits, respectively.
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less time than it might appear, because you can compare them to see what changes 
occur in each clock cycle. Section 4.7 describes what happens when there are data 
hazards between pipelined instructions; ignore them for now.

Figures 4.36 through 4.38, our fi rst sequence, show the active portions of the 
datapath highlighted as a load instruction goes through the fi ve stages of pipelined 
execution. We show a load fi rst because it is active in all fi ve stages. As in Figures 
4.28 through 4.30, we highlight the right half of registers or memory when they are 
being read and highlight the left  half when they are being written.

We show the instruction abbreviation lw with the name of the pipe stage that is 
active in each fi gure. Th e fi ve stages are the following:

1. Instruction fetch: Th e top portion of Figure 4.36 shows the instruction being 
read from memory using the address in the PC and then being placed in the 
IF/ID pipeline register. Th e PC address is incremented by 4 and then written 
back into the PC to be ready for the next clock cycle. Th is incremented 
address is also saved in the IF/ID pipeline register in case it is needed later 
for an instruction, such as beq. Th e computer cannot know which type of 
instruction is being fetched, so it must prepare for any instruction, passing 
potentially needed information down the pipeline.

2. Instruction decode and register fi le read: Th e bottom portion of Figure 4.36 
shows the instruction portion of the IF/ID pipeline register supplying the 
16-bit immediate fi eld, which is sign-extended to 32 bits, and the register 
numbers to read the two registers. All three values are stored in the ID/EX 
pipeline register, along with the incremented PC address. We again transfer 
everything that might be needed by any instruction during a later clock 
cycle.

3. Execute or address calculation: Figure 4.37 shows that the load instruction 
reads the contents of register 1 and the sign-extended immediate from the 
ID/EX pipeline register and adds them using the ALU. Th at sum is placed in 
the EX/MEM pipeline register.

4. Memory access: Th e top portion of Figure 4.38 shows the load instruction 
reading the data memory using the address from the EX/MEM pipeline 
register and loading the data into the MEM/WB pipeline register.

5. Write-back: Th e bottom portion of Figure 4.38 shows the fi nal step: reading 
the data from the MEM/WB pipeline register and writing it into the register 
fi le in the middle of the fi gure.

Th is walk-through of the load instruction shows that any information needed 
in a later pipe stage must be passed to that stage via a pipeline register. Walking 
through a store instruction shows the similarity of instruction execution, as well 
as passing the information for later stages. Here are the fi ve pipe stages of the store 
instruction:
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FIGURE 4.36 IF and ID: First and second pipe stages of an instruction, with the active portions of the datapath in 
Figure 4.35 highlighted. Th e highlighting convention is the same as that used in Figure 4.28. As in Section 4.2, there is no confusion when 
reading and writing registers, because the contents change only on the clock edge. Although the load needs only the top register in stage 2, 
the processor doesn’t know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers into the ID/EX 
pipeline register. We don’t need all three operands, but it simplifi es control to keep all three.
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1. Instruction fetch: Th e instruction is read from memory using the address 
in the PC and then is placed in the IF/ID pipeline register. Th is stage occurs 
before the instruction is identifi ed, so the top portion of Figure 4.36 works 
for store as well as load.

2. Instruction decode and register fi le read: Th e instruction in the IF/ID pipeline 
register supplies the register numbers for reading two registers and extends 
the sign of the 16-bit immediate. Th ese three 32-bit values are all stored 
in the ID/EX pipeline register. Th e bottom portion of Figure 4.36 for load 
instructions also shows the operations of the second stage for stores. Th ese 
fi rst two stages are executed by all instructions, since it is too early to know 
the type of the instruction.

3. Execute and address calculation: Figure 4.39 shows the third step; the 
eff ective address is placed in the EX/MEM pipeline register.

4. Memory access: Th e top portion of Figure 4.40 shows the data being written 
to memory. Note that the register containing the data to be stored was read in 
an earlier stage and stored in ID/EX. Th e only way to make the data available 
during the MEM stage is to place the data into the EX/MEM pipeline register 
in the EX stage, just as we stored the eff ective address into EX/MEM.
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FIGURE 4.37 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure 4.35 
used in this pipe stage. Th e register is added to the sign-extended immediate, and the sum is placed in the EX/MEM pipeline register.
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FIGURE 4.38 MEM and WB: The fourth and fi fth pipe stages of a load instruction, highlighting the portions of the 
datapath in Figure 4.35 used in this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the 
data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB pipeline register and written into the register fi le in the 
middle of the datapath. Note: there is a bug in this design that is repaired in Figure 4.41.



294 Chapter 4 The Processor

5. Write-back: Th e bottom portion of Figure 4.40 shows the fi nal step of the 
store. For this instruction, nothing happens in the write-back stage. Since 
every instruction behind the store is already in progress, we have no way 
to accelerate those instructions. Hence, an instruction passes through a 
stage even if there is nothing to do, because later instructions are already 
progressing at the maximum rate.

Th e store instruction again illustrates that to pass something from an early pipe 
stage to a later pipe stage, the information must be placed in a pipeline register; 
otherwise, the information is lost when the next instruction enters that pipeline 
stage. For the store instruction we needed to pass one of the registers read in the 
ID stage to the MEM stage, where it is stored in memory. Th e data was fi rst placed 
in the ID/EX pipeline register and then passed to the EX/MEM pipeline register.

Load and store illustrate a second key point: each logical component of the 
datapath—such as instruction memory, register read ports, ALU, data memory, 
and register write port—can be used only within a single pipeline stage. Otherwise, 
we would have a structural hazard (see page 277). Hence these components, and 
their control, can be associated with a single pipeline stage.

Now we can uncover a bug in the design of the load instruction. Did you see it? 
Which register is changed in the fi nal stage of the load? More specifi cally, which 
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FIGURE 4.39 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in Figure 4.37, the 
second register value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn’t hurt to always write this 
second register into the EX/MEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to 
understand.
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FIGURE 4.40 MEM and WB: The fourth and fi fth pipe stages of a store instruction. In the fourth stage, the data is written into 
data memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipeline 
register. Once the data is written in memory, there is nothing left  for the store instruction to do, so nothing happens in stage 5.
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instruction supplies the write register number? Th e instruction in the IF/ID pipeline 
register supplies the write register number, yet this instruction occurs considerably 
aft er the load instruction!

Hence, we need to preserve the destination register number in the load 
instruction. Just as store passed the register contents from the ID/EX to the EX/
MEM pipeline registers for use in the MEM stage, load must pass the register 
number from the ID/EX through EX/MEM to the MEM/WB pipeline register for 
use in the WB stage. Another way to think about the passing of the register number 
is that to share the pipelined datapath, we need to preserve the instruction read 
during the IF stage, so each pipeline register contains a portion of the instruction 
needed for that stage and later stages.

Figure 4.41 shows the correct version of the datapath, passing the write register 
number fi rst to the ID/EX register, then to the EX/MEM register, and fi nally to the 
MEM/WB register. Th e register number is used during the WB stage to specify 
the register to be written. Figure 4.42 is a single drawing of the corrected datapath, 
highlighting the hardware used in all fi ve stages of the load word instruction in 
Figures 4.36 through 4.38. See Section 4.8 for an explanation of how to make the 
branch instruction work as expected.

Graphically Representing Pipelines
Pipelining can be diffi  cult to understand, since many instructions are simultaneously 
executing in a single datapath in every clock cycle. To aid understanding, there are 
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two basic styles of pipeline fi gures: multiple-clock-cycle pipeline diagrams, such as 
Figure 4.34 on page 288, and single-clock-cycle pipeline diagrams, such as Figures 
4.36 through 4.40. Th e multiple-clock-cycle diagrams are simpler but do not contain 
all the details. For example, consider the following fi ve-instruction sequence:

lw     $10, 20($1)
sub    $11, $2, $3
add    $12, $3, $4
lw     $13, 24($1)
add    $14, $5, $6

Figure 4.43 shows the multiple-clock-cycle pipeline diagram for these 
instructions. Time advances from left  to right across the page in these diagrams, 
and instructions advance from the top to the bottom of the page, similar to the 
laundry pipeline in Figure 4.25. A representation of the pipeline stages is placed 
in each portion along the instruction axis, occupying the proper clock cycles. 
Th ese stylized datapaths represent the fi ve stages of our pipeline graphically, but 
a rectangle naming each pipe stage works just as well. Figure 4.44 shows the more 
traditional version of the multiple-clock-cycle pipeline diagram. Note that Figure 
4.43 shows the physical resources used at each stage, while Figure 4.44 uses the 
name of each stage.

Single-clock-cycle pipeline diagrams show the state of the entire datapath during 
a single clock cycle, and usually all fi ve instructions in the pipeline are identifi ed by 
labels above their respective pipeline stages. We use this type of fi gure to show the 
details of what is happening within the pipeline during each clock cycle; typically, 
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the drawings appear in groups to show pipeline operation over a sequence of 
clock cycles. We use multiple-clock-cycle diagrams to give overviews of pipelining 
situations. (  Section 4.13 gives more illustrations of single-clock diagrams 
if you would like to see more details about Figure 4.43.) A single-clock-cycle 
diagram represents a vertical slice through a set of multiple-clock-cycle diagrams, 
showing the usage of the datapath by each of the instructions in the pipeline at 
the designated clock cycle. For example, Figure 4.45 shows the single-clock-cycle 
diagram corresponding to clock cycle 5 of Figures 4.43 and 4.44. Obviously, the 
single-clock-cycle diagrams have more detail and take signifi cantly more space 
to show the same number of clock cycles. Th e exercises ask you to create such 
diagrams for other code sequences.

A group of students were debating the effi  ciency of the fi ve-stage pipeline when 
one student pointed out that not all instructions are active in every stage of the 
pipeline. Aft er deciding to ignore the eff ects of hazards, they made the following 
four statements. Which ones are correct?
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FIGURE 4.43 Multiple-clock-cycle pipeline diagram of fi ve instructions. Th is style of pipeline representation shows the complete 
execution of instructions in a single fi gure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move 
from left  to right. Unlike Figure 4.28, here we show the pipeline registers between each stage. Figure 4.44 shows the traditional way to draw 
this diagram.
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FIGURE 4.44 Traditional multiple-clock-cycle pipeline diagram of fi ve instructions in Figure 4.43.
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FIGURE 4.45 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and 4.44. 
As you can see, a single-clock-cycle fi gure is a vertical slice through a multiple-clock-cycle diagram.

1. Allowing jumps, branches, and ALU instructions to take fewer stages than 
the fi ve required by the load instruction will increase pipeline performance 
under all circumstances.
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2. Trying to allow some instructions to take fewer cycles does not help, since 
the throughput is determined by the clock cycle; the number of pipe stages 
per instruction aff ects latency, not throughput.

3. You cannot make ALU instructions take fewer cycles because of the write-
back of the result, but branches and jumps can take fewer cycles, so there is 
some opportunity for improvement.

4. Instead of trying to make instructions take fewer cycles, we should explore 
making the pipeline longer, so that instructions take more cycles, but the 
cycles are shorter. Th is could improve performance.

Pipelined Control
Just as we added control to the single-cycle datapath in Section 4.3, we now add 
control to the pipelined datapath. We start with a simple design that views the 
problem through rose-colored glasses.

Th e fi rst step is to label the control lines on the existing datapath. Figure 4.46 
shows those lines. We borrow as much as we can from the control for the simple 
datapath in Figure 4.17. In particular, we use the same ALU control logic, branch 
logic, destination-register-number multiplexor, and control lines. Th ese functions 
are defi ned in Figures 4.12, 4.16, and 4.18. We reproduce the key information in 
Figures 4.47 through 4.49 on a single page to make the following discussion easier 
to follow.

As was the case for the single-cycle implementation, we assume that the PC is 
written on each clock cycle, so there is no separate write signal for the PC. By the 
same argument, there are no separate write signals for the pipeline registers (IF/
ID, ID/EX, EX/MEM, and MEM/WB), since the pipeline registers are also written 
during each clock cycle.

To specify control for the pipeline, we need only set the control values during 
each pipeline stage. Because each control line is associated with a component active 
in only a single pipeline stage, we can divide the control lines into fi ve groups 
according to the pipeline stage.

1. Instruction fetch: Th e control signals to read instruction memory and to 
write the PC are always asserted, so there is nothing special to control in this 
pipeline stage.

2. Instruction decode/register fi le read: As in the previous stage, the same thing 
happens at every clock cycle, so there are no optional control lines to set.

3. Execution/address calculation: Th e signals to be set are RegDst, ALUOp, 
and ALUSrc (see Figures 4.47 and 4.48). Th e signals select the Result register, 
the ALU operation, and either Read data 2 or a sign-extended immediate 
for the ALU.

In the 6600 Computer, 
perhaps even more 
than in any previous 
computer, the control 
system is the diff erence.
James Th ornton, Design 
of a Computer: Th e 
Control Data 6600, 1970
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FIGURE 4.46 The pipelined datapath of Figure 4.41 with the control signals identifi ed. Th is datapath borrows the control 
logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now need the 6-bit funct fi eld (function 
code) of the instruction in the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that 
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Instruction 
opcode ALUOp

Instruction 
operation Function code

Desired 
ALU action

ALU control 
input

LW 00 load word XXXXXX add 0010

SW 00 store word XXXXXX add 0010

Branch equal 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 AND 100100 AND 0000

R-type 10 OR 100101 OR 0001

R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.47 A copy of Figure 4.12. Th is fi gure shows how the ALU control bits are set depending on the ALUOp control bits and the 
diff erent function codes for the R-type instruction.
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4. Memory access: Th e control lines set in this stage are Branch, MemRead, and 
MemWrite. Th e branch equal, load, and store instructions set these signals, 
respectively. Recall that PCSrc in Figure 4.48 selects the next sequential 
address unless control asserts Branch and the ALU result was 0.

5. Write-back: Th e two control lines are MemtoReg, which decides between 
sending the ALU result or the memory value to the register fi le, and Reg-
Write, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines unchanged, 
we can use the same control values. Figure 4.49 has the same values as in Section 
4.4, but now the nine control lines are grouped by pipeline stage.

Signal name Effect when deasserted (0) Effect when asserted (1)

RegDst The register destination number for the Write 
register comes from the rt field (bits 20:16).

The register destination number for the Write register comes 
from the rd field (bits 15:11).

RegWrite None. The register on the Write register input is written with the value 
on the Write data input. 

ALUSrc The second ALU operand comes from the second 
register file output (Read data 2).

The second ALU operand is the sign-extended, lower 16 bits of 
the instruction.

PCSrc The PC is replaced by the output of the adder that 
computes the value of PC + 4.

The PC is replaced by the output of the adder that computes 
the branch target.

MemRead None. Data memory contents designated by the address input are 
put on the Read data output. 

MemWrite None. Data memory contents designated by the address input are 
replaced by the value on the Write data input.

MemtoReg The value fed to the register Write data input 
comes from the ALU.

The value fed to the register Write data input comes from the 
data memory.

FIGURE 4.48 A copy of Figure 4.16. Th e function of each of seven control signals is defi ned. Th e ALU control lines (ALUOp) are defi ned 
in the second column of Figure 4.47. When a 1-bit control to a 2-way multiplexor is asserted, the multiplexor selects the input corresponding 
to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in Figure 4.46. 
If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only during a beq 
instruction; otherwise, PCSrc is set to 0.

Instruction

Execution/address calculation stage 
control lines

Memory access stage 
control lines

Write-back stage 
control lines

RegDst ALUOp1 ALUOp0 ALUSrc  Branch
 Mem- 
Read

Mem- 
Write

Reg- 
Write

Memto- 
Reg

R-format 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

FIGURE 4.49 The values of the control lines are the same as in Figure 4.18, but they have been shuffl ed into three 
groups corresponding to the last three pipeline stages.
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Implementing control means setting the nine control lines to these values in 
each stage for each instruction. Th e simplest way to do this is to extend the pipeline 
registers to include control information.

Since the control lines start with the EX stage, we can create the control 
information during instruction decode. Figure 4.50 above shows that these control 
signals are then used in the appropriate pipeline stage as the instruction moves 
down the pipeline, just as the destination register number for loads moves down 
the pipeline in Figure 4.41. Figure 4.51 shows the full datapath with the extended 
pipeline registers and with the control lines connected to the proper stage. 
(  Section 4.13 gives more examples of MIPS code executing on pipelined 
hardware using single-clock diagrams, if you would like to see more details.)

 4.7 Data Hazards: Forwarding versus Stalling

Th e examples in the previous section show the power of pipelined execution and 
how the hardware performs the task. It’s now time to take off  the rose-colored 
glasses and look at what happens with real programs. Th e instructions in Figures 
4.43 through 4.45 were independent; none of them used the results calculated 
by any of the others. Yet in Section 4.5, we saw that data hazards are obstacles to 
pipelined execution.

WB

M

EX

WB

M WB

Control

IF/ID ID/EX EX/MEM MEM/WB

Instruction

FIGURE 4.50 The control lines for the fi nal three stages. Note that four of the nine control lines 
are used in the EX phase, with the remaining fi ve control lines passed on to the EX/MEM pipeline register 
extended to hold the control lines; three are used during the MEM stage, and the last two are passed to MEM/
WB for use in the WB stage.

What do you mean, 
why’s it got to be built? 
It’s a bypass. You’ve got 
to build bypasses.
Douglas Adams, Th e 
Hitchhiker’s Guide to the 
Galaxy, 1979
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Let’s look at a sequence with many dependences, shown in color:

sub   $2, $1,$3      # Register $2 written by sub
and   $12,$2,$5      # 1st operand($2) depends on sub
or    $13,$6,$2      # 2nd operand($2) depends on sub
add   $14,$2,$2      # 1st($2) & 2nd($2) depend on sub
sw    $15,100($2)    # Base ($2) depends on sub

Th e last four instructions are all dependent on the result in register $2 of the 
fi rst instruction. If register $2 had the value 10 before the subtract instruction and 
−20 aft erwards, the programmer intends that −20 will be used in the following 
instructions that refer to register $2.
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FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control signals connected to the control portions of 
the pipeline registers. Th e control values for the last three stages are created during the instruction decode stage and then placed in the 
ID/EX pipeline register. Th e control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.
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How would this sequence perform with our pipeline? Figure 4.52 illustrates the 
execution of these instructions using a multiple-clock-cycle pipeline representation. 
To demonstrate the execution of this instruction sequence in our current pipeline, 
the top of Figure 4.52 shows the value of register $2, which changes during the 
middle of clock cycle 5, when the sub instruction writes its result.

Th e last potential hazard can be resolved by the design of the register fi le 
hardware: What happens when a register is read and written in the same clock 
cycle? We assume that the write is in the fi rst half of the clock cycle and the read 
is in the second half, so the read delivers what is written. As is the case for many 
implementations of register fi les, we have no data hazard in this case.

Figure 4.52 shows that the values read for register $2 would not be the result of 
the sub instruction unless the read occurred during clock cycle 5 or later. Th us, the 
instructions that would get the correct value of −20 are add and sw; the AND and 
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sub $2, $1, $3

and $12, $2, $5 

or $13, $6, $2
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IM DMReg Reg
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register $2: 10/–20 –20 –20 –20 –20

FIGURE 4.52 Pipelined dependences in a fi ve-instruction sequence using simplifi ed datapaths to show the 
dependences. All the dependent actions are shown in color, and “CC 1” at the top of the fi gure means clock cycle 1. Th e fi rst instruction 
writes into $2, and all the following instructions read $2. Th is register is written in clock cycle 5, so the proper value is unavailable before clock 
cycle 5. (A read of a register during a clock cycle returns the value written at the end of the fi rst half of the cycle, when such a write occurs.) Th e 
colored lines from the top datapath to the lower ones show the dependences. Th ose that must go backward in time are pipeline data hazards.
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OR instructions would get the incorrect value 10! Using this style of drawing, such 
problems become apparent when a dependence line goes backward in time.

As mentioned in Section 4.5, the desired result is available at the end of the 
EX stage or clock cycle 3. When is the data actually needed by the AND and OR 
instructions? At the beginning of the EX stage, or clock cycles 4 and 5, respectively. 
Th us, we can execute this segment without stalls if we simply forward the data as 
soon as it is available to any units that need it before it is available to read from the 
register fi le.

How does forwarding work? For simplicity in the rest of this section, we consider 
only the challenge of forwarding to an operation in the EX stage, which may be 
either an ALU operation or an eff ective address calculation. Th is means that when 
an instruction tries to use a register in its EX stage that an earlier instruction 
intends to write in its WB stage, we actually need the values as inputs to the ALU.

A notation that names the fi elds of the pipeline registers allows for a more 
precise notation of dependences. For example, “ID/EX.RegisterRs” refers to the 
number of one register whose value is found in the pipeline register ID/EX; that is, 
the one from the fi rst read port of the register fi le. Th e fi rst part of the name, to the 
left  of the period, is the name of the pipeline register; the second part is the name of 
the fi eld in that register. Using this notation, the two pairs of hazard conditions are

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Th e fi rst hazard in the sequence on page 304 is on register $2, between the 
result of sub $2,$1,$3 and the fi rst read operand of and $12,$2,$5. Th is 
hazard can be detected when the and instruction is in the EX stage and the prior 
instruction is in the MEM stage, so this is hazard 1a:

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

Dependence Detection

Classify the dependences in this sequence from page 304:

   sub $2,   $1, $3  # Register $2 set by sub
   and $12,  $2, $5  # 1st operand($2) set by sub
   or  $13,  $6, $2  # 2nd operand($2) set by sub
   add $14,  $2, $2  # 1st($2) & 2nd($2) set by sub
   sw  $15,  100($2) # Index($2) set by sub

EXAMPLE
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As mentioned above, the sub-and is a type 1a hazard. Th e remaining hazards 
are as follows:

■ Th e sub-or is a type 2b hazard:

MEM/WB.RegisterRd = ID/EX.RegisterRt = $2

■ Th e two dependences on sub-add are not hazards because the register 
fi le supplies the proper data during the ID stage of add.

■ Th ere is no data hazard between sub and sw because sw reads $2 the 
clock cycle aft er sub writes $2.

Because some instructions do not write registers, this policy is inaccurate; 
sometimes it would forward when it shouldn’t. One solution is simply to check 
to see if the RegWrite signal will be active: examining the WB control fi eld of the 
pipeline register during the EX and MEM stages determines whether RegWrite 
is asserted. Recall that MIPS requires that every use of $0 as an operand must 
yield an operand value of 0. In the event that an instruction in the pipeline has 
$0 as its destination (for example, sll $0, $1, 2), we want to avoid forwarding 
its possibly nonzero result value. Not forwarding results destined for $0 frees the 
assembly programmer and the compiler of any requirement to avoid using $0 as 
a destination. Th e conditions above thus work properly as long we add EX/MEM.
RegisterRd ≠ 0 to the fi rst hazard condition and MEM/WB.RegisterRd ≠ 0 to the 
second.

Now that we can detect hazards, half of the problem is resolved—but we must 
still forward the proper data.

Figure 4.53 shows the dependences between the pipeline registers and the inputs 
to the ALU for the same code sequence as in Figure 4.52. Th e change is that the 
dependence begins from a pipeline register, rather than waiting for the WB stage to 
write the register fi le. Th us, the required data exists in time for later instructions, 
with the pipeline registers holding the data to be forwarded.

If we can take the inputs to the ALU from any pipeline register rather than just 
ID/EX, then we can forward the proper data. By adding multiplexors to the input 
of the ALU, and with the proper controls, we can run the pipeline at full speed in 
the presence of these data dependences.

For now, we will assume the only instructions we need to forward are the four 
R-format instructions: add, sub, AND, and OR. Figure 4.54 shows a close-up of 
the ALU and pipeline register before and aft er adding forwarding. Figure 4.55 
shows the values of the control lines for the ALU multiplexors that select either the 
register fi le values or one of the forwarded values.

Th is forwarding control will be in the EX stage, because the ALU forwarding 
multiplexors are found in that stage. Th us, we must pass the operand register 
numbers from the ID stage via the ID/EX pipeline register to determine whether 
to forward values. We already have the rt fi eld (bits 20–16). Before forwarding, the 
ID/EX register had no need to include space to hold the rs fi eld. Hence, rs (bits 
25–21) is added to ID/EX.

ANSWER
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Let’s now write both the conditions for detecting hazards and the control signals 
to resolve them:

1. EX hazard:

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd ≠  0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd ≠  0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

Program
execution
order
(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2 , $2

sw $15, 100($2)
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10 10 10 10         10/–20        –20          –20          –20          –20Value of register $2:
Value of EX/MEM:        X        X        X      –20         X        X        X        X        X
Value of MEM/WB:         X         X         X         X        –20         X         X         X         X

FIGURE 4.53 The dependences between the pipeline registers move forward in time, so it is possible to supply the 
inputs to the ALU needed by the AND instruction and OR instruction by forwarding the results found in the pipeline 
registers. Th e values in the pipeline registers show that the desired value is available before it is written into the register fi le. We assume that 
the register fi le forwards values that are read and written during the same clock cycle, so the add does not stall, but the values come from the 
register fi le instead of a pipeline register. Register fi le “forwarding”—that is, the read gets the value of the write in that clock cycle—is why clock 
cycle 5 shows register $2 having the value 10 at the beginning and −20 at the end of the clock cycle. As in the rest of this section, we handle all 
forwarding except for the value to be stored by a store instruction.
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FIGURE 4.54 On the top are the ALU and pipeline registers before adding forwarding. On 
the bottom, the multiplexors have been expanded to add the forwarding paths, and we show the forwarding 
unit. Th e new hardware is shown in color. Th is fi gure is a stylized drawing, however, leaving out details 
from the full datapath such as the sign extension hardware. Note that the ID/EX.RegisterRt fi eld is shown 
twice, once to connect to the Mux and once to the forwarding unit, but it is a single signal. As in the earlier 
discussion, this ignores forwarding of a store value to a store instruction. Also note that this mechanism 
works for slt instructions as well.
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Note that the EX/MEM.RegisterRd fi eld is the register destination for either 
an ALU instruction (which comes from the Rd fi eld of the instruction) or a load 
(which comes from the Rt fi eld).

Th is case forwards the result from the previous instruction to either input of the 
ALU. If the previous instruction is going to write to the register fi le, and the write 
register number matches the read register number of ALU inputs A or B, provided 
it is not register 0, then steer the multiplexor to pick the value instead from the 
pipeline register EX/MEM.

2. MEM hazard:

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠  0)
and ( MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠  0)
and  (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

As mentioned above, there is no hazard in the WB stage, because we assume that 
the register fi le supplies the correct result if the instruction in the ID stage reads 
the same register written by the instruction in the WB stage. Such a register fi le 
performs another form of forwarding, but it occurs within the register fi le.

One complication is potential data hazards between the result of the instruction 
in the WB stage, the result of the instruction in the MEM stage, and the source 
operand of the instruction in the ALU stage. For example, when summing a vector 
of numbers in a single register, a sequence of instructions will all read and write to 
the same register:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4
. . .

Mux control Source Explanation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier 
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an 
earlier ALU result.

FIGURE 4.55 The control values for the forwarding multiplexors in Figure 4.54. Th e signed 
immediate that is another input to the ALU is described in the Elaboration at the end of this section.
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In this case, the result is forwarded from the MEM stage because the result in the 
MEM stage is the more recent result. Th us, the control for the MEM hazard would 
be (with the additions highlighted):

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠  0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠  0)
       and (EX/MEM.RegisterRd ≠  ID/EX.RegisterRs))
and  (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠  0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠  0)
       and (EX/MEM.RegisterRd ≠  ID/EX.RegisterRt))
and  (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

Figure 4.56 shows the hardware necessary to support forwarding for operations 
that use results during the EX stage. Note that the EX/MEM.RegisterRd fi eld is the 
register destination for either an ALU instruction (which comes from the Rd fi eld 
of the instruction) or a load (which comes from the Rt fi eld).

FIGURE 4.56 The datapath modifi ed to resolve hazards via forwarding. Compared with the datapath in Figure 4.51, the additions 
are the multiplexors to the inputs to the ALU. Th is fi gure is a more stylized drawing, however, leaving out details from the full datapath, such 
as the branch hardware and the sign extension hardware.

M

WB

WB

Registers

Instruction
memory

M
u
x

M
u
xM

u
x

M
u
x

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rs
Rt
Rt
Rd

PC

Control

EX

M

WB

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRd

In
st

ru
ct

io
n

IF/ID

Data
memory



312 Chapter 4 The Processor

 Section 4.13 shows two pieces of MIPS code with hazards that cause 
forwarding, if you would like to see more illustrated examples using single-cycle 
pipeline drawings.

Elaboration: Forwarding can also help with hazards when store instructions are 
dependent on other instructions. Since they use just one data value during the MEM 
stage, forwarding is easy. However, consider loads immediately followed by stores, useful 
when performing memory-to-memory copies in the MIPS architecture. Since copies are 
frequent, we need to add more forwarding hardware to make them run faster. If we were 
to redraw Figure 4.53, replacing the sub and AND instructions with lw and sw, we would 
see that it is possible to avoid a stall, since the data exists in the MEM/WB register of 
a load instruction in time for its use in the MEM stage of a store instruction. We would 
need to add forwarding into the memory access stage for this option. We leave this 
modifi cation as an exercise to the reader.

In addition, the signed-immediate input to the ALU, needed by loads and stores, is 
missing from the datapath in Figure 4.56. Since central control decides between register 
and immediate, and since the forwarding unit chooses the pipeline register for a register 
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FIGURE 4.57 A close-up of the datapath in Figure 4.54 shows a 2:1 multiplexor, which has been added to select the 
signed immediate as an ALU input.
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input to the ALU, the easiest solution is to add a 2:1 multiplexor that chooses between 
the ForwardB multiplexor output and the signed immediate. Figure 4.57 shows this 
addition.

Data Hazards and Stalls
As we said in Section 4.5, one case where forwarding cannot save the day is when 
an instruction tries to read a register following a load instruction that writes 
the same register. Figure 4.58 illustrates the problem. Th e data is still being read 
from memory in clock cycle 4 while the ALU is performing the operation for the 
following instruction. Something must stall the pipeline for the combination of 
load followed by an instruction that reads its result.

Hence, in addition to a forwarding unit, we need a hazard detection unit. It 
operates during the ID stage so that it can insert the stall between the load and its 

Program
execution
order
(in instructions)

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6 

add $9, $4, $2 

slt $1, $6, $7

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and) 
goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.

If at fi rst you don’t 
succeed, redefi ne 
success.
Anonymous
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use. Checking for load instructions, the control for the hazard detection unit is this 
single condition:

if (ID/EX.MemRead and
   ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
     (ID/EX.RegisterRt = IF/ID.RegisterRt)))
     stall the pipeline

Th e fi rst line tests to see if the instruction is a load: the only instruction that reads 
data memory is a load. Th e next two lines check to see if the destination register 
fi eld of the load in the EX stage matches either source register of the instruction 
in the ID stage. If the condition holds, the instruction stalls one clock cycle. Aft er 
this 1-cycle stall, the forwarding logic can handle the dependence and execution 
proceeds. (If there were no forwarding, then the instructions in Figure 4.58 would 
need another stall cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF stage 
must also be stalled; otherwise, we would lose the fetched instruction. Preventing 
these two instructions from making progress is accomplished simply by preventing 
the PC register and the IF/ID pipeline register from changing. Provided these 
registers are preserved, the instruction in the IF stage will continue to be read 
using the same PC, and the registers in the ID stage will continue to be read using 
the same instruction fi elds in the IF/ID pipeline register. Returning to our favorite 
analogy, it’s as if you restart the washer with the same clothes and let the dryer 
continue tumbling empty. Of course, like the dryer, the back half of the pipeline 
starting with the EX stage must be doing something; what it is doing is executing 
instructions that have no eff ect: nops.

How can we insert these nops, which act like bubbles, into the pipeline? In Figure 
4.49, we see that deasserting all nine control signals (setting them to 0) in the EX, 
MEM, and WB stages will create a “do nothing” or nop instruction. By identifying 
the hazard in the ID stage, we can insert a bubble into the pipeline by changing the 
EX, MEM, and WB control fi elds of the ID/EX pipeline register to 0. Th ese benign 
control values are percolated forward at each clock cycle with the proper eff ect: no 
registers or memories are written if the control values are all 0.

Figure 4.59 shows what really happens in the hardware: the pipeline execution 
slot associated with the AND instruction is turned into a nop and all instructions 
beginning with the AND instruction are delayed one cycle. Like an air bubble in 
a water pipe, a stall bubble delays everything behind it and proceeds down the 
instruction pipe one stage each cycle until it exits at the end. In this example, the 
hazard forces the AND and OR instructions to repeat in clock cycle 4 what they 
did in clock cycle 3: AND reads registers and decodes, and OR is refetched from 
instruction memory. Such repeated work is what a stall looks like, but its eff ect is 
to stretch the time of the AND and OR instructions and delay the fetch of the add 
instruction.

Figure 4.60 highlights the pipeline connections for both the hazard detection 
unit and the forwarding unit. As before, the forwarding unit controls the ALU 

nop An instruction that 
does no operation to 
change state.
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multiplexors to replace the value from a general-purpose register with the value 
from the proper pipeline register. Th e hazard detection unit controls the writing 
of the PC and IF/ID registers plus the multiplexor that chooses between the real 
control values and all 0s. Th e hazard detection unit stalls and deasserts the control 
fi elds if the load-use hazard test above is true.  Section 4.13 gives an example of 
MIPS code with hazards that causes stalling, illustrated using single-clock pipeline 
diagrams, if you would like to see more details.

Although the compiler generally relies upon the hardware to resolve hazards 
and thereby ensure correct execution, the compiler must understand the 
pipeline to achieve the best performance. Otherwise, unexpected stalls 
will reduce the performance of the compiled code.

The BIG
Picture

bubble

Program
execution
order
(in instructions)

lw $2, 20($1)

and becomes nop

and $4, $2, $5

or $8, $2, $6 

add $9, $4, $2

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

FIGURE 4.59 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing the 
and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed until 
clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed 
until clock cycle 5 (versus the unstalled clock cycle 4 position). Aft er insertion of the bubble, all the dependences go forward in time and no 
further hazards occur.
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Elaboration: Regarding the remark earlier about setting control lines to 0 to avoid 
writing registers or memory: only the signals RegWrite and MemWrite need be 0, while 
the other control signals can be don’t cares.

 4.8 Control Hazards

Th us far, we have limited our concern to hazards involving arithmetic operations 
and data transfers. However, as we saw in Section 4.5, there are also pipeline hazards 
involving branches. Figure 4.61 shows a sequence of instructions and indicates when 
the branch would occur in this pipeline. An instruction must be fetched at every 
clock cycle to sustain the pipeline, yet in our design the decision about whether to 
branch doesn’t occur until the MEM pipeline stage. As mentioned in Section 4.5, 
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FIGURE 4.60 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection unit, and 
the forwarding unit. Although the ID and EX stages have been simplifi ed—the sign-extended immediate and branch logic are missing—
this drawing gives the essence of the forwarding hardware requirements.

Th ere are a thousand 
hacking at the 
branches of evil to one 
who is striking at the 
root.
Henry David Th oreau, 
Walden, 1854
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this delay in determining the proper instruction to fetch is called a control hazard 
or branch hazard, in contrast to the data hazards we have just examined.

Th is section on control hazards is shorter than the previous sections on data 
hazards. Th e reasons are that control hazards are relatively simple to understand, 
they occur less frequently than data hazards, and there is nothing as eff ective 
against control hazards as forwarding is against data hazards. Hence, we use 
simpler schemes. We look at two schemes for resolving control hazards and one 
optimization to improve these schemes.

Reg

Program
execution
order
(in instructions)

40 beq $1, $3, 28

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DM Reg

IM DMReg Reg

IM DMReg Reg

FIGURE 4.61 The impact of the pipeline on the branch instruction. Th e numbers to the left  of the instruction (40, 44, …) 
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq 
instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those 
three following instructions will begin execution before beq branches to lw at location 72. (Figure 4.31 assumed extra hardware to reduce the 
control hazard to one clock cycle; this fi gure uses the nonoptimized datapath.)
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Assume Branch Not Taken
As we saw in Section 4.5, stalling until the branch is complete is too slow. One 
improvement over branch stalling is to predict that the branch will not be taken 
and thus continue execution down the sequential instruction stream. If the branch 
is taken, the instructions that are being fetched and decoded must be discarded. 
Execution continues at the branch target. If branches are untaken half the time, 
and if it costs little to discard the instructions, this optimization halves the cost of 
control hazards. 

To discard instructions, we merely change the original control values to 0s, much 
as we did to stall for a load-use data hazard. Th e diff erence is that we must also 
change the three instructions in the IF, ID, and EX stages when the branch reaches 
the MEM stage; for load-use stalls, we just change control to 0 in the ID stage and 
let them percolate through the pipeline. Discarding instructions, then, means we 
must be able to fl ush instructions in the IF, ID, and EX stages of the pipeline.

Reducing the Delay of Branches
One way to improve branch performance is to reduce the cost of the taken branch. 
Th us far, we have assumed the next PC for a branch is selected in the MEM 
stage, but if we move the branch execution earlier in the pipeline, then fewer 
instructions need be fl ushed. Th e MIPS architecture was designed to support fast 
single-cycle branches that could be pipelined with a small branch penalty. Th e 
designers observed that many branches rely only on simple tests (equality or sign, 
for example) and that such tests do not require a full ALU operation but can be 
done with at most a few gates. When a more complex branch decision is required, 
a separate instruction that uses an ALU to perform a comparison is required—a 
situation that is similar to the use of condition codes for branches (see Chapter 2).

Moving the branch decision up requires two actions to occur earlier: computing 
the branch target address and evaluating the branch decision. Th e easy part of 
this change is to move up the branch address calculation. We already have the PC 
value and the immediate fi eld in the IF/ID pipeline register, so we just move the 
branch adder from the EX stage to the ID stage; of course, the branch target address 
calculation will be performed for all instructions, but only used when needed.

Th e harder part is the branch decision itself. For branch equal, we would compare 
the two registers read during the ID stage to see if they are equal. Equality can be 
tested by fi rst exclusive ORing their respective bits and then ORing all the results. 
Moving the branch test to the ID stage implies additional forwarding and hazard 
detection hardware, since a branch dependent on a result still in the pipeline must 
still work properly with this optimization. For example, to implement branch on 
equal (and its inverse), we will need to forward results to the equality test logic that 
operates during ID. Th ere are two complicating factors:

1. During ID, we must decode the instruction, decide whether a bypass to the 
equality unit is needed, and complete the equality comparison so that if 
the instruction is a branch, we can set the PC to the branch target address. 

fl ush To discard 
instructions in a pipeline, 
usually due to an 
unexpected event.
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Forwarding for the operands of branches was formerly handled by the ALU 
forwarding logic, but the introduction of the equality test unit in ID will 
require new forwarding logic. Note that the bypassed source operands of a 
branch can come from either the ALU/MEM or MEM/WB pipeline latches.

2. Because the values in a branch comparison are needed during ID but may be 
produced later in time, it is possible that a data hazard can occur and a stall 
will be needed. For example, if an ALU instruction immediately preceding 
a branch produces one of the operands for the comparison in the branch, 
a stall will be required, since the EX stage for the ALU instruction will 
occur aft er the ID cycle of the branch. By extension, if a load is immediately 
followed by a conditional branch that is on the load result, two stall cycles 
will be needed, as the result from the load appears at the end of the MEM 
cycle but is needed at the beginning of ID for the branch.

Despite these diffi  culties, moving the branch execution to the ID stage is an 
improvement, because it reduces the penalty of a branch to only one instruction if 
the branch is taken, namely, the one currently being fetched. Th e exercises explore 
the details of implementing the forwarding path and detecting the hazard.

To fl ush instructions in the IF stage, we add a control line, called IF.Flush, 
that zeros the instruction fi eld of the IF/ID pipeline register. Clearing the register 
transforms the fetched instruction into a nop, an instruction that has no action 
and changes no state.

Pipelined Branch

Show what happens when the branch is taken in this instruction sequence, 
assuming the pipeline is optimized for branches that are not taken and that we 
moved the branch execution to the ID stage:

36 sub $10, $4, $8
40 beq $1, $3, 7 # PC-relative branch to 40  + 4 + 7 * 4 = 72
44 and $12, $2, $5
48 or  $13, $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7
. . .
72 lw $4, 50($7)

Figure 4.62 shows what happens when a branch is taken. Unlike Figure 4.61, 
there is only one pipeline bubble on a taken branch.

EXAMPLE

ANSWER
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FIGURE 4.62 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC 
address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at location 72 being 
fetched and the single bubble or nop instruction in the pipeline as a result of the taken branch. (Since the nop is really sll $0, $0, 0, it’s 
arguable whether or not the ID stage in clock 4 should be highlighted.)
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Dynamic Branch Prediction
Assuming a branch is not taken is one simple form of branch prediction. In that case, 
we predict that branches are untaken, fl ushing the pipeline when we are wrong. For 
the simple fi ve-stage pipeline, such an approach, possibly coupled with compiler-
based prediction, is probably adequate. With deeper pipelines, the branch penalty 
increases when measured in clock cycles. Similarly, with multiple issue (see Section 
4.10), the branch penalty increases in terms of instructions lost. Th is combination 
means that in an aggressive pipeline, a simple static prediction scheme will probably 
waste too much performance. As we mentioned in Section 4.5, with more hardware 
it is possible to try to predict branch behavior during program execution. 

One approach is to look up the address of the instruction to see if a branch was 
taken the last time this instruction was executed, and, if so, to begin fetching new 
instructions from the same place as the last time. Th is technique is called dynamic 
branch prediction. 

One implementation of that approach is a branch prediction buff er or branch 
history table. A branch prediction buff er is a small memory indexed by the lower 
portion of the address of the branch instruction. Th e memory contains a bit that 
says whether the branch was recently taken or not.

Th is is the simplest sort of buff er; we don’t know, in fact, if the prediction is 
the right one—it may have been put there by another branch that has the same 
low-order address bits. However, this doesn’t aff ect correctness. Prediction is just 
a hint that we hope is correct, so fetching begins in the predicted direction. If the 
hint turns out to be wrong, the incorrectly predicted instructions are deleted, the 
prediction bit is inverted and stored back, and the proper sequence is fetched and 
executed.

Th is simple 1-bit prediction scheme has a performance shortcoming: even if a 
branch is almost always taken, we can predict incorrectly twice, rather than once, 
when it is not taken. Th e following example shows this dilemma.

Loops and Prediction

Consider a loop branch that branches nine times in a row, then is not taken 
once. What is the prediction accuracy for this branch, assuming the prediction 
bit for this branch remains in the prediction buff er?

Th e steady-state prediction behavior will mispredict on the fi rst and last loop 
iterations. Mispredicting the last iteration is inevitable since the prediction 
bit will indicate taken, as the branch has been taken nine times in a row at 
that point. Th e misprediction on the fi rst iteration happens because the bit is 
fl ipped on prior execution of the last iteration of the loop, since the branch 
was not taken on that exiting iteration. Th us, the prediction accuracy for this 

dynamic branch 
prediction Prediction of 
branches at runtime using 
runtime information.
branch prediction 
buff er Also called 
branch history table. 
A small memory that 
is indexed by the lower 
portion of the address of 
the branch instruction 
and that contains one 
or more bits indicating 
whether the branch was 
recently taken or not.
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branch that is taken 90% of the time is only 80% (two incorrect predictions and 
eight correct ones).

Ideally, the accuracy of the predictor would match the taken branch frequency for 
these highly regular branches. To remedy this weakness, 2-bit prediction schemes 
are oft en used. In a 2-bit scheme, a prediction must be wrong twice before it is 
changed. Figure 4.63 shows the fi nite-state machine for a 2-bit prediction scheme.

A branch prediction buff er can be implemented as a small, special buff er accessed 
with the instruction address during the IF pipe stage. If the instruction is predicted 
as taken, fetching begins from the target as soon as the PC is known; as mentioned 
on page 318, it can be as early as the ID stage. Otherwise, sequential fetching and 
executing continue. If the prediction turns out to be wrong, the prediction bits are 
changed as shown in Figure 4.63.

Elaboration: As we described in Section 4.5, in a fi ve-stage pipeline we can make the 
control hazard a feature by redefi ning the branch. A delayed branch always executes the 
following instruction, but the second instruction following the branch will be affected by 
the branch.

Compilers and assemblers try to place an instruction that always executes after the 
branch in the branch delay slot. The job of the software is to make the successor 
instructions valid and useful. Figure 4.64 shows the three ways in which the branch 
delay slot can be scheduled.

branch delay slot Th e 
slot directly aft er 
a delayed branch 
instruction, which in the 
MIPS architecture is fi lled 
by an instruction that 
does not aff ect the branch.

Predict taken

Not taken

Not taken

Not taken

Not taken

Taken

Taken

Taken

Taken

Predict not takenPredict not taken

Predict taken

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that 
strongly favors taken or not taken—as many branches do—will be mispredicted only once. Th e 2 bits are used 
to encode the four states in the system. Th e 2-bit scheme is a general instance of a counter-based predictor, 
which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of 
its range as the division between taken and not taken.
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The limitations on delayed branch scheduling arise from (1) the restrictions on the 
instructions that are scheduled into the delay slots and (2) our ability to predict at 
compile time whether a branch is likely to be taken or not.

Delayed branching was a simple and effective solution for a fi ve-stage pipeline 
issuing one instruction each clock cycle. As processors go to both longer pipelines 
and issuing multiple instructions per clock cycle (see Section 4.10), the branch delay 
becomes longer, and a single delay slot is insuffi cient. Hence, delayed branching has 
lost popularity compared to more expensive but more fl exible dynamic approaches. 
Simultaneously, the growth in available transistors per chip has due to Moore’s Law 

made dynamic prediction relatively cheaper.

add $s1, $s2, $s3

if $s2 = 0 then

Delay slot

if $s2 = 0 then

add $s1, $s2, $s3

Becomes

a.  From before

sub $t4, $t5, $t6

. . .

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

Becomes

b.  From target

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

Becomes

c.  From fall-through

sub $t4, $t5, $t6

FIGURE 4.64 Scheduling the branch delay slot. Th e top box in each pair shows the code before 
scheduling; the bottom box shows the scheduled code. In (a), the delay slot is scheduled with an independent 
instruction from before the branch. Th is is the best choice. Strategies (b) and (c) are used when (a) is not 
possible. In the code sequences for (b) and (c), the use of $s1 in the branch condition prevents the add 
instruction (whose destination is $s1) from being moved into the branch delay slot. In (b) the branch delay 
slot is scheduled from the target of the branch; usually the target instruction will need to be copied because 
it can be reached by another path. Strategy (b) is preferred when the branch is taken with high probability, 
such as a loop branch. Finally, the branch may be scheduled from the not-taken fall-through as in (c). To 
make this optimization legal for (b) or (c), it must be OK to execute the sub instruction when the branch 
goes in the unexpected direction. By “OK” we mean that the work is wasted, but the program will still execute 
correctly. Th is is the case, for example, if $t4 were an unused temporary register when the branch goes in 
the unexpected direction.



324 Chapter 4 The Processor

Elaboration: A branch predictor tells us whether or not a branch is taken, but still 
requires the calculation of the branch target. In the fi ve-stage pipeline, this calculation 
takes one cycle, meaning that taken branches will have a 1-cycle penalty. Delayed 
branches are one approach to eliminate that penalty. Another approach is to use a 
cache to hold the destination program counter or destination instruction using a branch 

target buffer.
The 2-bit dynamic prediction scheme uses only information about a particular branch. 

Researchers noticed that using information about both a local branch, and the global 
behavior of recently executed branches together yields greater prediction accuracy for 
the same number of prediction bits. Such predictors are called correlating predictors. 
A typical correlating predictor might have two 2-bit predictors for each branch, with the 
choice between predictors made based on whether the last executed branch was taken 
or not taken. Thus, the global branch behavior can be thought of as adding additional 
index bits for the prediction lookup.

A more recent innovation in branch prediction is the use of tournament predictors. A 
tournament predictor uses multiple predictors, tracking, for each branch, which predictor 
yields the best results. A typical tournament predictor might contain two predictions for 
each branch index: one based on local information and one based on global branch 
behavior. A selector would choose which predictor to use for any given prediction. The 
selector can operate similarly to a 1- or 2-bit predictor, favoring whichever of the two 
predictors has been more accurate. Some recent microprocessors use such elaborate 
predictors.

Elaboration: One way to reduce the number of conditional branches is to add 
conditional move instructions. Instead of changing the PC with a conditional branch, the 
instruction conditionally changes the destination register of the move. If the condition 
fails, the move acts as a nop. For example, one version of the MIPS instruction set 
architecture has two new instructions called movn (move if not zero) and movz (move 
if zero). Thus, movn $8, $11, $4 copies the contents of register 11 into register 8, 
provided that the value in register 4 is nonzero; otherwise, it does nothing.

The ARMv7 instruction set has a condition fi eld in most instructions. Hence, ARM 
programs could have fewer conditional branches than in MIPS programs.

Pipeline Summary
We started in the laundry room, showing principles of pipelining in an everyday 
setting. Using that analogy as a guide, we explained instruction pipelining 
step-by-step, starting with the single-cycle datapath and then adding pipeline 
registers, forwarding paths, data hazard detection, branch prediction, and fl ushing 
instructions on exceptions. Figure 4.65 shows the fi nal evolved datapath and control. 
We now are ready for yet another control hazard: the sticky issue of exceptions.

Consider three branch prediction schemes: predict not taken, predict taken, and 
dynamic prediction. Assume that they all have zero penalty when they predict 
correctly and two cycles when they are wrong. Assume that the average predict 

branch target buff er 
A structure that caches 
the destination PC or 
destination instruction 
for a branch. It is usually 
organized as a cache with 
tags, making it more 
costly than a simple 
prediction buff er.

correlating predictor 
A branch predictor that 
combines local behavior 
of a particular branch 
and global information 
about the behavior of 
some recent number of 
executed branches.

tournament branch 
predictor A branch 
predictor with multiple 
predictions for each 
branch and a selection 
mechanism that chooses 
which predictor to enable 
for a given branch.

Check 
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accuracy of the dynamic predictor is 90%. Which predictor is the best choice for 
the following branches? 

1. A branch that is taken with 5% frequency

2. A branch that is taken with 95% frequency

3. A branch that is taken with 70% frequency

 4.9 Exceptions

Control is the most challenging aspect of processor design: it is both the hardest 
part to get right and the hardest part to make fast. One of the hardest parts of 

Control

Hazard

detection

unit

+

4

PC
Instruction

memory

Sign-

extend

Registers =

+

Fowarding

unit

ALU

ID/EX

MEM/WB

EX/MEM

WB

M

EX

Shift

left 2

IF.Flush

IF/ID

M
u
x

M
u
x

Data

memory

WB

WBM

0

M
u
x

M
u
x

M
u
x

M
u
x

FIGURE 4.65 The fi nal datapath and control for this chapter. Note that this is a stylized fi gure rather than a detailed datapath, so 
it’s missing the ALUsrc Mux from Figure 4.57 and the multiplexor controls from Figure 4.51.

To make a computer 
with automatic 
program-interruption 
facilities behave 
[sequentially] was 
not an easy matter, 
because the number of 
instructions in various 
stages of processing 
when an interrupt 
signal occurs may be 
large.
Fred Brooks, Jr., 
Planning a Computer 
System: Project Stretch, 
1962
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control is implementing exceptions and interrupts—events other than branches 
or jumps that change the normal fl ow of instruction execution. Th ey were initially 
created to handle unexpected events from within the processor, like arithmetic 
overfl ow. Th e same basic mechanism was extended for I/O devices to communicate 
with the processor, as we will see in Chapter 5.

Many architectures and authors do not distinguish between interrupts and 
exceptions, oft en using the older name interrupt to refer to both types of events. 
For example, the Intel x86 uses interrupt. We follow the MIPS convention, using 
the term exception to refer to any unexpected change in control fl ow without 
distinguishing whether the cause is internal or external; we use the term interrupt 
only when the event is externally caused. Here are fi ve examples showing whether 
the situation is internally generated by the processor or externally generated:

Type of event From where? MIPS terminology

I/O device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overfl ow Internal Exception

Using an undefi ned instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Many of the requirements to support exceptions come from the specifi c 
situation that causes an exception to occur. Accordingly, we will return to this 
topic in Chapter 5, when we will better understand the motivation for additional 
capabilities in the exception mechanism. In this section, we deal with the control 
implementation for detecting two types of exceptions that arise from the portions 
of the instruction set and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is oft en 
on the critical timing path of a processor, which determines the clock cycle time 
and thus performance. Without proper attention to exceptions during design of 
the control unit, attempts to add exceptions to a complicated implementation 
can signifi cantly reduce performance, as well as complicate the task of getting the 
design correct.

How Exceptions Are Handled in the MIPS Architecture
Th e two types of exceptions that our current implementation can generate are 
execution of an undefi ned instruction and an arithmetic overfl ow. We’ll use 
arithmetic overfl ow in the instruction add $1, $2, $1 as the example exception 
in the next few pages. Th e basic action that the processor must perform when an 
exception occurs is to save the address of the off ending instruction in the exception 
program counter (EPC) and then transfer control to the operating system at some 
specifi ed address.

Th e operating system can then take the appropriate action, which may involve 
providing some service to the user program, taking some predefi ned action in 

exception Also 
called interrupt. An 
unscheduled event 
that disrupts program 
execution; used to detect 
overfl ow.

interrupt An exception 
that comes from outside 
of the processor. (Some 
architectures use the 
term interrupt for all 
exceptions.)
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response to an overfl ow, or stopping the execution of the program and reporting an 
error. Aft er performing whatever action is required because of the exception, the 
operating system can terminate the program or may continue its execution, using 
the EPC to determine where to restart the execution of the program. In Chapter 5, 
we will look more closely at the issue of restarting the execution.

For the operating system to handle the exception, it must know the reason for 
the exception, in addition to the instruction that caused it. Th ere are two main 
methods used to communicate the reason for an exception. Th e method used in 
the MIPS architecture is to include a status register (called the Cause register), 
which holds a fi eld that indicates the reason for the exception.

A second method, is to use vectored interrupts. In a vectored interrupt, the 
address to which control is transferred is determined by the cause of the exception. 
For example, to accommodate the two exception types listed above, we might 
defi ne the following two exception vector addresses:

Exception type Exception vector address (in hex)

Undefi ned instruction 8000 0000hex

Arithmetic overfl ow 8000 0180hex

Th e operating system knows the reason for the exception by the address at which 
it is initiated. Th e addresses are separated by 32 bytes or eight instructions, and the 
operating system must record the reason for the exception and may perform some 
limited processing in this sequence. When the exception is not vectored, a single 
entry point for all exceptions can be used, and the operating system decodes the 
status register to fi nd the cause.

We can perform the processing required for exceptions by adding a few extra 
registers and control signals to our basic implementation and by slightly extending 
control. Let’s assume that we are implementing the exception system used in the 
MIPS architecture, with the single entry point being the address 8000 0180hex. 
(Implementing vectored exceptions is no more diffi  cult.) We will need to add two 
additional registers to our current MIPS implementation:

■ EPC: A 32-bit register used to hold the address of the aff ected instruction. 
(Such a register is needed even when exceptions are vectored.)

■ Cause: A register used to record the cause of the exception. In the MIPS 
architecture, this register is 32 bits, although some bits are currently unused. 
Assume there is a fi ve-bit fi eld that encodes the two possible exception 
sources mentioned above, with 10 representing an undefi ned instruction and 
12 representing arithmetic overfl ow.

Exceptions in a Pipelined Implementation
A pipelined implementation treats exceptions as another form of control hazard. 
For example, suppose there is an arithmetic overfl ow in an add instruction. Just as 

vectored interrupt An 
interrupt for which 
the address to which 
control is transferred is 
determined by the cause 
of the exception.
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we did for the taken branch in the previous section, we must fl ush the instructions 
that follow the add instruction from the pipeline and begin fetching instructions 
from the new address. We will use the same mechanism we used for taken branches, 
but this time the exception causes the deasserting of control lines.

When we dealt with branch mispredict, we saw how to fl ush the instruction 
in the IF stage by turning it into a nop. To fl ush instructions in the ID stage, we 
use the multiplexor already in the ID stage that zeros control signals for stalls. A 
new control signal, called ID.Flush, is ORed with the stall signal from the hazard 
detection unit to fl ush during ID. To fl ush the instruction in the EX phase, we use 
a new signal called EX.Flush to cause new multiplexors to zero the control lines. To 
start fetching instructions from location 8000 0180hex, which is the MIPS exception 
address, we simply add an additional input to the PC multiplexor that sends 8000 
0180hex to the PC. Figure 4.66 shows these changes.

Th is example points out a problem with exceptions: if we do not stop execution 
in the middle of the instruction, the programmer will not be able to see the original 
value of register $1 that helped cause the overfl ow because it will be clobbered as 
the Destination register of the add instruction. Because of careful planning, the 
overfl ow exception is detected during the EX stage; hence, we can use the EX.Flush 
signal to prevent the instruction in the EX stage from writing its result in the WB 
stage. Many exceptions require that we eventually complete the instruction that 
caused the exception as if it executed normally. Th e easiest way to do this is to fl ush 
the instruction and restart it from the beginning aft er the exception is handled.

Th e fi nal step is to save the address of the off ending instruction in the exception 
program counter (EPC). In reality, we save the address +4, so the exception handling 
the soft ware routine must fi rst subtract 4 from the saved value. Figure 4.66 shows 
a stylized version of the datapath, including the branch hardware and necessary 
accommodations to handle exceptions.

Exception in a Pipelined Computer

Given this instruction sequence,

40hex  sub  $11, $2, $4
44hex  and  $12, $2, $5
48hex  or   $13, $2, $6
4Chex  add   $1, $2, $1
50hex  slt  $15, $6, $7
54hex  lw   $16, 50($7)
. . .

EXAMPLE
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assume the instructions to be invoked on an exception begin like this:

80000180hex  sw     $26, 1000($0)
80000184hex  sw     $27, 1004($0)
. . .

Show what happens in the pipeline if an overfl ow exception occurs in the add 
instruction.

Figure 4.67 shows the events, starting with the add instruction in the EX stage. 
Th e overfl ow is detected during that phase, and 8000 0180hex is forced into the 
PC. Clock cycle 7 shows that the add and following instructions are fl ushed, 
and the fi rst instruction of the exception code is fetched. Note that the address 
of the instruction following the add is saved: 4Chex + 4 = 50hex.
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FIGURE 4.67 The result of an exception due to arithmetic overfl ow in the add instruction. Th e overfl ow is detected during 
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We mentioned fi ve examples of exceptions on page 326, and we will see others 
in Chapter 5. With fi ve instructions active in any clock cycle, the challenge is 
to associate an exception with the appropriate instruction. Moreover, multiple 
exceptions can occur simultaneously in a single clock cycle. Th e solution is to 
prioritize the exceptions so that it is easy to determine which is serviced fi rst. In 
most MIPS implementations, the hardware sorts exceptions so that the earliest 
instruction is interrupted.

I/O device requests and hardware malfunctions are not associated with a specifi c 
instruction, so the implementation has some fl exibility as to when to interrupt the 
pipeline. Hence, the mechanism used for other exceptions works just fi ne.

Th e EPC captures the address of the interrupted instructions, and the MIPS 
Cause register records all possible exceptions in a clock cycle, so the exception 
soft ware must match the exception to the instruction. An important clue is knowing 
in which pipeline stage a type of exception can occur. For example, an undefi ned 
instruction is discovered in the ID stage, and invoking the operating system 
occurs in the EX stage. Exceptions are collected in the Cause register in a pending 
exception fi eld so that the hardware can interrupt based on later exceptions, once 
the earliest one has been serviced.

Th e hardware and the operating system must work in conjunction so that 
exceptions behave as you would expect. Th e hardware contract is normally to 
stop the off ending instruction in midstream, let all prior instructions complete, 
fl ush all following instructions, set a register to show the cause of the exception, 
save the address of the off ending instruction, and then jump to a prearranged 
address. Th e operating system contract is to look at the cause of the exception and 
act appropriately. For an undefi ned instruction, hardware failure, or arithmetic 
overfl ow exception, the operating system normally kills the program and returns 
an indicator of the reason. For an I/O device request or an operating system service 
call, the operating system saves the state of the program, performs the desired task, 
and, at some point in the future, restores the program to continue execution. In 
the case of I/O device requests, we may oft en choose to run another task before 
resuming the task that requested the I/O, since that task may oft en not be able to 
proceed until the I/O is complete. Exceptions are why the ability to save and restore 
the state of any task is critical. One of the most important and frequent uses of 
exceptions is handling page faults and TLB exceptions; Chapter 5 describes these 
exceptions and their handling in more detail.

Elaboration: The diffi culty of always associating the correct exception with the correct 
instruction in pipelined computers has led some computer designers to relax this 
requirement in noncritical cases. Such processors are said to have imprecise interrupts 
or imprecise exceptions. In the example above, PC would normally have 58hex at the start 
of the clock cycle after the exception is detected, even though the offending instruction 

Hardware/ 
Software 
Interface

imprecise 
interrupt Also called 
imprecise exception. 
Interrupts or exceptions 
in pipelined computers 
that are not associated 
with the exact instruction 
that was the cause of the 
interrupt or exception.
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is at address 4Chex. A processor with imprecise exceptions might put 58hex into EPC and 
leave it up to the operating system to determine which instruction caused the problem. 
MIPS and the vast majority of computers today support precise interrupts or precise 

exceptions. (One reason is to support virtual memory, which we shall see in Chapter 5.)

Elaboration: Although MIPS uses the exception entry address 8000 0180hex for 
almost all exceptions, it uses the address 8000 0000hex to improve performance of the 
exception handler for TLB-miss exceptions (see Chapter 5).

Which exception should be recognized fi rst in this sequence?

1. add $1, $2, $1  # arithmetic overfl ow
2. XXX $1, $2, $1  # undefi ned instruction
3. sub $1, $2, $1  # hardware error

 4.10 Parallelism via Instructions

Be forewarned: this section is a brief overview of fascinating but advanced 
topics. If you want to learn more details, you should consult our more advanced 
book, Computer Architecture: A Quantitative Approach, fi ft h edition, where the 
material covered in these 13 pages is expanded to almost 200 pages (including 
appendices)!

Pipelining exploits the potential parallelism among instructions. Th is 
parallelism is called instruction-level parallelism (ILP). Th ere are two primary 
methods for increasing the potential amount of instruction-level parallelism. Th e 
fi rst is increasing the depth of the pipeline to overlap more instructions. Using our 
laundry analogy and assuming that the washer cycle was longer than the others 
were, we could divide our washer into three machines that perform the wash, rinse, 
and spin steps of a traditional washer. We would then move from a four-stage to a 
six-stage pipeline. To get the full speed-up, we need to rebalance the remaining steps 
so they are the same length, in processors or in laundry. Th e amount of parallelism 
being exploited is higher, since there are more operations being overlapped. 
Performance is potentially greater since the clock cycle can be shorter.

Another approach is to replicate the internal components of the computer so 
that it can launch multiple instructions in every pipeline stage. Th e general name 
for this technique is multiple issue. A multiple-issue laundry would replace our 
household washer and dryer with, say, three washers and three dryers. You would 
also have to recruit more assistants to fold and put away three times as much 
laundry in the same amount of time. Th e downside is the extra work to keep all the 
machines busy and transferring the loads to the next pipeline stage.

Check 
Yourself

instruction-level 
parallelism Th e 
parallelism among 
instructions.

multiple issue A scheme 
whereby multiple 
instructions are launched 
in one clock cycle.

precise interrupt Also 
called precise exception. 
An interrupt or exception 
that is always associated 
with the correct 
instruction in pipelined 
computers.
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Launching multiple instructions per stage allows the instruction execution rate to 
exceed the clock rate or, stated alternatively, the CPI to be less than 1. As mentioned 
in Chapter 1, it is sometimes useful to fl ip the metric and use IPC, or instructions 
per clock cycle. Hence, a 4 GHz four-way multiple-issue microprocessor can execute 
a peak rate of 16 billion instructions per second and have a best-case CPI of 0.25, 
or an IPC of 4. Assuming a fi ve-stage pipeline, such a processor would have 20 
instructions in execution at any given time. Today’s high-end microprocessors 
attempt to issue from three to six instructions in every clock cycle. Even moderate 
designs will aim at a peak IPC of 2. Th ere are typically, however, many constraints 
on what types of instructions may be executed simultaneously, and what happens 
when dependences arise.

Th ere are two major ways to implement a multiple-issue processor, with the 
major diff erence being the division of work between the compiler and the hardware. 
Because the division of work dictates whether decisions are being made statically 
(that is, at compile time) or dynamically (that is, during execution), the approaches 
are sometimes called static multiple issue and dynamic multiple issue. As we will 
see, both approaches have other, more commonly used names, which may be less 
precise or more restrictive.

Th ere are two primary and distinct responsibilities that must be dealt with in a 
multiple-issue pipeline:

1. Packaging instructions into issue slots: how does the processor determine 
how many instructions and which instructions can be issued in a given 
clock cycle? In most static issue processors, this process is at least partially 
handled by the compiler; in dynamic issue designs, it is normally dealt with 
at runtime by the processor, although the compiler will oft en have already 
tried to help improve the issue rate by placing the instructions in a benefi cial 
order.

2. Dealing with data and control hazards: in static issue processors, the compiler 
handles some or all of the consequences of data and control hazards statically. 
In contrast, most dynamic issue processors attempt to alleviate at least some 
classes of hazards using hardware techniques operating at execution time.

Although we describe these as distinct approaches, in reality one approach oft en 
borrows techniques from the other, and neither approach can claim to be perfectly 
pure.

The Concept of Speculation
One of the most important methods for fi nding and exploiting more ILP is 
speculation. Based on the great idea of prediction, speculation is an approach 
that allows the compiler or the processor to “guess” about the properties of an 
instruction, so as to enable execution to begin for other instructions that may 
depend on the speculated instruction. For example, we might speculate on the 
outcome of a branch, so that instructions aft er the branch could be executed earlier. 

static multiple issue An 
approach to implementing 
a multiple-issue processor 
where many decisions 
are made by the compiler 
before execution.

dynamic multiple 
issue An approach to 
implementing a multiple-
issue processor where 
many decisions are made 
during execution by the 
processor.

issue slots Th e positions 
from which instructions 
could issue in a given 
clock cycle; by analogy, 
these correspond to 
positions at the starting 
blocks for a sprint.

speculation An 
approach whereby the 
compiler or processor 
guesses the outcome of an 
instruction to remove it as 
a dependence in executing 
other instructions.
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Another example is that we might speculate that a store that precedes a load does 
not refer to the same address, which would allow the load to be executed before the 
store. Th e diffi  culty with speculation is that it may be wrong. So, any speculation 
mechanism must include both a method to check if the guess was right and a 
method to unroll or back out the eff ects of the instructions that were executed 
speculatively. Th e implementation of this back-out capability adds complexity.

Speculation may be done in the compiler or by the hardware. For example, the 
compiler can use speculation to reorder instructions, moving an instruction across 
a branch or a load across a store. Th e processor hardware can perform the same 
transformation at runtime using techniques we discuss later in this section.

Th e recovery mechanisms used for incorrect speculation are rather diff erent. 
In the case of speculation in soft ware, the compiler usually inserts additional 
instructions that check the accuracy of the speculation and provide a fi x-up routine 
to use when the speculation is incorrect. In hardware speculation, the processor 
usually buff ers the speculative results until it knows they are no longer speculative. 
If the speculation is correct, the instructions are completed by allowing the 
contents of the buff ers to be written to the registers or memory. If the speculation is 
incorrect, the hardware fl ushes the buff ers and re-executes the correct instruction 
sequence.

Speculation introduces one other possible problem: speculating on certain 
instructions may introduce exceptions that were formerly not present. For 
example, suppose a load instruction is moved in a speculative manner, but the 
address it uses is not legal when the speculation is incorrect. Th e result would be 
an exception that should not have occurred. Th e problem is complicated by the 
fact that if the load instruction were not speculative, then the exception must 
occur! In compiler-based speculation, such problems are avoided by adding 
special speculation support that allows such exceptions to be ignored until it is 
clear that they really should occur. In hardware-based speculation, exceptions 
are simply buff ered until it is clear that the instruction causing them is no longer 
speculative and is ready to complete; at that point the exception is raised, and 
nor-mal exception handling proceeds.

Since speculation can improve performance when done properly and decrease 
performance when done carelessly, signifi cant eff ort goes into deciding when it 
is appropriate to speculate. Later in this section, we will examine both static and 
dynamic techniques for speculation.

Static Multiple Issue
Static multiple-issue processors all use the compiler to assist with packaging 
instructions and handling hazards. In a static issue processor, you can think of the 
set of instructions issued in a given clock cycle, which is called an issue packet, as 
one large instruction with multiple operations. Th is view is more than an analogy. 
Since a static multiple-issue processor usually restricts what mix of instructions can 
be initiated in a given clock cycle, it is useful to think of the issue packet as a single 

issue packet Th e set 
of instructions that 
issues together in one 
clock cycle; the packet 
may be determined 
statically by the compiler 
or dynamically by the 
processor.



 4.10 Parallelism via Instructions 335

instruction allowing several operations in certain predefi ned fi elds. Th is view led to 
the original name for this approach: Very Long Instruction Word (VLIW).

Most static issue processors also rely on the compiler to take on some 
responsibility for handling data and control hazards. Th e compiler’s responsibilities 
may include static branch prediction and code scheduling to reduce or prevent all 
hazards. Let’s look at a simple static issue version of a MIPS processor, before we 
describe the use of these techniques in more aggressive processors.

An Example: Static Multiple Issue with the MIPS ISA

To give a fl avor of static multiple issue, we consider a simple two-issue MIPS 
processor, where one of the instructions can be an integer ALU operation or 
branch and the other can be a load or store. Such a design is like that used in some 
embedded MIPS processors. Issuing two instructions per cycle will require fetching 
and decoding 64 bits of instructions. In many static multiple-issue processors, and 
essentially all VLIW processors, the layout of simultaneously issuing instructions 
is restricted to simplify the decoding and instruction issue. Hence, we will require 
that the instructions be paired and aligned on a 64-bit boundary, with the ALU 
or branch portion appearing fi rst. Furthermore, if one instruction of the pair 
cannot be used, we require that it be replaced with a nop. Th us, the instructions 
always issue in pairs, possibly with a nop in one slot. Figure 4.68 shows how the 
instructions look as they go into the pipeline in pairs.

Static multiple-issue processors vary in how they deal with potential data and 
control hazards. In some designs, the compiler takes full responsibility for removing 
all hazards, scheduling the code and inserting no-ops so that the code executes 
without any need for hazard detection or hardware-generated stalls. In others, 
the hardware detects data hazards and generates stalls between two issue packets, 
while requiring that the compiler avoid all dependences within an instruction pair. 
Even so, a hazard generally forces the entire issue packet containing the dependent 

Instruction type Pipe stages

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

FIGURE 4.68 Static two-issue pipeline in operation. Th e ALU and data transfer instructions 
are issued at the same time. Here we have assumed the same fi ve-stage structure as used for the single-issue 
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the 
register writes at the end of the pipeline simplifi es the handling of exceptions and the maintenance of a 
precise exception model, which become more diffi  cult in multiple-issue processors.

Very Long Instruction 
Word (VLIW) 
A style of instruction set 
architecture that launches 
many operations that are 
defi ned to be independent 
in a single wide 
instruction, typically with 
many separate opcode 
fi elds.
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instruction to stall. Whether the soft ware must handle all hazards or only try to 
reduce the fraction of hazards between separate issue packets, the appearance of 
having a large single instruction with multiple operations is reinforced. We will 
assume the second approach for this example.

To issue an ALU and a data transfer operation in parallel, the fi rst need for 
additional hardware—beyond the usual hazard detection and stall logic—is extra 
ports in the register fi le (see Figure 4.69). In one clock cycle we may need to read 
two registers for the ALU operation and two more for a store, and also one write 
port for an ALU operation and one write port for a load. Since the ALU is tied 
up for the ALU operation, we also need a separate adder to calculate the eff ective 
address for data transfers. Without these extra resources, our two-issue pipeline 
would be hindered by structural hazards.

Clearly, this two-issue processor can improve performance by up to a factor of 
two. Doing so, however, requires that twice as many instructions be overlapped 
in execution, and this additional overlap increases the relative performance loss 
from data and control hazards. For example, in our simple fi ve-stage pipeline, 
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FIGURE 4.69 A static two-issue datapath. Th e additions needed for double issue are highlighted: another 32 bits from instruction 
memory, two more read ports and one more write port on the register fi le, and another ALU. Assume the bottom ALU handles address 
calculations for data transfers and the top ALU handles everything else.



 4.10 Parallelism via Instructions 337

loads have a use latency of one clock cycle, which prevents one instruction from 
using the result without stalling. In the two-issue, fi ve-stage pipeline the result of 
a load instruction cannot be used on the next clock cycle. Th is means that the next 
two instructions cannot use the load result without stalling. Furthermore, ALU 
instructions that had no use latency in the simple fi ve-stage pipeline now have a 
one-instruction use latency, since the results cannot be used in the paired load or 
store. To eff ectively exploit the parallelism available in a multiple-issue processor, 
more ambitious compiler or hardware scheduling techniques are needed, and static 
multiple issue requires that the compiler take on this role.

Simple Multiple-Issue Code Scheduling

How would this loop be scheduled on a static two-issue pipeline for MIPS?

Loop: lw    $t0, 0($s1)    # $t0=array element
      addu  $t0,$t0,$s2# add scalar in $s2
      sw    $t0, 0($s1)# store result
      addi  $s1,$s1,–4# decrement pointer
      bne   $s1,$zero,Loop# branch $s1!=0

Reorder the instructions to avoid as many pipeline stalls as possible. Assume 
branches are predicted, so that control hazards are handled by the hardware.

Th e fi rst three instructions have data dependences, and so do the last two. 
Figure 4.70 shows the best schedule for these instructions. Notice that just 
one pair of instructions has both issue slots used. It takes four clocks per loop 
iteration; at four clocks to execute fi ve instructions, we get the disappointing 
CPI of 0.8 versus the best case of 0.5., or an IPC of 1.25 versus 2.0. Notice 
that in computing CPI or IPC, we do not count any nops executed as useful 
instructions. Doing so would improve CPI, but not performance!

use latency Number 
of clock cycles between 
a load instruction and 
an instruction that can 
use the result of the 
load without stalling the 
pipeline.

EXAMPLE

ANSWER

FIGURE 4.70 The scheduled code as it would look on a two-issue MIPS pipeline. Th e empty 
slots are no-ops.

ALU or branch instruction Data transfer instruction Clock cycle

Loop: lw $t0, 0($s1) 1

addi $s1,$s1,–4 2

addu $t0,$t0,$s2 3

bne $s1,$zero,Loop sw $t0, 4($s1) 4



338 Chapter 4 The Processor

An important compiler technique to get more performance from loops 
is loop unrolling, where multiple copies of the loop body are made. After 
unrolling, there is more ILP available by overlapping instructions from different 
iterations.

loop unrolling 
A technique to get more 
performance from loops 
that access arrays, in 
which multiple copies of 
the loop body are made 
and instructions from 
diff erent iterations are 
scheduled together

FIGURE 4.71 The unrolled and scheduled code of Figure 4.70 as it would look on a static 
two-issue MIPS pipeline. Th e empty slots are no-ops. Since the fi rst instruction in the loop decrements 
$s1 by 16, the addresses loaded are the original value of $s1, then that address minus 4, minus 8, and minus 12.

Loop Unrolling for Multiple-Issue Pipelines

See how well loop unrolling and scheduling work in the example above. For 
simplicity assume that the loop index is a multiple of four.

To schedule the loop without any delays, it turns out that we need to make 
four copies of the loop body. Aft er unrolling and eliminating the unnecessary 
loop overhead instructions, the loop will contain four copies each of lw, add, 
and sw, plus one addi and one bne. Figure 4.71 shows the unrolled and 
scheduled code.

During the unrolling process, the compiler introduced additional registers 
($t1, $t2, $t3). Th e goal of this process, called register renaming, is to 
eliminate dependences that are not true data dependences, but could either 
lead to potential hazards or prevent the compiler from fl exibly scheduling 
the code. Consider how the unrolled code would look using only $t0. Th ere 
would be repeated instances of lw $t0,0($$s1), addu $t0, $t0, $s2 
followed by sw t0,4($s1), but these sequences, despite using $t0, are 
actually completely independent—no data values fl ow between one set of these 
instructions and the next set. Th is case is what is called an antidependence or 
name dependence, which is an ordering forced purely by the reuse of a name, 
rather than a real data dependence that is also called a true dependence.

Renaming the registers during the unrolling process allows the compiler 
to move these independent instructions subsequently so as to better schedule 

EXAMPLE

ANSWER

register renaming Th e 
renaming of registers 
by the compiler or 
hardware to remove 
antidependences.

antidependence Also 
called name 
dependence. An 
ordering forced by the 
reuse of a name, typically 
a register, rather than by 
a true dependence that 
carries a value between 
two instructions.

ALU or branch instruction Data transfer instruction Clock cycle

Loop: addi $s1,$s1,–16 lw $t0, 0($s1) 1

lw $t1,12($s1) 2

addu $t0,$t0,$s2 lw $t2, 8($s1) 3

addu $t1,$t1,$s2 lw $t3, 4($s1) 4

addu $t2,$t2,$s2 sw $t0, 16($s1) 5

addu $t3,$t3,$s2 sw $t1,12($s1) 6

sw $t2, 8($s1) 7

bne $s1,$zero,Loop sw $t3, 4($s1) 8



 4.10 Parallelism via Instructions 339

the code. Th e renaming process eliminates the name dependences, while 
preserving the true dependences.

Notice now that 12 of the 14 instructions in the loop execute as pairs. It takes 
8 clocks for 4 loop iterations, or 2 clocks per iteration, which yields a CPI of 8/14 
= 0.57. Loop unrolling and scheduling with dual issue gave us an improvement 
factor of almost 2, partly from reducing the loop control instructions and partly 
from dual issue execution. Th e cost of this performance improvement is using four 
temporary registers rather than one, as well as a signifi cant increase in code size.

Dynamic Multiple-Issue Processors
Dynamic multiple-issue processors are also known as superscalar processors, or 
simply superscalars. In the simplest superscalar processors, instructions issue in 
order, and the processor decides whether zero, one, or more instructions can issue 
in a given clock cycle. Obviously, achieving good performance on such a processor 
still requires the compiler to try to schedule instructions to move dependences 
apart and thereby improve the instruction issue rate. Even with such compiler 
scheduling, there is an important diff erence between this simple superscalar 
and a VLIW processor: the code, whether scheduled or not, is guaranteed by 
the hardware to execute correctly. Furthermore, compiled code will always run 
correctly independent of the issue rate or pipeline structure of the processor. In 
some VLIW designs, this has not been the case, and recompilation was required 
when moving across diff erent processor models; in other static issue processors, 
code would run correctly across diff erent implementations, but oft en so poorly as 
to make compilation eff ectively required.

Many superscalars extend the basic framework of dynamic issue decisions to 
include dynamic pipeline scheduling. Dynamic pipeline scheduling chooses 
which instructions to execute in a given clock cycle while trying to avoid hazards 
and stalls. Let’s start with a simple example of avoiding a data hazard. Consider the 
following code sequence:

lw     $t0, 20($s2)
addu   $t1, $t0, $t2
sub    $s4, $s4, $t3
slti   $t5, $s4, 20

Even though the sub instruction is ready to execute, it must wait for the lw 
and addu to complete fi rst, which might take many clock cycles if memory is slow. 
(Chapter 5 explains cache misses, the reason that memory accesses are sometimes 
very slow.) Dynamic pipeline scheduling allows such hazards to be avoided either 
fully or partially. 

Dynamic Pipeline Scheduling

Dynamic pipeline scheduling chooses which instructions to execute next, possibly 
reordering them to avoid stalls. In such processors, the pipeline is divided into 
three major units: an instruction fetch and issue unit, multiple functional units 

superscalar An 
advanced pipelining 
technique that enables the 
processor to execute more 
than one instruction per 
clock cycle by selecting 
them during execution.

dynamic pipeline 
scheduling Hardware 
support for reordering 
the order of instruction 
execution so as to avoid 
stalls.
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(a dozen or more in high-end designs in 2013), and a commit unit. Figure 4.72 
shows the model. Th e fi rst unit fetches instructions, decodes them, and sends 
each instruction to a corresponding functional unit for execution. Each functional 
unit has buff ers, called reservation stations, which hold the operands and the 
operation. (Th e Elaboration discusses an alternative to reservation stations used 
by many recent processors.) As soon as the buff er contains all its operands and 
the functional unit is ready to execute, the result is calculated. When the result is 
completed, it is sent to any reservation stations waiting for this particular result 
as well as to the commit unit, which buff ers the result until it is safe to put the 
result into the register fi le or, for a store, into memory. Th e buff er in the commit 
unit, oft en called the reorder buff er, is also used to supply operands, in much the 
same way as forwarding logic does in a statically scheduled pipeline. Once a result 
is committed to the register fi le, it can be fetched directly from there, just as in a 
normal pipeline.

Th e combination of buff ering operands in the reservation stations and results 
in the reorder buff er provides a form of register renaming, just like that used by 
the compiler in our earlier loop-unrolling example on page 338. To see how this 
conceptually works, consider the following steps:

commit unit Th e unit in 
a dynamic or out-of-order 
execution pipeline that 
decides when it is safe to 
release the result of an 
operation to programmer-
visible registers and 
memory.

reservation station 
A buff er within a 
functional unit that holds 
the operands and the 
operation.

reorder buff er Th e 
buff er that holds results in 
a dynamically scheduled 
processor until it is safe 
to store the results to 
memory or a register.

Instruction fetch
and decode unit

Reservation
station

Reservation
station

Reservation
station

Reservation
station

Integer Integer
Floating

point
Load-
store

Commit
unit

In-order issue

Out-of-order executeFunctional
units

In-order commit

. . .

. . .

FIGURE 4.72 The three primary units of a dynamically scheduled pipeline. Th e fi nal step of 
updating the state is also called retirement or graduation.
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1. When an instruction issues, it is copied to a reservation station for the 
appropriate functional unit. Any operands that are available in the register 
fi le or reorder buff er are also immediately copied into the reservation station. 
Th e instruction is buff ered in the reservation station until all the operands 
and the functional unit are available. For the issuing instruction, the register 
copy of the operand is no longer required, and if a write to that register 
occurred, the value could be overwritten.

2. If an operand is not in the register fi le or reorder buff er, it must be waiting to 
be produced by a functional unit. Th e name of the functional unit that will 
produce the result is tracked. When that unit eventually produces the result, 
it is copied directly into the waiting reservation station from the functional 
unit bypassing the registers.

Th ese steps eff ectively use the reorder buff er and the reservation stations to 
implement register renaming.

Conceptually, you can think of a dynamically scheduled pipeline as analyzing 
the data fl ow structure of a program. Th e processor then executes the instructions 
in some order that preserves the data fl ow order of the program. Th is style of 
execution is called an out-of-order execution, since the instructions can be 
executed in a diff erent order than they were fetched.

To make programs behave as if they were running on a simple in-order pipeline, 
the instruction fetch and decode unit is required to issue instructions in order, 
which allows dependences to be tracked, and the commit unit is required to write 
results to registers and memory in program fetch order. Th is conservative mode is 
called in-order commit. Hence, if an exception occurs, the computer can point to 
the last instruction executed, and the only registers updated will be those written 
by instructions before the instruction causing the exception. Although the front 
end (fetch and issue) and the back end (commit) of the pipeline run in order, 
the functional units are free to initiate execution whenever the data they need is 
available. Today, all dynamically scheduled pipelines use in-order commit.

Dynamic scheduling is oft en extended by including hardware-based speculation, 
especially for branch outcomes. By predicting the direction of a branch, a 
dynamically scheduled processor can continue to fetch and execute instructions 
along the predicted path. Because the instructions are committed in order, we know 
whether or not the branch was correctly predicted before any instructions from the 
predicted path are committed. A speculative, dynamically scheduled pipeline can 
also support speculation on load addresses, allowing load-store reordering, and 
using the commit unit to avoid incorrect speculation. In the next section, we will 
look at the use of dynamic scheduling with speculation in the Intel Core i7 design.

out-of-order 
execution A situation in 
pipelined execution when 
an instruction blocked 
from executing does 
not cause the following 
instructions to wait.

in-order commit 
A commit in which 
the results of pipelined 
execution are written to 
the programmer visible 
state in the same order 
that instructions are 
fetched.
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Given that compilers can also schedule code around data dependences, you might 
ask why a superscalar processor would use dynamic scheduling. Th ere are three 
major reasons. First, not all stalls are predictable. In particular, cache misses 
(see Chapter 5) in the memory hierarchy cause unpredictable stalls. Dynamic 
scheduling allows the processor to hide some of those stalls by continuing to 
execute instructions while waiting for the stall to end. 

Second, if the processor speculates on branch outcomes using dynamic branch 
prediction, it cannot know the exact order of instructions at compile time, since it 
depends on the predicted and actual behavior of branches. Incorporating dynamic 
speculation to exploit more instruction-level parallelism (ILP) without incorporating 
dynamic scheduling would signifi cantly restrict the benefi ts of speculation.

Th ird, as the pipeline latency and issue width change from one implementation 
to another, the best way to compile a code sequence also changes. For example, how 
to schedule a sequence of dependent instructions is aff ected by both issue width and 
latency. Th e pipeline structure aff ects both the number of times a loop must be unrolled 
to avoid stalls as well as the process of compiler-based register renaming. Dynamic 
scheduling allows the hardware to hide most of these details. Th us, users and soft ware 
distributors do not need to worry about having multiple versions of a program for 
diff erent implementations of the same instruction set. Similarly, old legacy code will 
get much of the benefi t of a new implementation without the need for recompilation.

Both pipelining and multiple-issue execution increase peak instruction 
throughput and attempt to exploit instruction-level parallelism (ILP). 
Data and control dependences in programs, however, off er an upper limit 
on sustained performance because the processor must sometimes wait for 
a dependence to be resolved. Soft ware-centric approaches to exploiting 
ILP rely on the ability of the compiler to fi nd and reduce the eff ects of such 
dependences, while hardware-centric approaches rely on extensions to the 
pipeline and issue mechanisms. Speculation, performed by the compiler 
or the hardware, can increase the amount of ILP that can be exploited via 
prediction, although care must be taken since speculating incorrectly is 
likely to reduce performance.

The BIG
Picture

Understanding 
Program 

Performance
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Modern, high-performance microprocessors are capable of issuing several instructions 
per clock; unfortunately, sustaining that issue rate is very diffi  cult. For example, despite 
the existence of processors with four to six issues per clock, very few applications can 
sustain more than two instructions per clock. Th ere are two primary reasons for this.

First, within the pipeline, the major performance bottlenecks arise from 
dependences that cannot be alleviated, thus reducing the parallelism among 
instructions and the sustained issue rate. Although little can be done about true data 
dependences, oft en the compiler or hardware does not know precisely whether a 
dependence exists or not, and so must conservatively assume the dependence exists. 
For example, code that makes use of pointers, particularly in ways that may lead to 
aliasing, will lead to more implied potential dependences. In contrast, the greater 
regularity of array accesses oft en allows a compiler to deduce that no dependences 
exist. Similarly, branches that cannot be accurately predicted whether at runtime or 
compile time will limit the ability to exploit ILP. Oft en, additional ILP is available, but 
the ability of the compiler or the hardware to fi nd ILP that may be widely separated 
(sometimes by the execution of thousands of instructions) is limited.

Second, losses in the memory hierarchy (the topic of Chapter 5) also limit the 
ability to keep the pipeline full. Some memory system stalls can be hidden, but 
limited amounts of ILP also limit the extent to which such stalls can be hidden. 

Energy Effi ciency and Advanced Pipelining
Th e downside to the increasing exploitation of instruction-level parallelism via 
dynamic multiple issue and speculation is potential energy ineffi  ciency. Each 
innovation was able to turn more transistors into performance, but they oft en did 
so very ineffi  ciently. Now that we have hit the power wall, we are seeing designs 
with multiple processors per chip where the processors are not as deeply pipelined 
or as aggressively speculative as its predecessors.

Th e belief is that while the simpler processors are not as fast as their sophisticated 
brethren, they deliver better performance per joule, so that they can deliver more 
performance per chip when designs are constrained more by energy than they are 
by number of transistors.

Figure 4.73 shows the number of pipeline stages, the issue width, speculation level, 
clock rate, cores per chip, and power of several past and recent microprocessors. Note 
the drop in pipeline stages and power as companies switch to multicore designs.

Elaboration: A commit unit controls updates to the register fi le and memory. Some 
dynamically scheduled processors update the register fi le immediately during execution, 
using extra registers to implement the renaming function and preserving the older copy of a 
register until the instruction updating the register is no longer speculative. Other processors 
buffer the result, typically in a structure called a reorder buffer, and the actual update to the 
register fi le occurs later as part of the commit. Stores to memory must be buffered until 
commit time either in a store buffer (see Chapter 5) or in the reorder buffer. The commit unit 
allows the store to write to memory from the buffer when the buffer has a valid address and 
valid data, and when the store is no longer dependent on predicted branches.

Hardware/ 
Software 
Interface
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Elaboration: Memory accesses benefi t from nonblocking caches, which continue 
servicing cache accesses during a cache miss (see Chapter 5). Out-of-order execution 
processors need the cache design to allow instructions to execute during a miss.

State whether the following techniques or components are associated primarily 
with a soft ware- or hardware-based approach to exploiting ILP. In some cases, the 
answer may be both.

1. Branch prediction

2. Multiple issue

3. VLIW

4. Superscalar

5. Dynamic scheduling

6. Out-of-order execution

7. Speculation

8. Reorder buff er

9. Register renaming

 4.11  Real Stuff: The ARM Cortex-A8 and Intel 
Core i7 Pipelines

Figure 4.74 describes the two microprocessors we examine in this section, whose 
targets are the two bookends of the PostPC Era. 

Check 
Yourself

Microprocessor Year Clock Rate
Pipeline 
Stages

Issue 
Width

Out-of-Order/ 
Speculation

Cores/ 
Chip Power

Intel 486 1989 25 MHz 5 1 No 1  5 W

Intel Pentium 1993 66 MHz 5 2 No 1  10 W

Intel Pentium Pro 1997 200 MHz 10 3 Yes 1  29 W

Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1  75 W

Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1  103 W

Intel Core 2006 2930 MHz 14 4 Yes

Yes

Yes

2  75 W

Intel Core i5 Nehalem 2010 3300 MHz 14 4 1 87 W

Intel Core i5 Ivy Bridge 2012 3400 MHz 14 4 8 77 W

FIGURE 4.73 Record of Intel Microprocessors in terms of pipeline complexity, number of cores, and power. Th e Pentium 
4 pipeline stages do not include the commit stages. If we included them, the Pentium 4 pipelines would be even deeper.
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Processor Intel Core i7 920ARM A8

Market

Thermal design power

Clock rate

Cores/Chip

Floating point?

Multiple Issue?

Peak instructions/clock cycle

Pipeline Stages

Pipeline schedule

Branch prediction

1st level caches / core

2nd level cache / core

3rd level cache (shared)

Personal Mobile Device

2 Watts

1 GHz

1

No

Dynamic

2

14

Static In-order

2-level

32 KiB I, 32 KiB D

128 - 1024 KiB

--

Server, Cloud

130 Watts

2.66 GHz

4

Yes

Dynamic

4

14

Dynamic Out-of-order with Speculation

2-level

32 KiB I, 32 KiB D

256 KiB

2 - 8 MiB

FIGURE 4.74 Specifi cation of the ARM Cortex-A8 and the Intel Core i7 920.

The ARM Cortex-A8
Th e ARM Corxtex-A8 runs at 1 GHz with a 14-stage pipeline. It uses dynamic 
multiple issue, with two instructions per clock cycle. It is a static in-order pipeline, 
in that instructions issue, execute, and commit in order.  Th e pipeline consists of 
three sections for instruction fetch, instruction decode, and execute.  Figure 4.75 
shows the overall pipeline.

Th e fi rst three stages fetch two instructions at a time and try to keep a 
12-instruction entry prefetch buff er full. It uses a two-level branch predictor using 
both a 512-entry branch target buff er, a 4096-entry global history buff er, and an 
8-entry return stack to predict future returns. When the branch prediction is 
wrong, it empties the pipeline, resulting in a 13-clock cycle misprediction penalty.

Th e fi ve stages of the decode pipeline determine if there are dependences 
between a pair of instructions, which would force sequential execution,  and in 
which pipeline of the execution stages to send the instructions. 

Th e six stages of the instruction execution section off er one pipeline for load 
and store instructions and two pipelines for arithmetic operations, although only 
the fi rst of the pair can handle multiplies. Either instruction from the pair can be 
issued to the load-store pipeline. Th e execution stages have full bypassing between 
the three pipelines.

Figure 4.76 shows the CPI of the A8 using small versions of programs derived 
from the SPEC2000 benchmarks. While the ideal CPI is 0.5, the best case here is 
1.4, the median case is 2.0, and the worst case is 5.2. For the median case, 80% of 
the stalls are due to the pipelining hazards and 20% are stalls due to the memory 
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hierarchy. Pipeline stalls are caused by branch mispredictions, structural hazards, 
and data dependencies between pairs of instructions. Given the static pipeline of the 
A8, it is up to the compiler to try to avoid structural hazards and data dependences.

Elaboration: The Cortex-A8 is a confi gurable core that supports the ARMv7 instruction 
set architecture. It is delivered as an IP (Intellectual Property) core. IP cores are the 
dominant form of technology delivery in the embedded, personal mobile device, and 
related markets; billions of ARM and MIPS processors have been created from these 
IP cores. 

Note that IP cores are different than the cores in the Intel i7 multicore computers. An 
IP core (which may itself be a multicore) is designed to be incorporated with other logic 
(hence it is the “core” of a chip), including application-specifi c processors (such as an 
encoder or decoder for video), I/O interfaces, and memory interfaces, and then fabricated 
to yield a processor optimized for a particular application. Although the processor core is 
almost identical, the resultant chips have many differences. One parameter is the size 
of the L2 cache, which can vary by a factor of eight. 

The Intel Core i7 920
x86 microprocessors employ sophisticated pipelining approaches, using both 
dynamic multiple issue and dynamic pipeline scheduling with out-of-order 
execution and speculation for its 14-stage pipeline. Th ese processors, however, 
are still faced with the challenge of implementing the complex x86 instruction 
set, described in Chapter 2. Intel fetches x86 instructions and translates them into 
internal MIPS-like instructions, which Intel calls micro-operations. Th e micro-
operations are then executed by a sophisticated, dynamically scheduled, speculative 
pipeline capable of sustaining an execution rate of up to six micro-operations per 
clock cycle. Th is section focuses on that micro-operation pipeline. 

FIGURE 4.75 The A8 pipeline. Th e fi rst three stages fetch instructions into a 12-entry instruction fetch 
buff er. Th e Address Generation Unit (AGU) uses a Branch Target Buff er (BTB), Global History Buff er (GHB), 
and a Return Stack (RS) to predict branches to try to keep the fetch queue full. Instruction decode is fi ve 
stages and instruction execution is six stages.
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When we consider the design of sophisticated, dynamically scheduled processors, the 
design of the functional units, the cache and register fi le, instruction issue, and overall 
pipeline control become intermingled, making it diffi  cult to separate the datapath from 
the pipeline. Because of this, many engineers and researchers have adopted the term 
microarchitecture to refer to the detailed internal architecture of a processor. 

Th e Intel Core i7 uses a scheme for resolving antidependences and incorrect 
speculation that uses a reorder buff er together with register renaming. Register 
renaming explicitly renames the architectural registers in a processor (16 in the case 
of the 64-bit version of the x86 architecture) to a larger set of physical registers. Th e 
Core i7 uses register renaming to remove antidependences. Register renaming requires 
the processor to maintain a map between the architectural registers and the physical 
registers, indicating which physical register is the most current copy of an architectural 
register. By keeping track of the renamings that have occurred, register renaming off ers 
another approach to recovery in the event of incorrect speculation: simply undo the 
mappings that have occurred since the fi rst incorrectly speculated instruction. Th is 
will cause the state of the processor to return to the last correctly executed instruction, 
keeping the correct mapping between the architectural and physical registers.

Figure 4.77 shows the overall organization and pipeline of the Core i7. Below are 
the eight steps an x86 instruction goes through for execution.

1. Instruction fetch—Th e processor uses a multilevel branch target buff er to 
achieve a balance between speed and prediction accuracy. Th ere is also a 
return address stack to speed up function return. Mispredictions cause a 
penalty of about 15 cycles. Using the predicted address, the instruction fetch 
unit fetches 16 bytes from the instruction cache.

2. Th e 16 bytes are placed in the predecode instruction buff er— Th e predecode 
stage transforms the 16 bytes into individual x86 instructions. Th is predecode 

microarchitecture Th e 
organization of the 
processor, including the 
major functional units, 
their interconnection, and 
control.

architectural 
registers Th e instruction 
set of visible registers of 
a processor; for example, 
in MIPS, these are the 32 
integer and 16 fl oating-
point registers.

1.00
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Memory hierarchy stalls
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FIGURE 4.76 CPI on ARM Cortex A8 for the Minnespec benchmarks, which are small versions of the SPEC2000 
benchmarks. Th ese benchmarks use the much smaller inputs to reduce running time by several orders of magnitude. Th e smaller size 
signifi cantly underestimates the CPI impact of the memory hierarchy (See Chapter 5). 
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is nontrivial since the length of an x86 instruction can be from 1 to 15 bytes 
and the predecoder must look through a number of bytes before it knows the 
instruction length. Individual x86 instructions are placed into the 18-entry 
instruction queue.

3. Micro-op decode—Individual x86 instructions are translated into micro-
operations (micro-ops). Th ree of the decoders handle x86 instructions that 
translate directly into one micro-op. For x86 instructions that have more complex 
semantics, there is a microcode engine that is used to produce the micro-op 
sequence; it can produce up to four micro-ops every cycle and continues until 
the necessary micro-op sequence has been generated. Th e micro-ops are placed 
according to the order of the x86 instructions in the 28-entry micro-op buff er.

4. Th e micro-op buff er performs loop stream detection—If there is a small 
sequence of instructions (less than 28 instructions or 256 bytes in length) 
that comprises a loop, the loop stream detector will fi nd the loop and directly 

FIGURE 4.77 The Core i7 pipeline with memory components. Th e total pipeline depth is 14 
stages, with branch mispredictions costing 17 clock cycles. Th is design can buff er 48 loads and 32 stores. Th e 
six independent units can begin execution of a ready RISC operation each clock cycle.
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issue the micro-ops from the buff er, eliminating the need for the instruction 
fetch and instruction decode stages to be activated.

5. Perform the basic instruction issue—Looking up the register location in the 
register tables, renaming the registers, allocating a reorder buff er entry, and 
fetching any results from the registers or reorder buff er before sending the 
micro-ops to the reservation stations.

6. Th e i7 uses a 36-entry centralized reservation station shared by six functional 
units. Up to six micro-ops may be dispatched to the functional units every 
clock cycle.

7. Th e individual function units execute micro-ops and then results are sent 
back to any waiting reservation station as well as to the register retirement 
unit, where they will update the register state, once it is known that the 
instruction is no longer speculative. Th e entry corresponding to the 
instruction in the reorder buff er is marked as complete.

8. When one or more instructions at the head of the reorder buff er have been 
marked as complete, the pending writes in the register retirement unit are 
executed, and the instructions are removed from the reorder buff er.

Elaboration: Hardware in the second and fourth steps can combine or fuse operations 
together to reduce the number of operations that must be performed. Macro-op fusion 
in the second step takes x86 instruction combinations, such as compare followed by a 
branch, and fuses them into a single operation. Microfusion in the fourth step combines 
micro-operation pairs such as load/ALU operation and ALU operation/store and issues 
them to a single reservation station (where they can still issue independently), thus 
increasing the usage of the buffer. In a study of the Intel Core architecture, which also 
incorporated microfusion and macrofusion, Bird et al. [2007] discovered that microfusion 
had little impact on performance, while macrofusion appears to have a modest positive 
impact on integer performance and little impact on fl oating-point performance.

Performance of the Intel Core i7 920
Figure 4.78 shows the CPI of the Intel Core i7 for each of the SPEC2006 benchmarks. 
While the ideal CPI is 0.25, the best case here is 0.44, the median case is 0.79, and 
the worst case is 2.67. 

While it is diffi  cult to diff erentiate between pipeline stalls and memory stalls 
in a dynamic out-of-order execution pipeline, we can show the eff ectiveness of 
branch prediction and speculation. Figure 4.79 shows the percentage of branches 
mispredicted and the percentage of the work (measured by the numbers of micro-
ops dispatched into the pipeline) that does not retire (that is, their results are 
annulled) relative to all micro-op dispatches. Th e min, median, and max of branch 
mispredictions are 0%, 2%, and 10%. For wasted work, they are 1%, 18%, and 39%.

Th e wasted work in some cases closely matches the branch misprediction rates, 
such as for gobmk and astar. In several instances, such as mcf, the wasted work 
seems relatively larger than the misprediction rate. Th is divergence is likely due 
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FIGURE 4.78 CPI of Intel Core i7 920 running SPEC2006 integer benchmarks.

FIGURE 4.79 Percentage of branch mispredictions and wasted work due to unfruitful 
speculation of Intel Core i7 920 running SPEC2006 integer benchmarks. 
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to the memory behavior. With very high data cache miss rates, mcf will dispatch 
many instructions during an incorrect speculation as long as suffi  cient reservation 
stations are available for the stalled memory references. When a branch among the 
many speculated instructions is fi nally mispredicted, the micro-ops corresponding 
to all these instructions will be fl ushed.

Th e Intel Core i7 combines a 14-stage pipeline and aggressive multiple issue to 
achieve high performance. By keeping the latencies for back-to-back operations 
low, the impact of data dependences is reduced. What are the most serious potential 
performance bottlenecks for programs running on this processor? Th e following 
list includes some potential performance problems, the last three of which can 
apply in some form to any high-performance pipelined processor.

■ Th e use of x86 instructions that do not map to a few simple micro-operations

■ Branches that are diffi  cult to predict, causing misprediction stalls and restarts 
when speculation fails

■ Long dependences—typically caused by long-running instructions or the 
memory hierarchy—that lead to stalls

■ Performance delays arising in accessing memory (see Chapter 5) that cause 
the processor to stall

 4.12  Going Faster:  Instruction-Level 
Parallelism and Matrix Multiply

Returning to the DGEMM example from Chapter 3, we can see the impact of 
instruction level parallelism by unrolling the loop so that the multiple issue, out-of-
order execution processor has more instructions to work with. Figure 4.80 shows 
the unrolled version of Figure 3.23, which contains the C intrinsics to produce the 
AVX instructions. 

Like the unrolling example in Figure 4.71 above, we are going to unroll the loop 
4 times. (We use the constant UNROLL in the C code to control the amount of 
unrolling in case we want to try other values.) Rather than manually unrolling the 
loop in C by making 4 copies of each of the intrinsics in Figure 3.23, we can rely 
on the gcc compiler to do the unrolling at –O3 optimization. We surround each 
intrinsic with a simple for loop that 4 iterations (lines 9, 14, and 20) and replace the 
scalar C0 in Figure 3.23 with a 4-element array c[] (lines 8, 10, 16, and 21).

Figure 4.81 shows the assembly language output of the unrolled code. As 
expected, in Figure 4.81 there are 4 versions of each of the AVX instructions in 
Figure 3.24, with one exception. We only need 1 copy of the vbroadcastsd 

Understanding 
Program 
Performance
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instruction, since we can use the four copies of the B element in register %ymm0 
repeatedly throughout the loop. Th us, the 5 AVX instructions in Figure 3.24 
become 17 in Figure 4.81, and the 7 integer instructions appear in both, although 
the constants and addressing changes to account for the unrolling. Hence, despite 
unrolling 4 times, the number of instructions in the body of the loop only doubles: 
from 12 to 24. 

Figure 4.82 shows the performance increase DGEMM for 32x32 matrices in 
going from unoptimized to AVX and then to AVX with unrolling. Unrolling more 
than doubles performance, going from 6.4 GFLOPS to 14.6 GFLOPS. Optimizations 
for subword parallelism and instruction level parallelism result in an overall 
speedup of 8.8 versus the unoptimized DGEMM in Figure 3.21.

Elaboration: As mentioned in the Elaboration in Section 3.8, these results are with 
Turbo mode turned off. If we turn it on, like in Chapter 3 we improve all the results by the 
temporary increase in the clock rate of 3.3/2.6 = 1.27 to 2.1 GFLOPS for unoptimized 
DGEMM, 8.1 GFLOPS with AVX, and 18.6 GFLOPS with unrolling and AVX. As mentioned 
in Section 3.8, Turbo mode works particularly well in this case because it is using only 
a single core of an eight-core chip.

1 #include <x86intrin.h>
2 #define UNROLL (4)
3
4 void dgemm (int n, double* A, double* B, double* C)
5 {
6  for ( int i = 0; i < n; i+=UNROLL*4 )
7   for ( int j = 0; j < n; j++ ) {
8    __m256d c[4];
9    for ( int x = 0; x < UNROLL; x++ )
10     c[x] = _mm256_load_pd(C+i+x*4+j*n);
11
12    for( int k = 0; k < n; k++ )
13    {
14     __m256d b = _mm256_broadcast_sd(B+k+j*n);
15     for (int x = 0; x < UNROLL; x++)
16     c[x] = _mm256_add_pd(c[x],
17      _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
18    }
19
20    for ( int x = 0; x < UNROLL; x++ )
21     _mm256_store_pd(C+i+x*4+j*n, c[x]);
22    }
23  }

FIGURE 4.80 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-
parallel instructions for the x86 (Figure 3.23) and loop unrolling to create more opportunities for 
instruction-level parallelism. Figure 4.81 shows the assembly language produced by the compiler for the inner 
loop, which unrolls the three for-loop bodies to expose instruction level parallelism.
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Elaboration: There are no pipeline stalls despite the reuse of register %ymm5 in lines 
9 to 17 Figure 4.81 because the Intel Core i7 pipeline renames the registers. 

Are the following statements true or false?

1. Th e Intel Core i7 uses a multiple-issue pipeline to directly execute x86 
instructions.

2. Both the A8 and the Core i7 use dynamic multiple issue.

3. Th e Core i7 microarchitecture has many more registers than x86 requires.

4. Th e Intel Core i7 uses less than half the pipeline stages of the earlier Intel 
Pentium 4 Prescott (see Figure 4.73).

Check 
Yourself

vmovapd (%r11),%ymm4 # Load 4 elements of C into %ymm41

mov    %rbx,%rax # register %rax = %rbx2

xor    %ecx,%ecx # register %ecx = 03

vmovapd 0x20(%r11),%ymm3 # Load 4 elements of C into %ymm34

vmovapd 0x40(%r11),%ymm2 # Load 4 elements of C into %ymm25

vmovapd 0x60(%r11),%ymm1 # Load 4 elements of C into %ymm16

vbroadcastsd (%rcx,%r9,1),%ymm0 # Make 4 copies of B element7

add    $0x8,%rcx # register %rcx = %rcx + 88

vmulpd (%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements9

mm4vaddpd %ymm5,%ymm4,%ymm4 # Parallel add %ymm5, %y10

vmulpd 0x20(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements11

vaddpd %ymm5,%ymm3,%ymm3 # Parallel add %ymm5, %ymm312

vmulpd 0x40(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements13

vmulpd 0x60(%rax),%ymm0,%ymm0 # Parallel mul %ymm1,4 A elements14

add   %r8,%rax # register %rax = %rax + %r815

cmp    %r10,%rcx # compare %r8 to %rax16

vaddpd %ymm5,%ymm2,%ymm2 # Parallel add %ymm5, %ymm217

vaddpd %ymm0,%ymm1,%ymm1 # Parallel add %ymm0, %ymm118

jne    68 <dgemm+0x68> # jump if not %r8 != %rax19

add    $0x1,%esi # register % esi = % esi + 120

vmovapd %ymm4,(%r11) # Store %ymm4 into 4 C elements21

vmovapd %ymm3,0x20(%r11) # Store %ymm3 into 4 C elements22

vmovapd %ymm2,0x40(%r11) # Store %ymm2 into 4 C elements23

vmovapd %ymm1,0x60(%r11) # Store %ymm1 into 4 C elements24

FIGURE 4.81 The x86 assembly language for the body of the nested loops generated by compiling 
the unrolled C code in Figure 4.80.
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 4.13  Advanced Topic: An Introduction to 
Digital Design Using a Hardware Design 
Language to Describe and Model a 
Pipeline and More Pipelining Illustrations

Modern digital design is done using hardware description languages and modern 
computer-aided synthesis tools that can create detailed hardware designs from the 
descriptions using both libraries and logic synthesis. Entire books are written on 
such languages and their use in digital design. Th is section, which appears online, 
gives a brief introduction and shows how a hardware design language, Verilog in 
this case, can be used to describe the MIPS control both behaviorally and in a 
form suitable for hardware synthesis. It then provides a series of behavioral models 
in Verilog of the MIPS fi ve-stage pipeline. Th e initial model ignores hazards, and 
additions to the model highlight the changes for forwarding, data hazards, and 
branch hazards.

We then provide about a dozen illustrations using the single-cycle graphical 
pipeline representation for readers who want to see more detail on how pipelines 
work for a few sequences of MIPS instructions.

4.13

FIGURE 4.82 Performance of three versions of DGEMM for 32x32 matrices. Subword 
parallelism and instruction level parallelism has led to speedup of almost a factor of 9 over the unoptimized 
code in Figure 3.21.
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 4.14 Fallacies and Pitfalls

Fallacy: Pipelining is easy.
Our books testify to the subtlety of correct pipeline execution. Our advanced book 
had a pipeline bug in its fi rst edition, despite its being reviewed by more than 100 
people and being class-tested at 18 universities. Th e bug was uncovered only when 
someone tried to build the computer in that book. Th e fact that the Verilog to 
describe a pipeline like that in the Intel Core i7 will be many thousands of lines is 
an indication of the complexity. Beware!

Fallacy: Pipelining ideas can be implemented independent of technology.
When the number of transistors on-chip and the speed of transistors made a 
fi ve-stage pipeline the best solution, then the delayed branch (see the Elaboration 
on page 255) was a simple solution to control hazards. With longer pipelines, 
superscalar execution, and dynamic branch prediction, it is now redundant. In 
the early 1990s, dynamic pipeline scheduling took too many resources and was 
not required for high performance, but as transistor budgets continued to double 
due to Moore’s Law and logic became much faster than memory, then multiple 
functional units and dynamic pipelining made more sense. Today, concerns about 
power are leading to less aggressive designs.

Pitfall: Failure to consider instruction set design can adversely impact pipelining.
Many of the diffi  culties of pipelining arise because of instruction set complications. 
Here are some examples:

■ Widely variable instruction lengths and running times can lead to imbalance 
among pipeline stages and severely complicate hazard detection in a design 
pipelined at the instruction set level. Th is problem was overcome, initially 
in the DEC VAX 8500 in the late 1980s, using the micro-operations and 
micropipelined scheme that the Intel Core i7 employs today. Of course, the 
overhead of translation and maintaining correspondence between the micro-
operations and the actual instructions remains.

■ Sophisticated addressing modes can lead to diff erent sorts of problems. 
Addressing modes that update registers complicate hazard detection. Other 
addressing modes that require multiple memory accesses substantially 
complicate pipeline control and make it diffi  cult to keep the pipeline fl owing 
smoothly.

■ Perhaps the best example is the DEC Alpha and the DEC NVAX. In 
comparable technology, the newer instruction set architecture of the Alpha 
allowed an implementation whose performance is more than twice as fast 
as NVAX. In another example, Bhandarkar and Clark [1991] compared the 
MIPS M/2000 and the DEC VAX 8700 by counting clock cycles of the SPEC 
benchmarks; they concluded that although the MIPS M/2000 executes more 



356 Chapter 4 The Processor

instructions, the VAX on average executes 2.7 times as many clock cycles, so 
the MIPS is faster.

 4.15 Concluding Remarks

As we have seen in this chapter, both the datapath and control for a processor can be 
designed starting with the instruction set architecture and an understanding of the 
basic characteristics of the technology. In Section 4.3, we saw how the datapath for 
a MIPS processor could be constructed based on the architecture and the decision 
to build a single-cycle implementation. Of course, the underlying technology also 
aff ects many design decisions by dictating what components can be used in the 
datapath, as well as whether a single-cycle implementation even makes sense.

Pipelining improves throughput but not the inherent execution time, or 
instruction latency, of instructions; for some instructions, the latency is similar 
in length to the single-cycle approach. Multiple instruction issue adds additional 
datapath hardware to allow multiple instructions to begin every clock cycle, but at 
an increase in eff ective latency. Pipelining was presented as reducing the clock cycle 
time of the simple single-cycle datapath. Multiple instruction issue, in comparison, 
clearly focuses on reducing clock cycles per instruction (CPI).

Pipelining and multiple issue both attempt to exploit instruction-level 
parallelism. Th e presence of data and control dependences, which can become 
hazards, are the primary limitations on how much parallelism can be exploited. 
Scheduling and speculation via prediction, both in hardware and in soft ware, are 
the primary techniques used to reduce the performance impact of dependences. 

We showed that unrolling the DGEMM loop four times exposed more 
instructions that could take advantage of the out-of-order execution engine of the 
Core i7 to more than double performance.

Th e switch to longer pipelines, multiple instruction issue, and dynamic 
scheduling in the mid-1990s has helped sustain the 60% per year processor 
performance increase that started in the early 1980s. As mentioned in Chapter 
1, these microprocessors preserved the sequential programming model, but 
they eventually ran into the power wall. Th us, the industry has been forced to 
switch to multiprocessors, which exploit parallelism at much coarser levels (the 
subject of Chapter 6). Th is trend has also caused designers to reassess the energy-
performance implications of some of the inventions since the mid-1990s, resulting 
in a simplifi cation of pipelines in the more recent versions of microarchitectures.

To sustain the advances in processing performance via parallel processors, 
Amdahl’s law suggests that another part of the system will become the bottleneck. 
Th at bottleneck is the topic of the next chapter: the memory hierarchy.

instruction latency Th e 
inherent execution time 
for an instruction.

Nine-tenths of wisdom 
consists of being wise 
in time.
American proverb
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 4.16  Historical Perspective and Further 
Reading

Th is section, which appears online, discusses the history of the fi rst pipelined 
processors, the earliest superscalars, and the development of out-of-order and 
speculative techniques, as well as important developments in the accompanying 
compiler technology.

 4.17 Exercises

4.1 Consider the following instruction:

Instruction:  AND Rd,Rs,Rt

Interpretation:  Reg[Rd] = Reg[Rs] AND Reg[Rt]

4.1.1 [5] <§4.1> What are the values of control signals generated by the control in 
Figure 4.2 for the above instruction?

4.1.2 [5] <§4.1> Which resources (blocks) perform a useful function for this 
instruction?

4.1.3 [10] <§4.1> Which resources (blocks) produce outputs, but their outputs 
are not used for this instruction? Which resources produce no outputs for this 
instruction?

4.2 Th e basic single-cycle MIPS implementation in Figure 4.2 can only implement 
some instructions. New instructions can be added to an existing Instruction Set 
Architecture (ISA), but the decision whether or not to do that depends, among 
other things, on the cost and complexity the proposed addition introduces into the 
processor datapath and control. Th e fi rst three problems in this exercise refer to the 
new instruction:

Instruction:  LWI Rt,Rd(Rs)

Interpretation:  Reg[Rt] = Mem[Reg[Rd]+Reg[Rs]]

4.2.1 [10] <§4.1> Which existing blocks (if any) can be used for this instruction?

4.2.2 [10] <§4.1> Which new functional blocks (if any) do we need for this 
instruction?

4.2.3 [10] <§4.1> What new signals do we need (if any) from the control unit to 
support this instruction?

4.16
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4.3 When processor designers consider a possible improvement to the processor 
datapath, the decision usually depends on the cost/performance trade-off . In 
the following three problems, assume that we are starting with a datapath from 
Figure 4.2, where I-Mem, Add, Mux, ALU, Regs, D-Mem, and Control blocks have 
latencies of 400 ps, 100 ps, 30 ps, 120 ps, 200 ps, 350 ps, and 100 ps, respectively, 
and costs of 1000, 30, 10, 100, 200, 2000, and 500, respectively.

Consider the addition of a multiplier to the ALU.  Th is addition will add 300 ps to the 
latency of the ALU and will add a cost of 600 to the ALU.  Th e result will be 5% fewer 
instructions executed since we will no longer need to emulate the MUL instruction.

4.3.1 [10] <§4.1> What is the clock cycle time with and without this improvement?

4.3.2 [10] <§4.1> What is the speedup achieved by adding this improvement?

4.3.3 [10] <§4.1> Compare the cost/performance ratio with and without this 
improvement.

4.4 Problems in this exercise assume that logic blocks needed to implement a 
processor’s datapath have the following latencies:

I-Mem  Add Mux ALU Regs D-Mem Sign-Extend Shift-Left-2

200ps 70ps 20ps 90ps 90ps 250ps 15ps 10ps

4.4.1 [10] <§4.3> If the only thing we need to do in a processor is fetch consecutive 
instructions (Figure 4.6), what would the cycle time be?

4.4.2 [10] <§4.3> Consider a datapath similar to the one in Figure 4.11, but for a 
processor that only has one type of instruction: unconditional PC-relative branch. 
What would the cycle time be for this datapath?

4.4.3 [10] <§4.3> Repeat 4.4.2, but this time we need to support only conditional 
PC-relative branches.

Th e remaining three problems in this exercise refer to the datapath element Shift -
left -2:

4.4.4 [10] <§4.3> Which kinds of instructions require this resource?

4.4.5 [20] <§4.3> For which kinds of instructions (if any) is this resource on the 
critical path?

4.4.6 [10] <§4.3> Assuming that we only support beq and add instructions, 
discuss how changes in the given latency of this resource aff ect the cycle time of the 
processor. Assume that the latencies of other resources do not change.
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4.5 For the problems in this exercise, assume that there are no pipeline stalls and 
that the breakdown of executed instructions is as follows:

add  addi not beq lw sw

20% 20% 0% 25% 25% 10%

4.5.1 [10] <§4.3> In what fraction of all cycles is the data memory used?

4.5.2 [10] <§4.3> In what fraction of all cycles is the input of the sign-extend 
circuit needed? What is this circuit doing in cycles in which its input is not needed?

4.6 When silicon chips are fabricated, defects in materials (e.g., silicon) and 
manufacturing errors can result in defective circuits. A very common defect is for 
one wire to aff ect the signal in another. Th is is called a cross-talk fault. A special 
class of cross-talk faults is when a signal is connected to a wire that has a constant 
logical value (e.g., a power supply wire). In this case we have a stuck-at-0 or a stuck-
at-1 fault, and the aff ected signal always has a logical value of 0 or 1, respectively.  
Th e following problems refer to bit 0 of the Write Register input on the register fi le 
in Figure 4.24.

4.6.1 [10] <§§4.3, 4.4> Let us assume that processor testing is done by fi lling the 
PC, registers, and data and instruction memories with some values (you can choose 
which values), letting a single instruction execute, then reading the PC, memories, 
and registers. Th ese values are then examined to determine if a particular fault is 
present. Can you design a test (values for PC, memories, and registers) that would 
determine if there is a stuck-at-0 fault on this signal?

4.6.2 [10] <§§4.3, 4.4> Repeat 4.6.1 for a stuck-at-1 fault. Can you use a single 
test for both stuck-at-0 and stuck-at-1? If yes, explain how; if no, explain why not.

4.6.3 [60] <§§4.3, 4.4> If we know that the processor has a stuck-at-1 fault on 
this signal, is the processor still usable? To be usable, we must be able to convert 
any program that executes on a normal MIPS processor into a program that works 
on this processor. You can assume that there is enough free instruction memory 
and data memory to let you make the program longer and store additional 
data. Hint: the processor is usable if every instruction “broken” by this fault can 
be replaced with a sequence of “working” instructions that achieve the same 
eff ect.

4.6.4 [10] <§§4.3, 4.4> Repeat 4.6.1, but now the fault to test for is whether 
the “MemRead” control signal becomes 0 if RegDst control signal is 0, no fault 
otherwise.

4.6.5 [10] <§§4.3, 4.4> Repeat 4.6.4, but now the fault to test for is whether the 
“Jump” control signal becomes 0 if RegDst control signal is 0, no fault otherwise.
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4.7 In this exercise we examine in detail how an instruction is executed in a 
single-cycle datapath. Problems in this exercise refer to a clock cycle in which the 
processor fetches the following instruction word:

10101100011000100000000000010100.

Assume that data memory is all zeros and that the processor’s registers have the 
following values at the beginning of the cycle in which the above instruction word 
is fetched:

r0  r1 r2 r3 r4 r5 r6 r8 r12 r31

0 –1 2 –3 –4 10 6 8 2 –16

4.7.1 [5] <§4.4> What are the outputs of the sign-extend and the jump “Shift  left  
2” unit (near the top of Figure 4.24) for this instruction word?

4.7.2 [10] <§4.4> What are the values of the ALU control unit’s inputs for this 
instruction?

4.7.3 [10] <§4.4> What is the new PC address aft er this instruction is executed? 
Highlight the path through which this value is determined.

4.7.4 [10] <§4.4> For each Mux, show the values of its data output during the 
execution of this instruction and these register values.

4.7.5 [10] <§4.4> For the ALU and the two add units, what are their data input 
values?

4.7.6 [10] <§4.4> What are the values of all inputs for the “Registers” unit?

4.8 In this exercise, we examine how pipelining aff ects the clock cycle time of the 
processor. Problems in this exercise assume that individual stages of the datapath 
have the following latencies:

IF ID EX MEM WB

250ps 350ps 150ps 300ps 200ps

Also, assume that instructions executed by the processor are broken down as 
follows:

alu  beq lw sw

45% 20% 20% 15%

4.8.1 [5] <§4.5> What is the clock cycle time in a pipelined and non-pipelined 
processor?

4.8.2 [10] <§4.5> What is the total latency of an LW instruction in a pipelined 
and non-pipelined processor?
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4.8.3 [10] <§4.5> If we can split one stage of the pipelined datapath into two new 
stages, each with half the latency of the original stage, which stage would you split 
and what is the new clock cycle time of the processor?

4.8.4 [10] <§4.5> Assuming there are no stalls or hazards, what is the utilization 
of the data memory?

4.8.5 [10] <§4.5> Assuming there are no stalls or hazards, what is the utilization 
of the write-register port of the “Registers” unit?

4.8.6 [30] <§4.5> Instead of a single-cycle organization, we can use a multi-cycle 
organization where each instruction takes multiple cycles but one instruction 
fi nishes before another is fetched. In this organization, an instruction only goes 
through stages it actually needs (e.g., ST only takes 4 cycles because it does not 
need the WB stage). Compare clock cycle times and execution times with single-
cycle, multi-cycle, and pipelined organization.

4.9 In this exercise, we examine how data dependences aff ect execution in the 
basic 5-stage pipeline described in Section 4.5. Problems in this exercise refer to the 
following sequence of instructions:

or r1,r2,r3
or r2,r1,r4
or r1,r1,r2

Also, assume the following cycle times for each of the options related to forwarding:

Without Forwarding With Full Forwarding With ALU-ALU Forwarding Only

250ps 300ps 290ps

4.9.1 [10] <§4.5> Indicate dependences and their type.

4.9.2 [10] <§4.5> Assume there is no forwarding in this pipelined processor. 
Indicate hazards and add nop instructions to eliminate them.

4.9.3 [10] <§4.5> Assume there is full forwarding. Indicate hazards and add NOP 
instructions to eliminate them.

4.9.4 [10] <§4.5> What is the total execution time of this instruction sequence 
without forwarding and with full forwarding? What is the speedup achieved by 
adding full forwarding to a pipeline that had no forwarding?

4.9.5 [10] <§4.5> Add nop instructions to this code to eliminate hazards if there 
is ALU-ALU forwarding only (no forwarding from the MEM to the EX stage).

4.9.6 [10] <§4.5> What is the total execution time of this instruction sequence 
with only ALU-ALU forwarding? What is the speedup over a no-forwarding 
pipeline?
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4.10 In this exercise, we examine how resource hazards, control hazards, and 
Instruction Set Architecture (ISA) design can aff ect pipelined execution. Problems 
in this exercise refer to the following fragment of MIPS code:

    sw  r16,12(r6)
    lw  r16,8(r6)
    beq r5,r4,Label # Assume r5!=r4
    add r5,r1,r4
    slt r5,r15,r4

Assume that individual pipeline stages have the following latencies:

IF  ID EX MEM WB

200ps 120ps 150ps 190ps 100ps

4.10.1 [10] <§4.5> For this problem, assume that all branches are perfectly 
predicted (this eliminates all control hazards) and that no delay slots are used. If we 
only have one memory (for both instructions and data), there is a structural hazard 
every time we need to fetch an instruction in the same cycle in which another 
instruction accesses data. To guarantee forward progress, this hazard must always 
be resolved in favor of the instruction that accesses data. What is the total execution 
time of this instruction sequence in the 5-stage pipeline that only has one memory? 
We have seen that data hazards can be eliminated by adding nops to the code. Can 
you do the same with this structural hazard? Why?

4.10.2 [20] <§4.5> For this problem, assume that all branches are perfectly 
predicted (this eliminates all control hazards) and that no delay slots are used. 
If we change load/store instructions to use a register (without an off set) as the 
address, these instructions no longer need to use the ALU. As a result, MEM and 
EX stages can be overlapped and the pipeline has only 4 stages. Change this code to 
accommodate this changed ISA. Assuming this change does not aff ect clock cycle 
time, what speedup is achieved in this instruction sequence?

4.10.3 [10] <§4.5> Assuming stall-on-branch and no delay slots, what speedup is 
achieved on this code if branch outcomes are determined in the ID stage, relative to 
the execution where branch outcomes are determined in the EX stage?

4.10.4 [10] <§4.5> Given these pipeline stage latencies, repeat the speedup 
calculation from 4.10.2, but take into account the (possible) change in clock cycle 
time. When EX and MEM are done in a single stage, most of their work can be 
done in parallel. As a result, the resulting EX/MEM stage has a latency that is the 
larger of the original two, plus 20 ps needed for the work that could not be done 
in parallel.

4.10.5 [10] <§4.5> Given these pipeline stage latencies, repeat the speedup 
calculation from 4.10.3, taking into account the (possible) change in clock cycle 
time. Assume that the latency ID stage increases by 50% and the latency of the EX 
stage decreases by 10ps when branch outcome resolution is moved from EX to ID.
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4.10.6 [10] <§4.5> Assuming stall-on-branch and no delay slots, what is the new 
clock cycle time and execution time of this instruction sequence if beq address 
computation is moved to the MEM stage? What is the speedup from this change? 
Assume that the latency of the EX stage is reduced by 20 ps and the latency of the 
MEM stage is unchanged when branch outcome resolution is moved from EX to 
MEM.

4.11 Consider the following loop.

loop:lw  r1,0(r1)
     and r1,r1,r2
     lw  r1,0(r1)
     lw  r1,0(r1)
     beq r1,r0,loop 

Assume that perfect branch prediction is used (no stalls due to control hazards), 
that there are no delay slots, and that the pipeline has full forwarding support. Also 
assume that many iterations of this loop are executed before the loop exits.

4.11.1 [10] <§4.6> Show a pipeline execution diagram for the third iteration of 
this loop, from the cycle in which we fetch the fi rst instruction of that iteration up 
to (but not including) the cycle in which we can fetch the fi rst instruction of the 
next iteration. Show all instructions that are in the pipeline during these cycles (not 
just those from the third iteration).

4.11.2 [10] <§4.6> How oft en (as a percentage of all cycles) do we have a cycle in 
which all fi ve pipeline stages are doing useful work?

4.12 Th is exercise is intended to help you understand the cost/complexity/
performance trade-off s of forwarding in a pipelined processor. Problems in this 
exercise refer to pipelined datapaths from Figure 4.45. Th ese problems assume 
that, of all the instructions executed in a processor, the following fraction of these 
instructions have a particular type of RAW data dependence. Th e type of RAW 
data dependence is identifi ed by the stage that produces the result (EX or MEM) 
and the instruction that consumes the result (1st instruction that follows the one 
that produces the result, 2nd instruction that follows, or both). We assume that the 
register write is done in the fi rst half of the clock cycle and that register reads are 
done in the second half of the cycle, so “EX to 3rd” and “MEM to 3rd” dependences 
are not counted because they cannot result in data hazards. Also, assume that the 
CPI of the processor is 1 if there are no data hazards.

EX to 1st 
Only

MEM to 1st 
Only

EX to 2nd 
Only

MEM to 2nd  
Only

EX to 1st 

and MEM 
to 2nd

Other RAW 
Dependences

5% 20% 5% 10% 10% 10%
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Assume the following latencies for individual pipeline stages. For the EX stage, 
latencies are given separately for a processor without forwarding and for a processor 
with diff erent kinds of forwarding.

IF ID
EX 

(no FW)
EX 

(full FW)
EX (FW from 

EX/MEM only)

EX (FW 
from MEM/
WB only) MEM WB

150 ps 100 ps 120 ps 150 ps 140 ps 130 ps 120 ps 100 ps

4.12.1 [10] <§4.7> If we use no forwarding, what fraction of cycles are we stalling 
due to data hazards?

4.12.2 [5] <§4.7> If we use full forwarding (forward all results that can be 
forwarded), what fraction of cycles are we staling due to data hazards?

4.12.3 [10] <§4.7> Let us assume that we cannot aff ord to have three-input Muxes 
that are needed for full forwarding. We have to decide if it is better to forward 
only from the EX/MEM pipeline register (next-cycle forwarding) or only from 
the MEM/WB pipeline register (two-cycle forwarding). Which of the two options 
results in fewer data stall cycles?

4.12.4 [10] <§4.7> For the given hazard probabilities and pipeline stage latencies, 
what is the speedup achieved by adding full forwarding to a pipeline that had no 
forwarding?

4.12.5 [10] <§4.7> What would be the additional speedup (relative to a processor 
with forwarding) if we added time-travel forwarding that eliminates all data 
hazards? Assume that the yet-to-be-invented time-travel circuitry adds 100 ps to 
the latency of the full-forwarding EX stage.

4.12.6 [20] <§4.7> Repeat 4.12.3 but this time determine which of the two 
options results in shorter time per instruction.

4.13 Th is exercise is intended to help you understand the relationship between 
forwarding, hazard detection, and ISA design. Problems in this exercise refer to 
the following sequence of instructions, and assume that it is executed on a 5-stage 
pipelined datapath:

add r5,r2,r1
lw  r3,4(r5)
lw  r2,0(r2)
or  r3,r5,r3
sw  r3,0(r5)

4.13.1 [5] <§4.7> If there is no forwarding or hazard detection, insert nops to 
ensure correct execution.
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4.13.2 [10] <§4.7> Repeat 4.13.1 but now use nops only when a hazard cannot be 
avoided by changing or rearranging these instructions. You can assume register R7 
can be used to hold temporary values in your modifi ed code.

4.13.3 [10] <§4.7> If the processor has forwarding, but we forgot to implement 
the hazard detection unit, what happens when this code executes?

4.13.4 [20] <§4.7> If there is forwarding, for the fi rst fi ve cycles during the 
execution of this code, specify which signals are asserted in each cycle by hazard 
detection and forwarding units in Figure 4.60.

4.13.5 [10] <§4.7> If there is no forwarding, what new inputs and output signals 
do we need for the hazard detection unit in Figure 4.60? Using this instruction 
sequence as an example, explain why each signal is needed.

4.13.6 [20] <§4.7> For the new hazard detection unit from 4.13.5, specify which 
output signals it asserts in each of the fi rst fi ve cycles during the execution of this 
code.

4.14 Th is exercise is intended to help you understand the relationship between 
delay slots, control hazards, and branch execution in a pipelined processor. In 
this exercise, we assume that the following MIPS code is executed on a pipelined 
processor with a 5-stage pipeline, full forwarding, and a predict-taken branch 
predictor:

                   lw r2,0(r1)
label1: beq r2,r0,label2 # not taken once, then taken
        lw r3,0(r2)
        beq r3,r0,label1 # taken
        add r1,r3,r1
label2: sw r1,0(r2)

4.14.1 [10] <§4.8> Draw the pipeline execution diagram for this code, assuming 
there are no delay slots and that branches execute in the EX stage.

4.14.2 [10] <§4.8> Repeat 4.14.1, but assume that delay slots are used. In the 
given code, the instruction that follows the branch is now the delay slot instruction 
for that branch.

4.14.3 [20] <§4.8> One way to move the branch resolution one stage earlier is to 
not need an ALU operation in conditional branches. Th e branch instructions would 
be “bez rd,label” and “bnez rd,label”, and it would branch if the register has 
and does not have a zero value, respectively. Change this code to use these branch 
instructions instead of beq. You can assume that register R8 is available for you 
to use as a temporary register, and that an seq (set if equal) R-type instruction can 
be used.
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Section 4.8 describes how the severity of control hazards can be reduced by moving 
branch execution into the ID stage. Th is approach involves a dedicated comparator 
in the ID stage, as shown in Figure 4.62. However, this approach potentially adds 
to the latency of the ID stage, and requires additional forwarding logic and hazard 
detection.

4.14.4 [10] <§4.8> Using the fi rst branch instruction in the given code as an 
example, describe the hazard detection logic needed to support branch execution 
in the ID stage as in Figure 4.62. Which type of hazard is this new logic supposed 
to detect?

4.14.5 [10] <§4.8> For the given code, what is the speedup achieved by moving 
branch execution into the ID stage? Explain your answer. In your speedup 
calculation, assume that the additional comparison in the ID stage does not aff ect 
clock cycle time.

4.14.6 [10] <§4.8> Using the fi rst branch instruction in the given code as an 
example, describe the forwarding support that must be added to support branch 
execution in the ID stage. Compare the complexity of this new forwarding unit to 
the complexity of the existing forwarding unit in Figure 4.62.

4.15 Th e importance of having a good branch predictor depends on how oft en 
conditional branches are executed. Together with branch predictor accuracy, this 
will determine how much time is spent stalling due to mispredicted branches. In 
this exercise, assume that the breakdown of dynamic instructions into various 
instruction categories is as follows:

R-Type BEQ JMP LW SW

40% 25% 5% 25% 5%

Also, assume the following branch predictor accuracies:

Always-Taken  Always-Not-Taken 2-Bit

45% 55% 85%

4.15.1 [10] <§4.8> Stall cycles due to mispredicted branches increase the 
CPI. What is the extra CPI due to mispredicted branches with the always-taken 
predictor? Assume that branch outcomes are determined in the EX stage, that there 
are no data hazards, and that no delay slots are used.

4.15.2 [10] <§4.8> Repeat 4.15.1 for the “always-not-taken” predictor.

4.15.3 [10] <§4.8> Repeat 4.15.1 for for the 2-bit predictor.

4.15.4 [10] <§4.8> With the 2-bit predictor, what speedup would be achieved if 
we could convert half of the branch instructions in a way that replaces a branch 
instruction with an ALU instruction? Assume that correctly and incorrectly 
predicted instructions have the same chance of being replaced.
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4.15.5 [10] <§4.8> With the 2-bit predictor, what speedup would be achieved if 
we could convert half of the branch instructions in a way that replaced each branch 
instruction with two ALU instructions? Assume that correctly and incorrectly 
predicted instructions have the same chance of being replaced.

4.15.6 [10] <§4.8> Some branch instructions are much more predictable than 
others. If we know that 80% of all executed branch instructions are easy-to-predict 
loop-back branches that are always predicted correctly, what is the accuracy of the 
2-bit predictor on the remaining 20% of the branch instructions?

4.16 Th is exercise examines the accuracy of various branch predictors for the 
following repeating pattern (e.g., in a loop) of branch outcomes: T, NT, T, T, NT

4.16.1 [5] <§4.8> What is the accuracy of always-taken and always-not-taken 
predictors for this sequence of branch outcomes?

4.16.2 [5] <§4.8> What is the accuracy of the two-bit predictor for the fi rst 4 
branches in this pattern, assuming that the predictor starts off  in the bottom left  
state from Figure 4.63 (predict not taken)?

4.16.3 [10] <§4.8> What is the accuracy of the two-bit predictor if this pattern is 
repeated forever?

4.16.4 [30] <§4.8> Design a predictor that would achieve a perfect accuracy if 
this pattern is repeated forever. You predictor should be a sequential circuit with 
one output that provides a prediction (1 for taken, 0 for not taken) and no inputs 
other than the clock and the control signal that indicates that the instruction is a 
conditional branch.

4.16.5 [10] <§4.8> What is the accuracy of your predictor from 4.16.4 if it is 
given a repeating pattern that is the exact opposite of this one?

4.16.6 [20] <§4.8> Repeat 4.16.4, but now your predictor should be able to 
eventually (aft er a warm-up period during which it can make wrong predictions) 
start perfectly predicting both this pattern and its opposite. Your predictor should 
have an input that tells it what the real outcome was. Hint: this input lets your 
predictor determine which of the two repeating patterns it is given.

4.17 Th is exercise explores how exception handling aff ects pipeline design. Th e 
fi rst three problems in this exercise refer to the following two instructions:

Instruction 1 Instruction 2

BNE R1, R2, Label LW R1, 0(R1)

4.17.1 [5] <§4.9> Which exceptions can each of these instructions trigger? For 
each of these exceptions, specify the pipeline stage in which it is detected.
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4.17.2 [10] <§4.9> If there is a separate handler address for each exception, show 
how the pipeline organization must be changed to be able to handle this exception. 
You can assume that the addresses of these handlers are known when the processor 
is designed.

4.17.3 [10] <§4.9> If the second instruction is fetched right aft er the fi rst 
instruction, describe what happens in the pipeline when the fi rst instruction causes 
the fi rst exception you listed in 4.17.1. Show the pipeline execution diagram from 
the time the fi rst instruction is fetched until the time the fi rst instruction of the 
exception handler is completed.

4.17.4 [20] <§4.9> In vectored exception handling, the table of exception handler 
addresses is in data memory at a known (fi xed) address. Change the pipeline to 
implement this exception handling mechanism. Repeat 4.17.3 using this modifi ed 
pipeline and vectored exception handling.

4.17.5 [15] <§4.9> We want to emulate vectored exception handling (described 
in 4.17.4) on a machine that has only one fi xed handler address. Write the code 
that should be at that fi xed address. Hint: this code should identify the exception, 
get the right address from the exception vector table, and transfer execution to that 
handler.

4.18 In this exercise we compare the performance of 1-issue and 2-issue 
processors, taking into account program transformations that can be made to 
optimize for 2-issue execution. Problems in this exercise refer to the following loop 
(written in C):

for(i=0;i!=j;i+=2)
  b[i]=a[i]–a[i+1];

When writing MIPS code, assume that variables are kept in registers as follows, and 
that all registers except those indicated as Free are used to keep various variables, 
so they cannot be used for anything else.

i  j a b c Free

R5 R6 R1 R2 R3 R10, R11, R12

4.18.1 [10] <§4.10> Translate this C code into MIPS instructions. Your translation 
should be direct, without rearranging instructions to achieve better performance.

4.18.2 [10] <§4.10> If the loop exits aft er executing only two iterations, draw a 
pipeline diagram for your MIPS code from 4.18.1 executed on a 2-issue processor 
shown in Figure 4.69. Assume the processor has perfect branch prediction and can 
fetch any two instructions (not just consecutive instructions) in the same cycle.

4.18.3 [10] <§4.10> Rearrange your code from 4.18.1 to achieve better 
performance on a 2-issue statically scheduled processor from Figure 4.69.
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4.18.4 [10] <§4.10> Repeat 4.18.2, but this time use your MIPS code from 4.18.3.

4.18.5 [10] <§4.10> What is the speedup of going from a 1-issue processor to 
a 2-issue processor from Figure 4.69? Use your code from 4.18.1 for both 1-issue 
and 2-issue, and assume that 1,000,000 iterations of the loop are executed. As in 
4.18.2, assume that the processor has perfect branch predictions, and that a 2-issue 
processor can fetch any two instructions in the same cycle.

4.18.6 [10] <§4.10> Repeat 4.18.5, but this time assume that in the 2-issue 
processor one of the instructions to be executed in a cycle can be of any kind, and 
the other must be a non-memory instruction.

4.19 Th is exercise explores energy effi  ciency and its relationship with performance. 
Problems in this exercise assume the following energy consumption for activity in 
Instruction memory, Registers, and Data memory. You can assume that the other 
components of the datapath spend a negligible amount of energy.

I-Mem 1 Register Read Register Write D-Mem Read D-Mem Write

140pJ 70pJ 60pJ 140pJ 120pJ

Assume that components in the datapath have the following latencies. You can 
assume that the other components of the datapath have negligible latencies.

I-Mem Control Register Read or Write ALU D-Mem Read or Write

200ps 150ps 90ps 90ps 250ps

4.19.1 [10] <§§4.3, 4.6, 4.14> How much energy is spent to execute an ADD 
instruction in a single-cycle design and in the 5-stage pipelined design?

4.19.2 [10] <§§4.6, 4.14> What is the worst-case MIPS instruction in terms of 
energy consumption, and what is the energy spent to execute it?

4.19.3 [10] <§§4.6, 4.14> If energy reduction is paramount, how would you 
change the pipelined design? What is the percentage reduction in the energy spent 
by an LW instruction aft er this change?

4.19.4 [10] <§§4.6, 4.14> What is the performance impact of your changes from 
4.19.3?

4.19.5 [10] <§§4.6, 4.14> We can eliminate the MemRead control signal and have 
the data memory be read in every cycle, i.e., we can permanently have MemRead=1. 
Explain why the processor still functions correctly aft er this change. What is the 
eff ect of this change on clock frequency and energy consumption?

4.19.6 [10] <§§4.6, 4.14> If an idle unit spends 10% of the power it would spend 
if it were active, what is the energy spent by the instruction memory in each cycle? 
What percentage of the overall energy spent by the instruction memory does this 
idle energy represent?
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§4.1, page 248: 3 of 5: Control, Datapath, Memory. Input and Output are missing.
§4.2, page 251: false. Edge-triggered state elements make simultaneous reading and 
writing both possible and unambiguous.
§4.3, page 257: I. a. II. c.
§4.4, page 272: Yes, Branch and ALUOp0 are identical. In addition, MemtoReg and 
RegDst are inverses of one another. You don’t need an inverter; simply use the other 
signal and fl ip the order of the inputs to the multiplexor!
§4.5, page 285: I. Stall on the lw result. 2. Bypass the fi rst add result written into 
$t1. 3. No stall or bypass required.
§4.6, page 298: Statements 2 and 4 are correct; the rest are incorrect.
§4.8, page 324: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction.
§4.9, page 332: Th e fi rst instruction, since it is logically executed before the others.
§4.10, page 344: 1. Both. 2. Both. 3. Soft ware. 4. Hardware. 5. Hardware. 6. 
Hardware. 7. Both. 8. Hardware. 9. Both.
§4.11, page 353: First two are false and the last two are true.

Answers to 
Check Yourself
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5
Ideally one would desire an 
indefi nitely large memory 
capacity such that any 
particular … word would be 
immediately available. … We 
are … forced to recognize the 
possibility of constructing a 
hierarchy of memories, each 
of which has greater capacity 
than the preceding but which 
is less quickly accessible.
A. W. Burks, H. H. Goldstine, and 
J. von Neumann 
Preliminary Discussion of the Logical Design of an 
Electronic Computing Instrument, 1946

Large and Fast: 
Exploiting Memory 
Hierarchy
5.1 Introduction 374
5.2 Memory Technologies 378
5.3 The Basics of Caches 383
5.4 Measuring and Improving Cache 

Performance 398
5.5 Dependable Memory Hierarchy 418
5.6 Virtual Machines 424
5.7 Virtual Memory 427

Computer Organization and Design. DOI: 
© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1
2013



5.8 A Common Framework for Memory Hierarchy 454
5.9 Using a Finite-State Machine to Control a Simple Cache 461
5.10 Parallelism and Memory Hierarchies: Cache Coherence 466
5.11 Parallelism and Memory Hierarchy: Redundant Arrays of 

Inexpensive Disks 470
5.12 Advanced Material: Implementing Cache Controllers 470
5.13 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Memory 

Hierarchies 471
5.14 Going Faster: Cache Blocking and Matrix Multiply 475
5.15 Fallacies and Pitfalls 478
5.16 Concluding Remarks 482
5.17 Historical Perspective and Further Reading 483
5.18 Exercises 483

The Five Classic Components of a Computer



374 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.1 Introduction

From the earliest days of computing, programmers have wanted unlimited 
amounts of fast memory. Th e topics in this chapter aid programmers by creating 
that illusion. Before we look at creating the illusion, let’s consider a simple analogy 
that illustrates the key principles and mechanisms that we use.

Suppose you were a student writing a term paper on important historical 
developments in computer hardware. You are sitting at a desk in a library with 
a collection of books that you have pulled from the shelves and are examining. 
You fi nd that several of the important computers that you need to write about are 
described in the books you have, but there is nothing about the EDSAC. Th erefore, 
you go back to the shelves and look for an additional book. You fi nd a book on 
early British computers that covers the EDSAC. Once you have a good selection of 
books on the desk in front of you, there is a good probability that many of the topics 
you need can be found in them, and you may spend most of your time just using 
the books on the desk without going back to the shelves. Having several books on 
the desk in front of you saves time compared to having only one book there and 
constantly having to go back to the shelves to return it and take out another.

Th e same principle allows us to create the illusion of a large memory that we 
can access as fast as a very small memory. Just as you did not need to access all the 
books in the library at once with equal probability, a program does not access all of 
its code or data at once with equal probability. Otherwise, it would be impossible 
to make most memory accesses fast and still have large memory in computers, just 
as it would be impossible for you to fi t all the library books on your desk and still 
fi nd what you wanted quickly.

Th is principle of locality underlies both the way in which you did your work in 
the library and the way that programs operate. Th e principle of locality states that 
programs access a relatively small portion of their address space at any instant of 
time, just as you accessed a very small portion of the library’s collection. Th ere are 
two diff erent types of locality:

■ Temporal locality (locality in time): if an item is referenced, it will tend to be 
referenced again soon. If you recently brought a book to your desk to look at, 
you will probably need to look at it again soon.

■ Spatial locality (locality in space): if an item is referenced, items whose 
addresses are close by will tend to be referenced soon. For example, when 
you brought out the book on early English computers to fi nd out about the 
EDSAC, you also noticed that there was another book shelved next to it about 
early mechanical computers, so you also brought back that book and, later 
on, found something useful in that book. Libraries put books on the same 
topic together on the same shelves to increase spatial locality. We’ll see how 
memory hierarchies use spatial locality a little later in this chapter.

temporal locality Th e 
principle stating that if a 
data location is referenced 
then it will tend to be 
referenced again soon.

spatial locality Th e 
locality principle stating 
that if a data location is 
referenced, data locations 
with nearby addresses 
will tend to be referenced 
soon.



 5.1 Introduction 375

Just as accesses to books on the desk naturally exhibit locality, locality in 
programs arises from simple and natural program structures. For example, 
most programs contain loops, so instructions and data are likely to be accessed 
repeatedly, showing high amounts of temporal locality. Since instructions are 
normally accessed sequentially, programs also show high spatial locality. Accesses 
to data also exhibit a natural spatial locality. For example, sequential accesses to 
elements of an array or a record will naturally have high degrees of spatial locality.

We take advantage of the principle of locality by implementing the memory 
of a computer as a memory hierarchy. A memory hierarchy consists of multiple 
levels of memory with diff erent speeds and sizes. Th e faster memories are more 
expensive per bit than the slower memories and thus are smaller.

Figure 5.1 shows the faster memory is close to the processor and the slower, 
less expensive memory is below it. Th e goal is to present the user with as much 
memory as is available in the cheapest technology, while providing access at the 
speed off ered by the fastest memory.

Th e data is similarly hierarchical: a level closer to the processor is generally a 
subset of any level further away, and all the data is stored at the lowest level. By 
analogy, the books on your desk form a subset of the library you are working in, 
which is in turn a subset of all the libraries on campus. Furthermore, as we move 
away from the processor, the levels take progressively longer to access, just as we 
might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data is copied between 
only two adjacent levels at a time, so we can focus our attention on just two levels. 

memory hierarchy 
A structure that uses 
multiple levels of 
memories; as the distance 
from the processor 
increases, the size of the 
memories and the access 
time both increase.

Speed

Fastest

Slowest

Smallest

Biggest

Size Cost ($/bit)
Current

technology

Highest

Lowest

SRAM

DRAM

Magnetic disk

Processor

Memory

Memory

Memory

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as 
a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can 
be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal 
mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see 
Section 5.2.
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Th e upper level—the one closer to the processor—is smaller and faster than the lower 
level, since the upper level uses technology that is more expensive. Figure 5.2 shows 
that the minimum unit of information that can be either present or not present in 
the two-level hierarchy is called a block or a line; in our library analogy, a block of 
information is one book.

If the data requested by the processor appears in some block in the upper level, 
this is called a hit (analogous to your fi nding the information in one of the books 
on your desk). If the data is not found in the upper level, the request is called a miss. 
Th e lower level in the hierarchy is then accessed to retrieve the block containing the 
requested data. (Continuing our analogy, you go from your desk to the shelves to 
fi nd the desired book.) Th e hit rate, or hit ratio, is the fraction of memory accesses 
found in the upper level; it is oft en used as a measure of the performance of the 
memory hierarchy. Th e miss rate (1−hit rate) is the fraction of memory accesses 
not found in the upper level.

Since performance is the major reason for having a memory hierarchy, the time 
to service hits and misses is important. Hit time is the time to access the upper level 
of the memory hierarchy, which includes the time needed to determine whether 
the access is a hit or a miss (that is, the time needed to look through the books on 
the desk). Th e miss penalty is the time to replace a block in the upper level with 
the corresponding block from the lower level, plus the time to deliver this block to 
the processor (or the time to get another book from the shelves and place it on the 
desk). Because the upper level is smaller and built using faster memory parts, the 
hit time will be much smaller than the time to access the next level in the hierarchy, 
which is the major component of the miss penalty. (Th e time to examine the books 
on the desk is much smaller than the time to get up and get a new book from the 
shelves.)

block (or line) Th e 
minimum unit of 
information that can 
be either present or not 
present in a cache.

hit rate Th e fraction of 
memory accesses found 
in a level of the memory 
hierarchy.

miss rate Th e fraction 
of memory accesses not 
found in a level of the 
memory hierarchy.

hit time Th e time 
required to access a level 
of the memory hierarchy, 
including the time needed 
to determine whether the 
access is a hit or a miss.

miss penalty Th e time 
required to fetch a block 
into a level of the memory 
hierarchy from the lower 
level, including the time 
to access the block, 
transmit it from one level 
to the other, insert it in 
the level that experienced 
the miss, and then pass 
the block to the requestor.

Processor

Data is transferred

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an 
upper and lower level. Within each level, the unit of information that is present or not is called a block or 
a line. Usually we transfer an entire block when we copy something between levels.
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As we will see in this chapter, the concepts used to build memory systems aff ect 
many other aspects of a computer, including how the operating system manages 
memory and I/O, how compilers generate code, and even how applications use 
the computer. Of course, because all programs spend much of their time accessing 
memory, the memory system is necessarily a major factor in determining 
performance. Th e reliance on memory hierarchies to achieve performance 
has meant that programmers, who used to be able to think of memory as a fl at, 
random access storage device, now need to understand that memory is a hierarchy 
to get good performance. We show how important this understanding is in later 
examples, such as Figure 5.18 on page 408, and Section 5.14, which shows how to 
double matrix multiply performance.

Since memory systems are critical to performance, computer designers devote a 
great deal of attention to these systems and develop sophisticated mechanisms for 
improving the performance of the memory system. In this chapter, we discuss the 
major conceptual ideas, although we use many simplifi cations and abstractions to 
keep the material manageable in length and complexity.

Programs exhibit both temporal locality, the tendency to reuse recently 
accessed data items, and spatial locality, the tendency to reference data 
items that are close to other recently accessed items. Memory hierarchies 
take advantage of temporal locality by keeping more recently accessed 
data items closer to the processor. Memory hierarchies take advantage of 
spatial locality by moving blocks consisting of multiple contiguous words 
in memory to upper levels of the hierarchy.

Figure 5.3 shows that a memory hierarchy uses smaller and faster 
memory technologies close to the processor. Th us, accesses that hit in the 
highest level of the hierarchy can be processed quickly. Accesses that miss 
go to lower levels of the hierarchy, which are larger but slower. If the hit 
rate is high enough, the memory hierarchy has an eff ective access time 
close to that of the highest (and fastest) level and a size equal to that of the 
lowest (and largest) level.

In most systems, the memory is a true hierarchy, meaning that data 
cannot be present in level i unless it is also present in level i � 1.

The BIG
Picture

Which of the following statements are generally true?

1. Memory hierarchies take advantage of temporal locality.

2. On a read, the value returned depends on which blocks are in the cache.

3. Most of the cost of the memory hierarchy is at the highest level.

4. Most of the capacity of the memory hierarchy is at the lowest level.

Check 
Yourself
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 5.2 Memory Technologies

Th ere are four primary technologies used today in memory hierarchies. Main 
memory is implemented from DRAM (dynamic random access memory), while 
levels closer to the processor (caches) use SRAM (static random access memory). 
DRAM is less costly per bit than SRAM, although it is substantially slower. Th e 
price diff erence arises because DRAM uses signifi cantly less area per bit of memory, 
and DRAMs thus have larger capacity for the same amount of silicon; the speed 
diff erence arises from several factors described in Section B.9 of  Appendix B. 
Th e third technology is fl ash memory. Th is nonvolatile memory is the secondary 
memory in Personal Mobile Devices. Th e fourth technology, used to implement 
the largest and slowest level in the hierarchy in servers, is magnetic disk. Th e access 
time and price per bit vary widely among these technologies, as the table below 
shows, using typical values for 2012:

Memory technology Typical access time $ per GiB in 2012

SRAM semiconductor memory 0.5–2.5 ns $500–$1000

DRAM semiconductor memory 50–70 ns $10–$20

Flash semiconductor memory 5,000–50,000 ns $0.75–$1.00

Magnetic disk 5,000,000–20,000,000 ns $0.05–$0.10

We describe each memory technology in the remainder of this section.

CPU

Level 1

Level 2

Level n

Increasing distance

from the CPU in

access time
Levels in the

memory hierarchy

Size of the memory at each level

FIGURE 5.3 This diagram shows the structure of a memory hierarchy: as the distance 
from the processor increases, so does the size. Th is structure, with the appropriate operating 
mechanisms, allows the processor to have an access time that is determined primarily by level 1 of the 
hierarchy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter. 
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a fi le server over a 
local area network as the next levels of the hierarchy.
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SRAM Technology
SRAMs are simply integrated circuits that are memory arrays with (usually) a 
single access port that can provide either a read or a write. SRAMs have a fi xed 
access time to any datum, though the read and write access times may diff er. 

SRAMs don’t need to refresh and so the access time is very close to the cycle 
time. SRAMs typically use six to eight transistors per bit to prevent the information 
from being disturbed when read. SRAM needs only minimal power to retain the 
charge in standby mode.

In the past, most PCs and server systems used separate SRAM chips for either 
their primary, secondary, or even tertiary caches. Today, thanks to Moore’s Law, all 
levels of caches are integrated onto the processor chip, so the market for separate 
SRAM chips has nearly evaporated.

DRAM Technology
In a SRAM, as long as power is applied, the value can be kept indefi nitely. In a 
dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor. 
A single transistor is then used to access this stored charge, either to read the 
value or to overwrite the charge stored there. Because DRAMs use only a single 
transistor per bit of storage, they are much denser and cheaper per bit than SRAM. 
As DRAMs store the charge on a capacitor, it cannot be kept indefi nitely and must 
periodically be refreshed. Th at is why this memory structure is called dynamic, as 
opposed to the static storage in an SRAM cell.

To refresh the cell, we merely read its contents and write it back. Th e charge 
can be kept for several milliseconds. If every bit had to be read out of the DRAM 
and then written back individually, we would constantly be refreshing the DRAM, 
leaving no time for accessing it. Fortunately, DRAMs use a two-level decoding 
structure, and this allows us to refresh an entire row (which shares a word line) 
with a read cycle followed immediately by a write cycle. 

Figure 5.4 shows the internal organization of a DRAM, and Figure 5.5 shows 
how the density, cost, and access time of DRAMs have changed over the years.

Th e row organization that helps with refresh also helps with performance. To 
improve performance, DRAMs buff er rows for repeated access. Th e buff er acts 
like an SRAM; by changing the address, random bits can be accessed in the buff er 
until the next row access. Th is capability improves the access time signifi cantly, 
since the access time to bits in the row is much lower. Making the chip wider also 
improves the memory bandwidth of the chip. When the row is in the buff er, it 
can be transferred by successive addresses at whatever the width of the DRAM is 
(typically 4, 8, or 16 bits), or by specifying a block transfer and the starting address 
within the buff er. 

To further improve the interface to processors, DRAMs added clocks and are 
properly called Synchronous DRAMs or SDRAMs. Th e advantage of SDRAMs 
is that the use of a clock eliminates the time for the memory and processor to 
synchronize. Th e speed advantage of synchronous DRAMs comes from the ability 
to transfer the bits in the burst without having to specify additional address bits. 
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Instead, the clock transfers the successive bits in a burst. Th e fastest version is called 
Double Data Rate (DDR) SDRAM. Th e name means data transfers on both the 
rising and falling edge of the clock, thereby getting twice as much bandwidth as you 
might expect based on the clock rate and the data width. Th e latest version of this 
technology is called DDR4. A DDR4-3200 DRAM can do 3200 million transfers 
per second, which means it has a 1600 MHz clock.

Sustaining that much bandwidth requires clever organization inside the DRAM. 
Instead of just a faster row buff er, the DRAM can be internally organized to read or 

FIGURE 5.5 DRAM size increased by multiples of four approximately once every three 
years until 1996, and thereafter considerably slower. Th e improvements in access time have been 
slower but continuous, and cost roughly tracks density improvements, although cost is oft en aff ected by other 
issues, such as availability and demand. Th e cost per gibibyte is not adjusted for infl ation.

Year introduced Chip size $ per GiB
Total access time to 
a new row/column

Average column
access time to 
existing row  

1980 64 Kibibit $1,500,000 250 ns 150 ns

1983 256 Kibibit $500,000 185 ns 100 ns

1985 1 Mebibit $200,000 135 ns 40 ns

1989 4 Mebibit $50,000 110 ns 40 ns

1992 16 Mebibit $15,000 90 ns 30 ns

1996 64 Mebibit $10,000 60 ns 12 ns

1998 128 Mebibit $4,000 60 ns 10 ns

2000 256 Mebibit $1,000 55 ns 7 ns

2004 512 Mebibit $250 50 ns 5 ns

2007 1 Gibibit $50 45 ns 1.25 ns

2010 2 Gibibit

4 Gibibit

$30 40 ns 1 ns

2012 $1 35 ns 0.8 ns

FIGURE 5.4 Internal organization of a DRAM. Modern DRAMs are organized in banks, typically 
four for DDR3. Each bank consists of a series of rows. Sending a PRE (precharge) command opens or closes a 
bank. A row address is sent with an Act (activate), which causes the row to transfer to a buff er. When the row 
is in the buff er, it can be transferred by successive column addresses at whatever the width of the DRAM is 
(typically 4, 8, or 16 bits in DDR3) or by specifying a block transfer and the starting address. Each command, 
as well as block transfers, is synchronized with a clock.

Column

Rd/Wr

Pre

Act

Row

Bank



 5.2 Memory Technologies 381

write from multiple banks, with each having its own row buff er. Sending an address 
to several banks permits them all to read or write simultaneously. For example, 
with four banks, there is just one access time and then accesses rotate between 
the four banks to supply four times the bandwidth. Th is rotating access scheme is 
called address interleaving. 

Although Personal Mobile Devices like the iPad (see Chapter 1) use individual 
DRAMs, memory for servers are commonly sold on small boards called dual inline 
memory modules (DIMMs). DIMMs typically contain 4–16 DRAMs, and they are 
normally organized to be 8 bytes wide for server systems. A DIMM using DDR4-
3200 SDRAMs could transfer at 8 � 3200 � 25,600 megabytes per second. Such 
DIMMs are named aft er their bandwidth: PC25600. Since a DIMM can have so 
many DRAM chips that only a portion of them are used for a particular transfer, we 
need a term to refer to the subset of chips in a DIMM that share common address 
lines. To avoid confusion with the internal DRAM names of row and banks, we use 
the term memory rank for such a subset of chips in a DIMM.

Elaboration: One way to measure the performance of the memory system behind the 
caches is the Stream benchmark [McCalpin, 1995]. It measures the performance of 
long vector operations. They have no temporal locality and they access arrays that are 
larger than the cache of the computer being tested.

Flash Memory
Flash memory is a type of electrically erasable programmable read-only memory 
(EEPROM). 

Unlike disks and DRAM, but like other EEPROM technologies, writes can wear out 
fl ash memory bits. To cope with such limits, most fl ash products include a controller 
to spread the writes by remapping blocks that have been written many times to less 
trodden blocks. Th is technique is called wear leveling. With wear leveling, personal 
mobile devices are very unlikely to exceed the write limits in the fl ash. Such wear 
leveling lowers the potential performance of fl ash, but it is needed unless higher-
level soft ware monitors block wear. Flash controllers that perform wear leveling can 
also improve yield by mapping out memory cells that were manufactured incorrectly.

Disk Memory
As Figure 5.6 shows, a magnetic hard disk consists of a collection of platters, which 
rotate on a spindle at 5400 to 15,000 revolutions per minute. Th e metal platters are 
covered with magnetic recording material on both sides, similar to the material found 
on a cassette or videotape. To read and write information on a hard disk, a movable arm 
containing a small electromagnetic coil called a read-write head is located just above 
each surface. Th e entire drive is permanently sealed to control the environment inside 
the drive, which, in turn, allows the disk heads to be much closer to the drive surface.

Each disk surface is divided into concentric circles, called tracks. Th ere are 
typically tens of thousands of tracks per surface. Each track is in turn divided into 

track One of thousands 
of concentric circles that 
makes up the surface of a 
magnetic disk.
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sectors that contain the information; each track may have thousands of sectors. 
Sectors are typically 512 to 4096 bytes in size. Th e sequence recorded on the 
magnetic media is a sector number, a gap, the information for that sector including 
error correction code (see Section 5.5), a gap, the sector number of the next sector, 
and so on.

Th e disk heads for each surface are connected together and move in conjunction, 
so that every head is over the same track of every surface. Th e term cylinder is used 
to refer to all the tracks under the heads at a given point on all surfaces.

FIGURE 5.6 A disk showing 10 disk platters and the read/write heads. Th e diameter of 
today’s disks is 2.5 or 3.5 inches, and there are typically one or two platters per drive today.

To access data, the operating system must direct the disk through a three-stage 
process. Th e fi rst step is to position the head over the proper track. Th is operation is 
called a seek, and the time to move the head to the desired track is called the seek time.

Disk manufacturers report minimum seek time, maximum seek time, and average 
seek time in their manuals. Th e fi rst two are easy to measure, but the average is open to 
wide interpretation because it depends on the seek distance. Th e industry calculates 
average seek time as the sum of the time for all possible seeks divided by the number 
of possible seeks. Average seek times are usually advertised as 3 ms to 13 ms, but, 
depending on the application and scheduling of disk requests, the actual average seek 
time may be only 25% to 33% of the advertised number because of locality of disk 

sector One of the 
segments that make up a 
track on a magnetic disk; 
a sector is the smallest 
amount of information 
that is read or written on 
a disk.

seek Th e process of 
positioning a read/write 
head over the proper 
track on a disk.
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references. Th is locality arises both because of successive accesses to the same fi le and 
because the operating system tries to schedule such accesses together.

Once the head has reached the correct track, we must wait for the desired sector 
to rotate under the read/write head. Th is time is called the rotational latency or 
rotational delay. Th e average latency to the desired information is halfway around 
the disk. Disks rotate at 5400 RPM to 15,000 RPM. Th e average rotational latency 
at 5400 RPM is

Average rotational latency 0.5 rotation
 RPM

0.5 rotati
� �

5400
oon

 RPM/ seconds
minute

0.0056 seconds 5.6 m

5400 60
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

� � ss

Th e last component of a disk access, transfer time, is the time to transfer a block 
of bits. Th e transfer time is a function of the sector size, the rotation speed, and the 
recording density of a track. Transfer rates in 2012 were between 100 and 200 MB/sec. 

One complication is that most disk controllers have a built-in cache that stores 
sectors as they are passed over; transfer rates from the cache are typically higher, 
and were up to 750 MB/sec (6 Gbit/sec) in 2012. 

Alas, where block numbers are located is no longer intuitive. Th e assumptions of 
the sector-track-cylinder model above are that nearby blocks are on the same track, 
blocks in the same cylinder take less time to access since there is no seek time, 
and some tracks are closer than others. Th e reason for the change was the raising 
of the level of the disk interfaces. To speed-up sequential transfers, these higher-
level interfaces organize disks more like tapes than like random access devices. 
Th e logical blocks are ordered in serpentine fashion across a single surface, trying 
to capture all the sectors that are recorded at the same bit density to try to get best 
performance. Hence, sequential blocks may be on diff erent tracks.

In summary, the two primary diff erences between magnetic disks and 
semiconductor memory technologies are that disks have a slower access time because 
they are mechanical devices—fl ash is 1000 times as fast and DRAM is 100,000 times 
as fast—yet they are cheaper per bit because they have very high storage capacity at a 
modest cost—disk is 10 to 100 time cheaper. Magnetic disks are nonvolatile like fl ash, 
but unlike fl ash there is no write wear-out problem. However, fl ash is much more 
rugged and hence a better match to the jostling inherent in personal mobile devices.

 5.3 The Basics of Caches

In our library example, the desk acted as a cache—a safe place to store things 
(books) that we needed to examine. Cache was the name chosen to represent the 
level of the memory hierarchy between the processor and main memory in the fi rst 
commercial computer to have this extra level. Th e memories in the datapath in 
Chapter 4 are simply replaced by caches. Today, although this remains the dominant 

rotational latency Also 
called rotational delay. 
Th e time required for 
the desired sector of a 
disk to rotate under the 
read/write head; usually 
assumed to be half the 
rotation time.

Cache: a safe place 
for hiding or storing 
things.
Webster’s New World 
Dictionary of the 
American Language, 
Th ird College Edition, 
1988



384 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

use of the word cache, the term is also used to refer to any storage managed to take 
advantage of locality of access. Caches fi rst appeared in research computers in the 
early 1960s and in production computers later in that same decade; every general-
purpose computer built today, from servers to low-power embedded processors, 
includes caches.

In this section, we begin by looking at a very simple cache in which the processor 
requests are each one word and the blocks also consist of a single word. (Readers 
already familiar with cache basics may want to skip to Section 5.4.) Figure 5.7 shows 
such a simple cache, before and aft er requesting a data item that is not initially in 
the cache. Before the request, the cache contains a collection of recent references 
X1, X2, …, Xn�1, and the processor requests a word Xn that is not in the cache. Th is 
request results in a miss, and the word Xn is brought from memory into the cache.

In looking at the scenario in Figure 5.7, there are two questions to answer: How 
do we know if a data item is in the cache? Moreover, if it is, how do we fi nd it? Th e 
answers are related. If each word can go in exactly one place in the cache, then it 
is straightforward to fi nd the word if it is in the cache. Th e simplest way to assign 
a location in the cache for each word in memory is to assign the cache location 
based on the address of the word in memory. Th is cache structure is called direct 
mapped, since each memory location is mapped directly to exactly one location in 
the cache. Th e typical mapping between addresses and cache locations for a direct-
mapped cache is usually simple. For example, almost all direct-mapped caches use 
this mapping to fi nd a block:

(Block address) modulo (Number of blocks in the cache)

If the number of entries in the cache is a power of 2, then modulo can be 
computed simply by using the low-order log2 (cache size in blocks) bits of the 
address. Th us, an 8-block cache uses the three lowest bits (8 � 23) of the block 
address. For example, Figure 5.8 shows how the memory addresses between 1ten 
(00001two) and 29ten (11101two) map to locations 1ten (001two) and 5ten (101two) in a 
direct-mapped cache of eight words.

Because each cache location can contain the contents of a number of diff erent 
memory locations, how do we know whether the data in the cache corresponds 
to a requested word? Th at is, how do we know whether a requested word is in the 
cache or not? We answer this question by adding a set of tags to the cache. Th e 
tags contain the address information required to identify whether a word in the 
cache corresponds to the requested word. Th e tag needs only to contain the upper 
portion of the address, corresponding to the bits that are not used as an index into 
the cache. For example, in Figure 5.8 we need only have the upper 2 of the 5 address 
bits in the tag, since the lower 3-bit index fi eld of the address selects the block. 
Architects omit the index bits because they are redundant, since by defi nition the 
index fi eld of any address of a cache block must be that block number.

We also need a way to recognize that a cache block does not have valid 
information. For instance, when a processor starts up, the cache does not have good 
data, and the tag fi elds will be meaningless. Even aft er executing many instructions, 

direct-mapped cache 
A cache structure in 
which each memory 
location is mapped to 
exactly one location in the 
cache.

tag A fi eld in a table used 
for a memory hierarchy 
that contains the address 
information required 
to identify whether the 
associated block in the 
hierarchy corresponds to 
a requested word.
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Xn – 2

Xn – 1

X2

X3

a. Before the reference to Xn

X4

X1

Xn – 2

Xn – 1

X2

X3

b. After the reference to Xn

Xn

FIGURE 5.7 The cache just before and just after a reference to a word Xn that is not 
initially in the cache. Th is reference causes a miss that forces the cache to fetch Xn from memory and 
insert it into the cache.
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1
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FIGURE 5.8 A direct-mapped cache with eight entries showing the addresses of memory 
words between 0 and 31 that map to the same cache locations. Because there are eight 
words in the cache, an address X maps to the direct-mapped cache word X modulo 8. Th at is, the low-order 
log2(8) � 3 bits are used as the cache index. Th us, addresses 00001two, 01001two, 10001two, and 11001two all map 
to entry 001two of the cache, while addresses 00101two, 01101two, 10101two, and 11101two all map to entry 101two 
of the cache.
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some of the cache entries may still be empty, as in Figure 5.7. Th us, we need to 
know that the tag should be ignored for such entries. Th e most common method is 
to add a valid bit to indicate whether an entry contains a valid address. If the bit is 
not set, there cannot be a match for this block.

For the rest of this section, we will focus on explaining how a cache deals with 
reads. In general, handling reads is a little simpler than handling writes, since reads 
do not have to change the contents of the cache. Aft er seeing the basics of how 
reads work and how cache misses can be handled, we’ll examine the cache designs 
for real computers and detail how these caches handle writes.

valid bit A fi eld in 
the tables of a memory 
hierarchy that indicates 
that the associated block 
in the hierarchy contains 
valid data.

Caching is perhaps the most important example of the big idea of 
prediction. It relies on the principle of locality to try to fi nd the 
desired data in the higher levels of the memory hierarchy, and provides 
mechanisms to ensure that when the prediction is wrong it fi nds and 
uses the proper data from the lower levels of the memory hierarchy. Th e 
hit rates of the cache prediction on modern computers are oft en higher 
than 95% (see Figure 5.47).

The BIG
Picture

Accessing a Cache
Below is a sequence of nine memory references to an empty eight-block cache, 
including the action for each reference. Figure 5.9 shows how the contents of the 
cache change on each miss. Since there are eight blocks in the cache, the low-order 
three bits of an address give the block number:

Decimal address
of reference

Binary address
of reference

Hit or miss
in cache

Assigned cache block
(where found or placed)

22 10110two miss (5.6b) (10110two mod 8) = 110two

26 11010two miss (5.6c) (11010two mod 8) = 010two

22 10110two hit (10110two mod 8) = 110two

26 11010two hit (11010two mod 8) = 010two

16 10000two miss (5.6d) (10000two mod 8) = 000two

3 00011two miss (5.6e) (00011two mod 8) = 011two

16 10000two hit (10000two mod 8) = 000two

18 10010two miss (5.6f) (10010two mod 8) = 010two

16 10000two hit (10000two mod 8) = 000two

Since the cache is empty, several of the fi rst references are misses; the caption of 
Figure 5.9 describes the actions for each memory reference. On the eighth reference 



 5.3 The Basics of Caches 387

Index V Tag Data Index V Tag Data

000 N 000 N

001 N 001 N

010 N 010 N

011 N 011 N

100 N 100 N

101 N 101 N

110 N 110 Y 10two Memory (10110two)

111 N 111 N

a. The initial state of the cache after power-on b. After handling a miss of address (10110two)

Index V Tag Data Index V Tag Data

000 N 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 11two Memory (11010two)

011 N 011 N

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

c. After handling a miss of address (11010two) d. After handling a miss of address (10000two)

Index V Tag Data Index V Tag Data

000 Y 10two Memory (10000two) 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 10two Memory (10010two)

011 Y 00two Memory (00011two) 011 Y 00two Memory (00011two)

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

e. After handling a miss of address (00011two) f. After handling a miss of address (10010two)

FIGURE 5.9 The cache contents are shown after each reference request that misses, with the index and tag fi elds 
shown in binary for the sequence of addresses on page 386. Th e cache is initially empty, with all valid bits (V entry in cache) 
turned off  (N). Th e processor requests the following addresses: 10110two (miss), 11010two (miss), 10110two (hit), 11010two (hit), 10000two (miss), 
00011two (miss), 10000two (hit), 10010two (miss), and 10000two (hit). Th e fi gures show the cache contents aft er each miss in the sequence has been 
handled. When address 10010two (18) is referenced, the entry for address 11010two (26) must be replaced, and a reference to 11010two will cause a 
subsequent miss. Th e tag fi eld will contain only the upper portion of the address. Th e full address of a word contained in cache block i with tag 
fi eld j for this cache is j � 8 � i, or equivalently the concatenation of the tag fi eld j and the index i. For example, in cache f above, index 010two 
has tag 10two and corresponds to address 10010two.
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we have confl icting demands for a block. Th e word at address 18 (10010two) should 
be brought into cache block 2 (010two). Hence, it must replace the word at address 
26 (11010two), which is already in cache block 2 (010two). Th is behavior allows a 
cache to take advantage of temporal locality: recently referenced words replace less 
recently referenced words.

Th is situation is directly analogous to needing a book from the shelves and 
having no more space on your desk—some book already on your desk must be 
returned to the shelves. In a direct-mapped cache, there is only one place to put the 
newly requested item and hence only one choice of what to replace.

We know where to look in the cache for each possible address: the low-order bits 
of an address can be used to fi nd the unique cache entry to which the address could 
map. Figure 5.10 shows how a referenced address is divided into

■ A tag fi eld, which is used to compare with the value of the tag fi eld of the 
cache

■ A cache index, which is used to select the block

Th e index of a cache block, together with the tag contents of that block, uniquely 
specifi es the memory address of the word contained in the cache block. Because 
the index fi eld is used as an address to reference the cache, and because an n-bit 
fi eld has 2n values, the total number of entries in a direct-mapped cache must be a 
power of 2. In the MIPS architecture, since words are aligned to multiples of four 
bytes, the least signifi cant two bits of every address specify a byte within a word. 
Hence, the least signifi cant two bits are ignored when selecting a word in the block.

Th e total number of bits needed for a cache is a function of the cache size and 
the address size, because the cache includes both the storage for the data and the 
tags. Th e size of the block above was one word, but normally it is several. For the 
following situation:

■ 32-bit addresses

■ A direct-mapped cache

■ Th e cache size is 2n blocks, so n bits are used for the index

■ Th e block size is 2m words (2m+2 bytes), so m bits are used for the word within 
the block, and two bits are used for the byte part of the address

the size of the tag fi eld is

32 � (n � m � 2).

Th e total number of bits in a direct-mapped cache is

2n � (block size � tag size � valid fi eld size).
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Since the block size is 2m words (2m�5 bits), and we need 1 bit for the valid fi eld, the 
number of bits in such a cache is

2n � (2m � 32 � (32 � n � m � 2) � 1) � 2n � (2m � 32 � 31 � n � m).

Although this is the actual size in bits, the naming convention is to exclude the size 
of the tag and valid fi eld and to count only the size of the data. Th us, the cache in 
Figure 5.10 is called a 4 KiB cache.

Address (showing bit positions)

Data

Hit

Data

Tag

Valid Tag

3220

Index
0
1
2

1023
1022
1021

=

Index

20 10

Byte
offset

31 30 13 12 11 2   1 0

FIGURE 5.10 For this cache, the lower portion of the address is used to select a cache 
entry consisting of a data word and a tag. Th is cache holds 1024 words or 4 KiB. We assume 32-bit 
addresses in this chapter. Th e tag from the cache is compared against the upper portion of the address to 
determine whether the entry in the cache corresponds to the requested address. Because the cache has 210 (or 
1024) words and a block size of one word, 10 bits are used to index the cache, leaving 32 −10 − 2 = 20 bits to 
be compared against the tag. If the tag and upper 20 bits of the address are equal and the valid bit is on, then 
the request hits in the cache, and the word is supplied to the processor. Otherwise, a miss occurs.
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Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KiB of 
data and 4-word blocks, assuming a 32-bit address?

We know that 16 KiB is 4096 (212) words. With a block size of 4 words (22), 
there are 1024 (210) blocks. Each block has 4 � 32 or 128 bits of data plus a 
tag, which is 32 � 10 � 2 � 2 bits, plus a valid bit. Th us, the total cache size is

210 � (4 � 32 � (32 � 10 � 2 � 2) � 1) � 210 � 147 � 147 Kibibits

or 18.4 KiB for a 16 KiB cache. For this cache, the total number of bits in the 
cache is about 1.15 times as many as needed just for the storage of the data.

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. To what block 
number does byte address 1200 map?

We saw the formula on page 384. Th e block is given by

(Block address) modulo (Number of blocks in the cache)

where the address of the block is

Byte address
Bytes per block

Notice that this block address is the block containing all addresses between

Byte address
Bytes per block

Bytes per block
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥�

EXAMPLE

ANSWER

EXAMPLE

ANSWER
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and

Byte address
Bytes per block

Bytes per block (Bytes
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥   per block 1)

Th us, with 16 bytes per block, byte address 1200 is block address

1200
6

75⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
�

which maps to cache block number (75 modulo 64) � 11. In fact, this block 
maps all addresses between 1200 and 1215.

Larger blocks exploit spatial locality to lower miss rates. As Figure 5.11 shows, 
increasing the block size usually decreases the miss rate. Th e miss rate may go up 
eventually if the block size becomes a signifi cant fraction of the cache size, because 
the number of blocks that can be held in the cache will become small, and there will 
be a great deal of competition for those blocks. As a result, a block will be bumped 
out of the cache before many of its words are accessed. Stated alternatively, spatial 
locality among the words in a block decreases with a very large block; consequently, 
the benefi ts in the miss rate become smaller.

A more serious problem associated with just increasing the block size is that the 
cost of a miss increases. Th e miss penalty is determined by the time required to fetch 

4K

16

10%

16K

64K

256K

5%

0%
32 64 128 256

Miss
rate

Block size

FIGURE 5.11 Miss rate versus block size. Note that the miss rate actually goes up if the block size 
is too large relative to the cache size. Each line represents a cache of diff erent size. (Th is fi gure is independent 
of associativity, discussed soon.) Unfortunately, SPEC CPU2000 traces would take too long if block size were 
included, so this data is based on SPEC92.
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the block from the next lower level of the hierarchy and load it into the cache. Th e 
time to fetch the block has two parts: the latency to the fi rst word and the transfer 
time for the rest of the block. Clearly, unless we change the memory system, the 
transfer time—and hence the miss penalty—will likely increase as the block size 
increases. Furthermore, the improvement in the miss rate starts to decrease as the 
blocks become larger. Th e result is that the increase in the miss penalty overwhelms 
the decrease in the miss rate for blocks that are too large, and cache performance 
thus decreases. Of course, if we design the memory to transfer larger blocks more 
effi  ciently, we can increase the block size and obtain further improvements in cache 
performance. We discuss this topic in the next section.

Elaboration: Although it is hard to do anything about the longer latency component of 
the miss penalty for large blocks, we may be able to hide some of the transfer time so 
that the miss penalty is effectively smaller. The simplest method for doing this, called 
early restart, is simply to resume execution as soon as the requested word of the block 
is returned, rather than wait for the entire block. Many processors use this technique 
for instruction access, where it works best. Instruction accesses are largely sequential, 
so if the memory system can deliver a word every clock cycle, the processor may be 
able to restart operation when the requested word is returned, with the memory system 
delivering new instruction words just in time. This technique is usually less effective for 
data caches because it is likely that the words will be requested from the block in a 
less predictable way, and the probability that the processor will need another word from 
a different cache block before the transfer completes is high. If the processor cannot 
access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested 
word is transferred from the memory to the cache fi rst. The remainder of the block 
is then transferred, starting with the address after the requested word and wrapping 
around to the beginning of the block. This technique, called requested word fi rst or 
critical word fi rst, can be slightly faster than early restart, but it is limited by the same 
properties that limit early restart.

Handling Cache Misses
Before we look at the cache of a real system, let’s see how the control unit deals with 
cache misses. (We describe a cache controller in detail in Section 5.9). Th e control 
unit must detect a miss and process the miss by fetching the requested data from 
memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the 
computer continues using the data as if nothing happened.

Modifying the control of a processor to handle a hit is trivial; misses, however, 
require some extra work. Th e cache miss handling is done in collaboration with 
the processor control unit and with a separate controller that initiates the memory 
access and refi lls the cache. Th e processing of a cache miss creates a pipeline stall 
(Chapter 4) as opposed to an interrupt, which would require saving the state of all 
registers. For a cache miss, we can stall the entire processor, essentially freezing 
the contents of the temporary and programmer-visible registers, while we wait 

cache miss A request for 
data from the cache that 
cannot be fi lled because 
the data is not present in 
the cache.
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for memory. More sophisticated out-of-order processors can allow execution of 
instructions while waiting for a cache miss, but we’ll assume in-order processors 
that stall on cache misses in this section.

Let’s look a little more closely at how instruction misses are handled; the same 
approach can be easily extended to handle data misses. If an instruction access 
results in a miss, then the content of the Instruction register is invalid. To get the 
proper instruction into the cache, we must be able to instruct the lower level in the 
memory hierarchy to perform a read. Since the program counter is incremented in 
the fi rst clock cycle of execution, the address of the instruction that generates an 
instruction cache miss is equal to the value of the program counter minus 4. Once 
we have the address, we need to instruct the main memory to perform a read. We 
wait for the memory to respond (since the access will take multiple clock cycles), 
and then write the words containing the desired instruction into the cache.

We can now defi ne the steps to be taken on an instruction cache miss:

1. Send the original PC value (current PC – 4) to the memory.

2. Instruct main memory to perform a read and wait for the memory to 
complete its access.

3. Write the cache entry, putting the data from memory in the data portion of 
the entry, writing the upper bits of the address (from the ALU) into the tag 
fi eld, and turning the valid bit on.

4. Restart the instruction execution at the fi rst step, which will refetch the 
instruction, this time fi nding it in the cache.

Th e control of the cache on a data access is essentially identical: on a miss, we 
simply stall the processor until the memory responds with the data.

Handling Writes
Writes work somewhat diff erently. Suppose on a store instruction, we wrote the 
data into only the data cache (without changing main memory); then, aft er the 
write into the cache, memory would have a diff erent value from that in the cache. 
In such a case, the cache and memory are said to be inconsistent. Th e simplest way 
to keep the main memory and the cache consistent is always to write the data into 
both the memory and the cache. Th is scheme is called write-through.

Th e other key aspect of writes is what occurs on a write miss. We fi rst fetch the 
words of the block from memory. Aft er the block is fetched and placed into the 
cache, we can overwrite the word that caused the miss into the cache block. We also 
write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide very 
good performance. With a write-through scheme, every write causes the data 
to be written to main memory. Th ese writes will take a long time, likely at least 
100 processor clock cycles, and could slow down the processor considerably. For 
example, suppose 10% of the instructions are stores. If the CPI without cache 

write-through 
A scheme in which writes 
always update both the 
cache and the next lower 
level of the memory 
hierarchy, ensuring that 
data is always consistent 
between the two.
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misses was 1.0, spending 100 extra cycles on every write would lead to a CPI of 
1.0 � 100 � 10% � 11, reducing performance by more than a factor of 10.

One solution to this problem is to use a write buff er. A write buff er stores the 
data while it is waiting to be written to memory. Aft er writing the data into the 
cache and into the write buff er, the processor can continue execution. When a write 
to main memory completes, the entry in the write buff er is freed. If the write buff er 
is full when the processor reaches a write, the processor must stall until there is an 
empty position in the write buff er. Of course, if the rate at which the memory can 
complete writes is less than the rate at which the processor is generating writes, no 
amount of buff ering can help, because writes are being generated faster than the 
memory system can accept them.

Th e rate at which writes are generated may also be less than the rate at which the 
memory can accept them, and yet stalls may still occur. Th is can happen when the 
writes occur in bursts. To reduce the occurrence of such stalls, processors usually 
increase the depth of the write buff er beyond a single entry.

Th e alternative to a write-through scheme is a scheme called write-back. In a 
write-back scheme, when a write occurs, the new value is written only to the block 
in the cache. Th e modifi ed block is written to the lower level of the hierarchy when 
it is replaced. Write-back schemes can improve performance, especially when 
processors can generate writes as fast or faster than the writes can be handled by 
main memory; a write-back scheme is, however, more complex to implement than 
write-through.

In the rest of this section, we describe caches from real processors, and we 
examine how they handle both reads and writes. In Section 5.8, we will describe 
the handling of writes in more detail.

Elaboration: Writes introduce several complications into caches that are not present 
for reads. Here we discuss two of them: the policy on write misses and effi cient 
implementation of writes in write-back caches.

Consider a miss in a write-through cache. The most common strategy is to allocate a 
block in the cache, called write allocate. The block is fetched from memory and then the 
appropriate portion of the block is overwritten. An alternative strategy is to update the portion 
of the block in memory but not put it in the cache, called no write allocate. The motivation is 
that sometimes programs write entire blocks of data, such as when the operating system 
zeros a page of memory. In such cases, the fetch associated with the initial write miss may 
be unnecessary. Some computers allow the write allocation policy to be changed on a per 
page basis.

Actually implementing stores effi ciently in a cache that uses a write-back strategy is 
more complex than in a write-through cache. A write-through cache can write the data 
into the cache and read the tag; if the tag mismatches, then a miss occurs. Because the 
cache is write-through, the overwriting of the block in the cache is not catastrophic, since 
memory has the correct value. In a write-back cache, we must fi rst write the block back 
to memory if the data in the cache is modifi ed and we have a cache miss. If we simply 
overwrote the block on a store instruction before we knew whether the store had hit in 
the cache (as we could for a write-through cache), we would destroy the contents of the 
block, which is not backed up in the next lower level of the memory hierarchy.

write buff er A queue 
that holds data while 
the data is waiting to be 
written to memory.

write-back A scheme 
that handles writes by 
updating values only to 
the block in the cache, 
then writing the modifi ed 
block to the lower level 
of the hierarchy when the 
block is replaced.
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In a write-back cache, because we cannot overwrite the block, stores either require 
two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or 
require a write buffer to hold that data—effectively allowing the store to take only one 
cycle by pipelining it. When a store buffer is used, the processor does the cache lookup 
and places the data in the store buffer during the normal cache access cycle. Assuming 
a cache hit, the new data is written from the store buffer into the cache on the next 
unused cache access cycle.

By comparison, in a write-through cache, writes can always be done in one cycle. 
We read the tag and write the data portion of the selected block. If the tag matches 
the address of the block being written, the processor can continue normally, since the 
correct block has been updated. If the tag does not match, the processor generates a 
write miss to fetch the rest of the block corresponding to that address.

Many write-back caches also include write buffers that are used to reduce the miss 
penalty when a miss replaces a modifi ed block. In such a case, the modifi ed block is 
moved to a write-back buffer associated with the cache while the requested block is read 
from memory. The write-back buffer is later written back to memory. Assuming another 
miss does not occur immediately, this technique halves the miss penalty when a dirty 
block must be replaced.

An Example Cache: The Intrinsity FastMATH Processor
Th e Intrinsity FastMATH is an embedded microprocessor that uses the MIPS 
architecture and a simple cache implementation. Near the end of the chapter, we 
will examine the more complex cache designs of ARM and Intel microprocessors, 
but we start with this simple, yet real, example for pedagogical reasons. Figure 5.12 
shows the organization of the Intrinsity FastMATH data cache.

Th is processor has a 12-stage pipeline. When operating at peak speed, the 
processor can request both an instruction word and a data word on every clock. 
To satisfy the demands of the pipeline without stalling, separate instruction 
and data caches are used. Each cache is 16 KiB, or 4096 words, with 16-word 
blocks.

Read requests for the cache are straightforward. Because there are separate 
data and instruction caches, we need separate control signals to read and write 
each cache. (Remember that we need to update the instruction cache when a miss 
occurs.) Th us, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. Th e address comes either from 
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines. 
Since there are 16 words in the desired block, we need to select the right one. 
A block index fi eld is used to control the multiplexor (shown at the bottom 
of the fi gure), which selects the requested word from the 16 words in the 
indexed block.



396 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

3. If the cache signals miss, we send the address to the main memory. When 
the memory returns with the data, we write it into the cache and then read it 
to fulfi ll the request.

For writes, the Intrinsity FastMATH off ers both write-through and write-back, 
leaving it up to the operating system to decide which strategy to use for an 
application. It has a one-entry write buff er.

What cache miss rates are attained with a cache structure like that used by the 
Intrinsity FastMATH? Figure 5.13 shows the miss rates for the instruction and 
data caches. Th e combined miss rate is the eff ective miss rate per reference for 
each program aft er accounting for the diff ering frequency of instruction and data 
accesses.

Address (showing bit positions)

Data
Hit

Data

Tag

V Tag

32

18

=

Index

18 8 Byte
offset

31 14 13 2 1 06 5

4

Block offset

256
entries

512 bits18 bits

Mux

3232 32

FIGURE 5.12 The 16 KiB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block. Th e tag 
fi eld is 18 bits wide and the index fi eld is 8 bits wide, while a 4-bit fi eld (bits 5–2) is used to index the block and select the word from the block 
using a 16-to-1 multiplexor. In practice, to eliminate the multiplexor, caches use a separate large RAM for the data and a smaller RAM for the 
tags, with the block off set supplying the extra address bits for the large data RAM. In this case, the large RAM is 32 bits wide and must have 16 
times as many words as blocks in the cache.
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Although miss rate is an important characteristic of cache designs, the ultimate 
measure will be the eff ect of the memory system on program execution time; we’ll 
see how miss rate and execution time are related shortly.

Elaboration: A combined cache with a total size equal to the sum of the two split 

caches will usually have a better hit rate. This higher rate occurs because the combined 
cache does not rigidly divide the number of entries that may be used by instructions 
from those that may be used by data. Nonetheless, almost all processors today use 
split instruction and data caches to increase cache bandwidth to match what modern 
pipelines expect. (There may also be fewer confl ict misses; see Section 5.8.)

Here are miss rates for caches the size of those found in the Intrinsity FastMATH 
processor, and for a combined cache whose size is equal to the sum of the two caches:

■ Total cache size: 32 KiB
■ Split cache effective miss rate: 3.24%
■ Combined cache miss rate: 3.18%

The miss rate of the split cache is only slightly worse.
The advantage of doubling the cache bandwidth, by supporting both an instruction 

and data access simultaneously, easily overcomes the disadvantage of a slightly 
increased miss rate. This observation cautions us that we cannot use miss rate as the 
sole measure of cache performance, as Section 5.4 shows.

Summary
We began the previous section by examining the simplest of caches: a direct-mapped 
cache with a one-word block. In such a cache, both hits and misses are simple, since 
a word can go in exactly one location and there is a separate tag for every word. To 
keep the cache and memory consistent, a write-through scheme can be used, so 
that every write into the cache also causes memory to be updated. Th e alternative 
to write-through is a write-back scheme that copies a block back to memory when 
it is replaced; we’ll discuss this scheme further in upcoming sections.

split cache A scheme 
in which a level of the 
memory hierarchy 
is composed of two 
independent caches that 
operate in parallel with 
each other, with one 
handling instructions and 
one handling data.

Instruction miss rate Data miss rate Effective combined miss rate

0.4% 11.4% 3.2%

FIGURE 5.13 Approximate instruction and data miss rates for the Intrinsity FastMATH 
processor for SPEC CPU2000 benchmarks. Th e combined miss rate is the eff ective miss rate seen 
for the combination of the 16 KiB instruction cache and 16 KiB data cache. It is obtained by weighting the 
instruction and data individual miss rates by the frequency of instruction and data references.



398 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

To take advantage of spatial locality, a cache must have a block size larger than 
one word. Th e use of a larger block decreases the miss rate and improves the 
effi  ciency of the cache by reducing the amount of tag storage relative to the amount 
of data storage in the cache. Although a larger block size decreases the miss rate, it 
can also increase the miss penalty. If the miss penalty increased linearly with the 
block size, larger blocks could easily lead to lower performance.

To avoid performance loss, the bandwidth of main memory is increased to 
transfer cache blocks more effi  ciently. Common methods for increasing bandwidth 
external to the DRAM are making the memory wider and interleaving. DRAM 
designers have steadily improved the interface between the processor and memory 
to increase the bandwidth of burst mode transfers to reduce the cost of larger cache 
block sizes.

Th e speed of the memory system aff ects the designer’s decision on the size of 
the cache block. Which of the following cache designer guidelines are generally 
valid?

1. Th e shorter the memory latency, the smaller the cache block

2. Th e shorter the memory latency, the larger the cache block

3. Th e higher the memory bandwidth, the smaller the cache block

4. Th e higher the memory bandwidth, the larger the cache block

 5.4  Measuring and Improving Cache 
Performance

In this section, we begin by examining ways to measure and analyze cache 
performance. We then explore two diff erent techniques for improving cache 
performance. One focuses on reducing the miss rate by reducing the probability 
that two diff erent memory blocks will contend for the same cache location. Th e 
second technique reduces the miss penalty by adding an additional level to the 
hierarchy. Th is technique, called multilevel caching, fi rst appeared in high-end 
computers selling for more than $100,000 in 1990; since then it has become 
common on personal mobile devices selling for a few hundred dollars!

Check 
Yourself
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CPU time can be divided into the clock cycles that the CPU spends executing 
the program and the clock cycles that the CPU spends waiting for the memory 
system. Normally, we assume that the costs of cache accesses that are hits are part 
of the normal CPU execution cycles. Th us,

CPU time �  (CPU execution clock cycles � Memory-stall clock cycles) 
� Clock cycle time

Th e memory-stall clock cycles come primarily from cache misses, and we make 
that assumption here. We also restrict the discussion to a simplifi ed model of the 
memory system. In real processors, the stalls generated by reads and writes can be 
quite complex, and accurate performance prediction usually requires very detailed 
simulations of the processor and memory system.

Memory-stall clock cycles can be defi ned as the sum of the stall cycles coming 
from reads plus those coming from writes:

Memory-stall clock cycles � (Read-stall cycles � Write-stall cycles)

Th e read-stall cycles can be defi ned in terms of the number of read accesses per 
program, the miss penalty in clock cycles for a read, and the read miss rate:

Read-stall cycles Reads
Program

Read miss rate Read miss pennalty

Writes are more complicated. For a write-through scheme, we have two sources of 
stalls: write misses, which usually require that we fetch the block before continuing 
the write (see the Elaboration on page 394 for more details on dealing with writes), 
and write buff er stalls, which occur when the write buff er is full when a write 
occurs. Th us, the cycles stalled for writes equals the sum of these two:

Write-stall cycles Writes
Program

Write miss rate Write misss penalty

 Write buffer stalls

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Because the write buff er stalls depend on the proximity of writes, and not just 
the frequency, it is not possible to give a simple equation to compute such stalls. 
Fortunately, in systems with a reasonable write buff er depth (e.g., four or more 
words) and a memory capable of accepting writes at a rate that signifi cantly exceeds 
the average write frequency in programs (e.g., by a factor of 2), the write buff er 
stalls will be small, and we can safely ignore them. If a system did not meet these 
criteria, it would not be well designed; instead, the designer should have used either 
a deeper write buff er or a write-back organization.
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Write-back schemes also have potential additional stalls arising from the need 
to write a cache block back to memory when the block is replaced. We will discuss 
this more in Section 5.8.

In most write-through cache organizations, the read and write miss penalties are 
the same (the time to fetch the block from memory). If we assume that the write 
buff er stalls are negligible, we can combine the reads and writes by using a single 
miss rate and the miss penalty:

Memory-stall clock cycles Memory accesses
Program

Miss rate Miss penalty

We can also factor this as

Memory-stall clock cycles Instructions
Program

Misses
Instrucction

Miss penalty

Let’s consider a simple example to help us understand the impact of cache 
performance on processor performance.

Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the data 
cache is 4%. If a processor has a CPI of 2 without any memory stalls and the 
miss penalty is 100 cycles for all misses, determine how much faster a processor 
would run with a perfect cache that never missed. Assume the frequency of all 
loads and stores is 36%.

Th e number of memory miss cycles for instructions in terms of the Instruction 
count (I) is

Instruction miss cycles � I � 2% � 100 � 2.00 � I

As the frequency of all loads and stores is 36%, we can fi nd the number of 
memory miss cycles for data references:

Data miss cycles � I � 36% � 4% � 100 � 1.44 � I

EXAMPLE

ANSWER
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What happens if the processor is made faster, but the memory system is not? Th e 
amount of time spent on memory stalls will take up an increasing fraction of the 
execution time; Amdahl’s Law, which we examined in Chapter 1, reminds us of 
this fact. A few simple examples show how serious this problem can be. Suppose 
we speed-up the computer in the previous example by reducing its CPI from 2 to 1 
without changing the clock rate, which might be done with an improved pipeline. 
Th e system with cache misses would then have a CPI of 1 � 3.44 � 4.44, and the 
system with the perfect cache would be

4 44
1
.

� 4.44 times as fast.

Th e amount of execution time spent on memory stalls would have risen from
3 44
5 44

.

.
� 63%

to 3 44
4 44

.

.
� 77%

Similarly, increasing the clock rate without changing the memory system also 
increases the performance lost due to cache misses.

Th e previous examples and equations assume that the hit time is not a factor in 
determining cache performance. Clearly, if the hit time increases, the total time to 
access a word from the memory system will increase, possibly causing an increase in 
the processor cycle time. Although we will see additional examples of what can increase 

Th e total number of memory-stall cycles is 2.00 I � 1.44 I � 3.44 I. Th is is 
more than three cycles of memory stall per instruction. Accordingly, the total 
CPI including memory stalls is 2 � 3.44 � 5.44. Since there is no change in 
instruction count or clock rate, the ratio of the CPU execution times is

CPU time with stalls
CPU time with perfect cache

I CPIstall Clock cycle
I CPI Clock cycle
CPI

CPI
5

perfect

stall

perfect

..44
2

Th e performance with the perfect cache is better by 
5 44

2
.

� 2.72.
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hit time shortly, one example is increasing the cache size. A larger cache could clearly 
have a longer access time, just as, if your desk in the library was very large (say, 3 square 
meters), it would take longer to locate a book on the desk. An increase in hit time 
likely adds another stage to the pipeline, since it may take multiple cycles for a cache 
hit. Although it is more complex to calculate the performance impact of a deeper 
pipeline, at some point the increase in hit time for a larger cache could dominate the 
improvement in hit rate, leading to a decrease in processor performance.

To capture the fact that the time to access data for both hits and misses aff ects 
performance, designers sometime use average memory access time (AMAT) as 
a way to examine alternative cache designs. Average memory access time is the 
average time to access memory considering both hits and misses and the frequency 
of diff erent accesses; it is equal to the following:

AMAT � Time for a hit � Miss rate � Miss penalty

Calculating Average Memory Access Time

Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of 
20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access 
time (including hit detection) of 1 clock cycle. Assume that the read and write 
miss penalties are the same and ignore other write stalls.

Th e average memory access time per instruction is

AMAT Time for a hit Miss rate Miss penalty
1 0.05 20
2 clocck cycles

or 2 ns.

Th e next subsection discusses alternative cache organizations that decrease 
miss rate but may sometimes increase hit time; additional examples appear in 
Section 5.15, Fallacies and Pitfalls.

Reducing Cache Misses by More Flexible Placement 
of Blocks
So far, when we place a block in the cache, we have used a simple placement scheme: 
A block can go in exactly one place in the cache. As mentioned earlier, it is called 
direct mapped because there is a direct mapping from any block address in memory 
to a single location in the upper level of the hierarchy. However, there is actually a 
whole range of schemes for placing blocks. Direct mapped, where a block can be 
placed in exactly one location, is at one extreme.

EXAMPLE

ANSWER
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At the other extreme is a scheme where a block can be placed in any location 
in the cache. Such a scheme is called fully associative, because a block in memory 
may be associated with any entry in the cache. To fi nd a given block in a fully 
associative cache, all the entries in the cache must be searched because a block 
can be placed in any one. To make the search practical, it is done in parallel with 
a comparator associated with each cache entry. Th ese comparators signifi cantly 
increase the hardware cost, eff ectively making fully associative placement practical 
only for caches with small numbers of blocks.

Th e middle range of designs between direct mapped and fully associative 
is called set associative. In a set-associative cache, there are a fi xed number of 
locations where each block can be placed. A set-associative cache with n locations 
for a block is called an n-way set-associative cache. An n-way set-associative cache 
consists of a number of sets, each of which consists of n blocks. Each block in the 
memory maps to a unique set in the cache given by the index fi eld, and a block can 
be placed in any element of that set. Th us, a set-associative placement combines 
direct-mapped placement and fully associative placement: a block is directly 
mapped into a set, and then all the blocks in the set are searched for a match. For 
example, Figure 5.14 shows where block 12 may be placed in a cache with eight 
blocks total, according to the three block placement policies.

Remember that in a direct-mapped cache, the position of a memory block is 
given by

(Block number) modulo (Number of blocks in the cache)

fully associative 
cache A cache structure 
in which a block can be 
placed in any location in 
the cache.

set-associative cache 
A cache that has a fi xed 
number of locations (at 
least two) where each 
block can be placed.

Direct mapped

2 4 5 760 1 3Block #

Data

Tag

Search

1
2

Set associative

20 1 3Set #

Data

Tag

Search

1
2

Fully associative

Data

Tag

Search

1
2

FIGURE 5.14 The location of a memory block whose address is 12 in a cache with eight 
blocks varies for direct-mapped, set-associative, and fully associative placement. In direct-
mapped placement, there is only one cache block where memory block 12 can be found, and that block is 
given by (12 modulo 8) � 4. In a two-way set-associative cache, there would be four sets, and memory block 
12 must be in set (12 mod 4) � 0; the memory block could be in either element of the set. In a fully associative 
placement, the memory block for block address 12 can appear in any of the eight cache blocks.
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In a set-associative cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)

Since the block may be placed in any element of the set, all the tags of all the elements 
of the set must be searched. In a fully associative cache, the block can go anywhere, 
and all tags of all the blocks in the cache must be searched.

We can also think of all block placement strategies as a variation on set 
associativity. Figure 5.15 shows the possible associativity structures for an eight-
block cache. A direct-mapped cache is simply a one-way set-associative cache: 
each cache entry holds one block and each set has one element. A fully associative 
cache with m entries is simply an m-way set-associative cache; it has one set with m 
blocks, and an entry can reside in any block within that set.

Th e advantage of increasing the degree of associativity is that it usually decreases 
the miss rate, as the next example shows. Th e main disadvantage, which we discuss 
in more detail shortly, is a potential increase in the hit time.

Eight-way set associative (fully associative)

Tag Tag Data DataTagTag Data Data Tag Tag Data DataTagTag Data Data

Tag Tag Data DataTagTag Data DataSet

Four-way set associative

TagTag Data DataSet

0

1

0

1

2

3

0

1

2

3

4

5

6

7

Two-way set associative

Tag DataBlock

One-way set associative

(direct mapped)

FIGURE 5.15 An eight-block cache confi gured as direct mapped, two-way set associative, 
four-way set associative, and fully associative. Th e total size of the cache in blocks is equal to the 
number of sets times the associativity. Th us, for a fi xed cache size, increasing the associativity decreases 
the number of sets while increasing the number of elements per set. With eight blocks, an eight-way set-
associative cache is the same as a fully associative cache.
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Misses and Associativity in Caches

Assume there are three small caches, each consisting of four one-word blocks. 
One cache is fully associative, a second is two-way set-associative, and the 
third is direct-mapped. Find the number of misses for each cache organization 
given the following sequence of block addresses: 0, 8, 0, 6, and 8.

Th e direct-mapped case is easiest. First, let’s determine to which cache block 
each block address maps:

Block address Cache block

0 (0 modulo 4) � 0

6 (6 modulo 4) � 2

8 (8 modulo 4) � 0

Now we can fi ll in the cache contents aft er each reference, using a blank entry to 
mean that the block is invalid, colored text to show a new entry added to the cache 
for the associated reference, and plain text to show an old entry in the cache:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

0 1 2 3

0 miss Memory[0]

8 miss Memory[8]

0 miss Memory[0]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Th e direct-mapped cache generates fi ve misses for the fi ve accesses.
Th e set-associative cache has two sets (with indices 0 and 1) with two 

elements per set. Let’s fi rst determine to which set each block address maps:

Block address Cache set

0 (0 modulo 2) � 0

6 (6 modulo 2) � 0

8 (8 modulo 2) � 0

Because we have a choice of which entry in a set to replace on a miss, we need 
a replacement rule. Set-associative caches usually replace the least recently 
used block within a set; that is, the block that was used furthest in the past 

EXAMPLE

ANSWER
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is replaced. (We will discuss other replacement rules in more detail shortly.) 
Using this replacement rule, the contents of the set-associative cache aft er each 
reference looks like this:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Set 0 Set 0 Set 1 Set 1

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has 
been less recently referenced than block 0. Th e two-way set-associative cache 
has four misses, one less than the direct-mapped cache.

Th e fully associative cache has four cache blocks (in a single set); any 
memory block can be stored in any cache block. Th e fully associative cache has 
the best performance, with only three misses:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Block 0 Block 1 Block 2 Block 3

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]

For this series of references, three misses is the best we can do, because three 
unique block addresses are accessed. Notice that if we had eight blocks in the 
cache, there would be no replacements in the two-way set-associative cache 
(check this for yourself), and it would have the same number of misses as the 
fully associative cache. Similarly, if we had 16 blocks, all 3 caches would have 
the same number of misses. Even this trivial example shows that cache size and 
associativity are not independent in determining cache performance.

How much of a reduction in the miss rate is achieved by associativity? 
Figure 5.16 shows the improvement for a 64 KiB data cache with a 16-word block, 
and associativity ranging from direct mapped to eight-way. Going from one-way 
to two-way associativity decreases the miss rate by about 15%, but there is little 
further improvement in going to higher associativity.
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Locating a Block in the Cache
Now, let’s consider the task of fi nding a block in a cache that is set associative. 
Just as in a direct-mapped cache, each block in a set-associative cache includes 
an address tag that gives the block address. Th e tag of every cache block within 
the appropriate set is checked to see if it matches the block address from the 
processor. Figure 5.17 decomposes the address. Th e index value is used to select 
the set containing the address of interest, and the tags of all the blocks in the set 
must be searched. Because speed is of the essence, all the tags in the selected set are 
searched in parallel. As in a fully associative cache, a sequential search would make 
the hit time of a set-associative cache too slow.

If the total cache size is kept the same, increasing the associativity increases the 
number of blocks per set, which is the number of simultaneous compares needed 
to perform the search in parallel: each increase by a factor of 2 in associativity 
doubles the number of blocks per set and halves the number of sets. Accordingly, 
each factor-of-2 increase in associativity decreases the size of the index by 1 bit and 
increases the size of the tag by 1 bit. In a fully associative cache, there is eff ectively 
only one set, and all the blocks must be checked in parallel. Th us, there is no index, 
and the entire address, excluding the block off set, is compared against the tag of 
every block. In other words, we search the entire cache without any indexing.

In a direct-mapped cache, only a single comparator is needed, because the entry can 
be in only one block, and we access the cache simply by indexing. Figure 5.18 shows 
that in a four-way set-associative cache, four comparators are needed, together with 
a 4-to-1 multiplexor to choose among the four potential members of the selected set. 
Th e cache access consists of indexing the appropriate set and then searching the tags 
of the set. Th e costs of an associative cache are the extra comparators and any delay 
imposed by having to do the compare and select from among the elements of the set.

Associativity Data miss rate

1 10.3%

2 8.6%

4 8.3%

8 8.1%

FIGURE 5.16 The data cache miss rates for an organization like the Intrinsity FastMATH 
processor for SPEC CPU2000 benchmarks with associativity varying from one-way to 
eight-way. Th ese results for 10 SPEC CPU2000 programs are from Hennessy and Patterson (2003).

Block offsetTag Index

FIGURE 5.17 The three portions of an address in a set-associative or direct-mapped 
cache. Th e index is used to select the set, then the tag is used to choose the block by comparison with the 
blocks in the selected set. Th e block off set is the address of the desired data within the block.
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Th e choice among direct-mapped, set-associative, or fully associative mapping 
in any memory hierarchy will depend on the cost of a miss versus the cost of 
implementing associativity, both in time and in extra hardware.

Elaboration: A Content Addressable Memory (CAM) is a circuit that combines 
comparison and storage in a single device. Instead of supplying an address and reading 
a word like a RAM, you supply the data and the CAM looks to see if it has a copy and 
returns the index of the matching row. CAMs mean that cache designers can afford to 
implement much higher set associativity than if they needed to build the hardware out 
of SRAMs and comparators. In 2013, the greater size and power of CAM generally leads 
to 2-way and 4-way set associativity being built from standard SRAMs and comparators, 
with 8-way and above built using CAMs.

Address

Data

Tag

V Tag

=

Index

22 8

31 30 12 11 10 9 8 3 2 1 0

4-to-1 multiplexor

Index
0
1
2

253
254
255

DataV Tag

=

DataV Tag

=

DataV Tag

22

=

32

DataHit

FIGURE 5.18 The implementation of a four-way set-associative cache requires four 
comparators and a 4-to-1 multiplexor. Th e comparators determine which element of the selected set 
(if any) matches the tag. Th e output of the comparators is used to select the data from one of the four blocks 
of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output 
enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives the 
output. Th e Output enable signal comes from the comparators, causing the element that matches to drive the 
data outputs. Th is organization eliminates the need for the multiplexor.
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Choosing Which Block to Replace
When a miss occurs in a direct-mapped cache, the requested block can go in 
exactly one position, and the block occupying that position must be replaced. In 
an associative cache, we have a choice of where to place the requested block, and 
hence a choice of which block to replace. In a fully associative cache, all blocks are 
candidates for replacement. In a set-associative cache, we must choose among the 
blocks in the selected set.

Th e most commonly used scheme is least recently used (LRU), which we used 
in the previous example. In an LRU scheme, the block replaced is the one that has 
been unused for the longest time. Th e set associative example on page 405 uses 
LRU, which is why we replaced Memory(0) instead of Memory(6).

LRU replacement is implemented by keeping track of when each element in a 
set was used relative to the other elements in the set. For a two-way set-associative 
cache, tracking when the two elements were used can be implemented by keeping 
a single bit in each set and setting the bit to indicate an element whenever that 
element is referenced. As associativity increases, implementing LRU gets harder; in 
Section 5.8, we will see an alternative scheme for replacement.

Size of Tags versus Set Associativity

Increasing associativity requires more comparators and more tag bits per 
cache block. Assuming a cache of 4096 blocks, a 4-word block size, and a 
32-bit address, fi nd the total number of sets and the total number of tag bits 
for caches that are direct mapped, two-way and four-way set associative, and 
fully associative.

Since there are 16 (� 24) bytes per block, a 32-bit address yields 32�4 � 28 bits 
to be used for index and tag. Th e direct-mapped cache has the same number 
of sets as blocks, and hence 12 bits of index, since log2(4096) � 12; hence, the 
total number is (28�12) � 4096 � 16 � 4096 � 66 K tag bits.

Each degree of associativity decreases the number of sets by a factor of 2 and 
thus decreases the number of bits used to index the cache by 1 and increases 
the number of bits in the tag by 1. Th us, for a two-way set-associative cache, 
there are 2048 sets, and the total number of tag bits is (28�11) � 2 � 2048 � 
34 � 2048 � 70 Kbits. For a four-way set-associative cache, the total number 
of sets is 1024, and the total number is (28�10) � 4 � 1024 � 72 � 1024 � 
74 K tag bits.

For a fully associative cache, there is only one set with 4096 blocks, and the 
tag is 28 bits, leading to 28 � 4096 � 1 � 115 K tag bits.

least recently used 
(LRU) A replacement 
scheme in which the 
block replaced is the one 
that has been unused for 
the longest time.

EXAMPLE

ANSWER
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Reducing the Miss Penalty Using Multilevel Caches
All modern computers make use of caches. To close the gap further between the 
fast clock rates of modern processors and the increasingly long time required to 
access DRAMs, most microprocessors support an additional level of caching. Th is 
second-level cache is normally on the same chip and is accessed whenever a miss 
occurs in the primary cache. If the second-level cache contains the desired data, 
the miss penalty for the fi rst-level cache will be essentially the access time of the 
second-level cache, which will be much less than the access time of main memory. 
If neither the primary nor the secondary cache contains the data, a main memory 
access is required, and a larger miss penalty is incurred.

How signifi cant is the performance improvement from the use of a secondary 
cache? Th e next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references 
hit in the primary cache, and a clock rate of 4 GHz. Assume a main memory 
access time of 100 ns, including all the miss handling. Suppose the miss rate 
per instruction at the primary cache is 2%. How much faster will the processor 
be if we add a secondary cache that has a 5 ns access time for either a hit or 
a miss and is large enough to reduce the miss rate to main memory to 0.5%?

Th e miss penalty to main memory is

100

0 25

 ns

 ns
clock cycle

400 clock cycles
.

�

Th e eff ective CPI with one level of caching is given by

Total CPI � Base CPI � Memory-stall cycles per instruction

For the processor with one level of caching,

Total CPI � 1.0 � Memory-stall cycles per instruction � 1.0 � 2% � 400 � 9

With two levels of caching, a miss in the primary (or fi rst-level) cache can be 
satisfi ed either by the secondary cache or by main memory. Th e miss penalty 
for an access to the second-level cache is
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If the miss is satisfi ed in the secondary cache, then this is the entire miss 
penalty. If the miss needs to go to main memory, then the total miss penalty is 
the sum of the secondary cache access time and the main memory access time.

Th us, for a two-level cache, total CPI is the sum of the stall cycles from both 
levels of cache and the base CPI:

Total CPI 1 Primary stalls per instruction Secondary stallss per instruction
1 2% 20 0.5% 400 1 0.4 2.0 3.4

Th us, the processor with the secondary cache is faster by

9 0
3 4

.

.
� 2.6

Alternatively, we could have computed the stall cycles by summing the stall 
cycles of those references that hit in the secondary cache ((2%�0.5%) � 
20 � 0.3). Th ose references that go to main memory, which must include the 
cost to access the secondary cache as well as the main memory access time, are 
(0.5% � (20 � 400) � 2.1). Th e sum, 1.0 � 0.3 � 2.1, is again 3.4.

Th e design considerations for a primary and secondary cache are signifi cantly 
diff erent, because the presence of the other cache changes the best choice versus 
a single-level cache. In particular, a two-level cache structure allows the primary 
cache to focus on minimizing hit time to yield a shorter clock cycle or fewer 
pipeline stages, while allowing the secondary cache to focus on miss rate to reduce 
the penalty of long memory access times.

Th e eff ect of these changes on the two caches can be seen by comparing each 
cache to the optimal design for a single level of cache. In comparison to a single-
level cache, the primary cache of a multilevel cache is oft en smaller. Furthermore, 
the primary cache may use a smaller block size, to go with the smaller cache size and 
also to reduce the miss penalty. In comparison, the secondary cache will be much 
larger than in a single-level cache, since the access time of the secondary cache is 
less critical. With a larger total size, the secondary cache may use a larger block size 
than appropriate with a single-level cache. It oft en uses higher associativity than 
the primary cache given the focus of reducing miss rates.

Sorting has been exhaustively analyzed to fi nd better algorithms: Bubble Sort, 
Quicksort, Radix Sort, and so on. Figure 5.19(a) shows instructions executed by 
item searched for Radix Sort versus Quicksort. As expected, for large arrays, Radix 
Sort has an algorithmic advantage over Quicksort in terms of number of operations. 
Figure 5.19(b) shows time per key instead of instructions executed. We see that the 
lines start on the same trajectory as in Figure 5.19(a), but then the Radix Sort line 
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FIGURE 5.19 Comparing Quicksort and Radix Sort by (a) instructions executed per item 
sorted, (b) time per item sorted, and (c) cache misses per item sorted. Th is data is from a 
paper by LaMarca and Ladner [1996]. Due to such results, new versions of Radix Sort have been invented 
that take memory hierarchy into account, to regain its algorithmic advantages (see Section 5.15). Th e basic 
idea of cache optimizations is to use all the data in a block repeatedly before it is replaced on a miss.
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diverges as the data to sort increases. What is going on? Figure 5.19(c) answers by 
looking at the cache misses per item sorted: Quicksort consistently has many fewer 
misses per item to be sorted.

Alas, standard algorithmic analysis oft en ignores the impact of the memory 
hierarchy. As faster clock rates and Moore’s Law allow architects to squeeze all of 
the performance out of a stream of instructions, using the memory hierarchy well 
is critical to high performance. As we said in the introduction, understanding the 
behavior of the memory hierarchy is critical to understanding the performance of 
programs on today’s computers.

Software Optimization via Blocking
Given the importance of the memory hierarchy to program performance, not 
surprisingly many soft ware optimizations were invented that can dramatically 
improve performance by reusing data within the cache and hence lower miss rates 
due to improved temporal locality.

When dealing with arrays, we can get good performance from the memory 
system if we store the array in memory so that accesses to the array are sequential 
in memory. Suppose that we are dealing with multiple arrays, however, with some 
arrays accessed by rows and some by columns. Storing the arrays row-by-row 
(called row major order) or column-by-column (column major order) does not 
solve the problem because both rows and columns are used in every loop iteration. 

Instead of operating on entire rows or columns of an array, blocked algorithms 
operate on submatrices or blocks. Th e goal is to maximize accesses to the data 
loaded into the cache before the data are replaced; that is, improve temporal locality 
to reduce cache misses. 

For example, the inner loops of DGEMM (lines 4 through 9 of Figure 3.21 in 
Chapter 3) are

for (int j = 0; j < n; ++j) 
    {
     double cij = C[i+j*n]; /* cij = C[i][j] */
     for( int k = 0; k < n; k++ )
       cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
     C[i+j*n] = cij; /* C[i][j] = cij */
     }
}

It reads all N-by-N elements of B, reads the same N elements in what corresponds to 
one row of A repeatedly, and writes what corresponds to one row of N elements of 
C. (Th e comments make the rows and columns of the matrices easier to identify.) 
Figure 5.20 gives a snapshot of the accesses to the three arrays. A dark shade 
indicates a recent access, a light shade indicates an older access, and white means 
not yet accessed.
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Th e number of capacity misses clearly depends on N and the size of the cache. If 
it can hold all three N-by-N matrices, then all is well, provided there are no cache 
confl icts. We purposely picked the matrix size to be 32 by 32 in DGEMM for 
Chapters 3 and 4 so that this would be the case. Each matrix is 32 � 32 � 1024 
elements and each element is 8 bytes, so the three matrices occupy 24 KiB, which 
comfortably fi t in the 32 KiB data cache of the Intel Core i7 (Sandy Bridge).

If the cache can hold one N-by-N matrix and one row of N, then at least the ith 
row of A and the array B may stay in the cache. Less than that and misses may 
occur for both B and C. In the worst case, there would be 2 N3 � N2 memory words 
accessed for N3 operations.

To ensure that the elements being accessed can fi t in the cache, the original code 
is changed to compute on a submatrix. Hence, we essentially invoke the version of 
DGEMM from Figure 4.80 in Chapter 4 repeatedly on matrices of size BLOCKSIZE 
by BLOCKSIZE. BLOCKSIZE is called the blocking factor. 

Figure 5.21 shows the blocked version of DGEMM. Th e function do_block is 
DGEMM from Figure 3.21 with three new parameters si, sj, and sk to specify 
the starting position of each submatrix of of A, B, and C. Th e two inner loops of the 
do_block now compute in steps of size BLOCKSIZE rather than the full length 
of B and C. Th e gcc optimizer removes any function call overhead by “inlining” the 
function; that is, it inserts the code directly to avoid the conventional parameter 
passing and return address bookkeeping instructions.

Figure 5.22 illustrates the accesses to the three arrays using blocking. Looking 
only at capacity misses, the total number of memory words accessed is 2 N3/ 
BLOCKSIZE � N2. Th is total is an improvement by about a factor of BLOCKSIZE. 
Hence, blocking exploits a combination of spatial and temporal locality, since A 
benefi ts from spatial locality and B benefi ts from temporal locality.

FIGURE 5.20 A snapshot of the three arrays C, A, and B when N � 6 and i � 1. Th e age of 
accesses to the array elements is indicated by shade: white means not yet touched, light means older accesses, 
and dark means newer accesses. Compared to Figure 5.21, elements of A and B are read repeatedly to calculate 
new elements of x. Th e variables i, j, and k are shown along the rows or columns used to access the arrays.
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FIGURE 5.21 Cache blocked version of DGEMM in Figure 3.21. Assume C is initialized to zero. Th e do_block 
function is basically DGEMM from Chapter 3 with new parameters to specify the starting positions of the submatrices of 
BLOCKSIZE. Th e gcc optimizer can remove the function overhead instructions by inlining the do_block function.

FIGURE 5.22 The age of accesses to the arrays C, A, and B when BLOCKSIZE � 3. Note that, 
in contrast to Figure 5.20, fewer elements are accessed.
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1 #define BLOCKSIZE 32
2 void do_block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)
4 {
5  for (int i = si; i < si+BLOCKSIZE; ++i)
6   for (int j = sj; j < sj+BLOCKSIZE; ++j)
7     {
8     double cij = C[i+j*n];/* cij = C[i][j] */
9     for( int k = sk; k < sk+BLOCKSIZE; k++ )
10      cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */
11     C[i+j*n] = cij;/* C[i][j] = cij */
12     }
13 }
14 void dgemm (int n, double* A, double* B, double* C)
15 {
16   for ( int sj = 0; sj < n; sj += BLOCKSIZE )
17    for ( int si = 0; si < n; si += BLOCKSIZE )
18    for ( int sk = 0; sk < n; sk += BLOCKSIZE )
19     do_block(n, si, sj, sk, A, B, C);
20 }

Although we have aimed at reducing cache misses, blocking can also be used to 
help register allocation. By taking a small blocking size such that the block can be 
held in registers, we can minimize the number of loads and stores in the program, 
which also improves performance.
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Figure 5.23 shows the impact of cache blocking on the performance of the 
unoptimized DGEMM as we increase the matrix size beyond where all three 
matrices fi t in the cache. Th e unoptimized performance is halved for the largest 
matrix. Th e cache-blocked version is less than 10% slower even at matrices that are 
960x960, or 900 times larger than the 32 × 32 matrices in Chapters 3 and 4.

Elaboration: Multilevel caches create several complications. First, there are now 
several different types of misses and corresponding miss rates. In the example on 
pages 410–411, we saw the primary cache miss rate and the global miss rate—the 
fraction of references that missed in all cache levels. There is also a miss rate for the 
secondary cache, which is the ratio of all misses in the secondary cache divided by the 
number of accesses to it. This miss rate is called the local miss rate of the secondary 
cache. Because the primary cache fi lters accesses, especially those with good spatial 
and temporal locality, the local miss rate of the secondary cache is much higher than the 
global miss rate. For the example on pages 410–411, we can compute the local miss 
rate of the secondary cache as 0.5%/2% � 25%! Luckily, the global miss rate dictates 
how often we must access the main memory.

Elaboration: With out-of-order processors (see Chapter 4), performance is more 
complex, since they execute instructions during the miss penalty. Instead of instruction 
miss rates and data miss rates, we use misses per instruction, and this formula:

Memory stall cycles
Instruction

Misses
Instruction

(Total misss latency Overlapped miss latency)

global miss rate Th e 
fraction of references 
that miss in all levels of a 
multilevel cache.

local miss rate Th e 
fraction of references to 
one level of a cache that 
miss; used in multilevel 
hierarchies.
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FIGURE 5.23 Performance of unoptimized DGEMM (Figure 3.21) versus cache blocked 
DGEMM (Figure 5.21) as the matrix dimension varies from 32x32 (where all three matrices 
fi t in the cache) to 960x960.
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There is no general way to calculate overlapped miss latency, so evaluations of 
memory hierarchies for out-of-order processors inevitably require simulation of the 
processor and the memory hierarchy. Only by seeing the execution of the processor 
during each miss can we see if the processor stalls waiting for data or simply fi nds other 
work to do. A guideline is that the processor often hides the miss penalty for an L1 
cache miss that hits in the L2 cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy 
varies between different implementations of the same architecture in cache size, 
associativity, block size, and number of caches. To cope with such variability, some 
recent numerical libraries parameterize their algorithms and then search the parameter 
space at runtime to fi nd the best combination for a particular computer. This approach 
is called autotuning.

Which of the following is generally true about a design with multiple levels of 
caches?

1. First-level caches are more concerned about hit time, and second-level 
caches are more concerned about miss rate.

2. First-level caches are more concerned about miss rate, and second-level 
caches are more concerned about hit time.

Summary
In this section, we focused on four topics: cache performance, using associativity to 
reduce miss rates, the use of multilevel cache hierarchies to reduce miss penalties, 
and soft ware optimizations to improve eff ectiveness of caches.

Th e memory system has a signifi cant eff ect on program execution time. Th e 
number of memory-stall cycles depends on both the miss rate and the miss penalty. 
Th e challenge, as we will see in Section 5.8, is to reduce one of these factors without 
signifi cantly aff ecting other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes. 
Such schemes can reduce the miss rate of a cache by allowing more fl exible 
placement of blocks within the cache. Fully associative schemes allow blocks to be 
placed anywhere, but also require that every block in the cache be searched to satisfy 
a request. Th e higher costs make large fully associative caches impractical. Set-
associative caches are a practical alternative, since we need only search among the 
elements of a unique set that is chosen by indexing. Set-associative caches have higher 
miss rates but are faster to access. Th e amount of associativity that yields the best 
performance depends on both the technology and the details of the implementation.

We looked at multilevel caches as a technique to reduce the miss penalty by 
allowing a larger secondary cache to handle misses to the primary cache. Second-
level caches have become commonplace as designers fi nd that limited silicon and 
the goals of high clock rates prevent primary caches from becoming large. Th e 
secondary cache, which is oft en ten or more times larger than the primary cache, 
handles many accesses that miss in the primary cache. In such cases, the miss 
penalty is that of the access time to the secondary cache (typically < 10 processor 
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cycles) versus the access time to memory (typically > 100 processor cycles). As with 
associativity, the design tradeoff s between the size of the secondary cache and its 
access time depend on a number of aspects of the implementation.

Finally, given the importance of the memory hierarchy in performance, we 
looked at how to change algorithms to improve cache behavior, with blocking 
being an important technique when dealing with large arrays.

 5.5 Dependable Memory Hierarchy

Implicit in all the prior discussion is that the memory hierarchy doesn’t forget. Fast 
but undependable is not very attractive. As we learned in Chapter 1, the one great 
idea for dependability is redundancy. In this section we’ll fi rst go over the terms to 
defi ne terms and measures associated with failure, and then show how redundancy 
can make nearly unforgettable memories.

Defi ning Failure
We start with an assumption that you have a specifi cation of proper service. Users 
can then see a system alternating between two states of delivered service with 
respect to the service specifi cation:

1. Service accomplishment, where the service is delivered as specifi ed

2. Service interruption, where the delivered service is diff erent from the 
specifi ed service

Transitions from state 1 to state 2 are caused by failures, and transitions from state 
2 to state 1 are called restorations. Failures can be permanent or intermittent. Th e 
latter is the more diffi  cult case; it is harder to diagnose the problem when a system 
oscillates between the two states. Permanent failures are far easier to diagnose. 

Th is defi nition leads to two related terms: reliability and availability.
Reliability is a measure of the continuous service accomplishment—or, equivalently, 

of the time to failure—from a reference point. Hence, mean time to failure (MTTF) 
is a reliability measure. A related term is annual failure rate (AFR), which is just the 
percentage of devices that would be expected to fail in a year for a given MTTF. 
When MTTF gets large it can be misleading, while AFR leads to better intuition.

MTTF vs. AFR of Disks

Some disks today are quoted to have a 1,000,000-hour MTTF. As 1,000,000 
hours is 1,000,000/(365 � 24) � 114 years, it would seem like they practically 
never fail. Warehouse scale computers that run Internet services such as 
Search might have 50,000 servers. Assume each server has 2 disks. Use AFR to 
calculate how many disks we would expect to fail per year.

EXAMPLE
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One year is 365 � 24 � 8760 hours. A 1,000,000-hour MTTF means an AFR 
of 8760/1,000,000 � 0.876%. With 100,000 disks, we would expect 876 disks to 
fail per year, or on average more than 2 disk failures per day!

Service interruption is measured as mean time to repair (MTTR). Mean time 
between failures (MTBF) is simply the sum of MTTF + MTTR. Although MTBF 
is widely used, MTTF is oft en the more appropriate term. Availability is then a 
measure of service accomplishment with respect to the alternation between the two 
states of accomplishment and interruption. Availability is statistically quantifi ed as

Availability MTTF
(MTTF MTTR)

Note that reliability and availability are actually quantifi able measures, rather than 
just synonyms for dependability. Shrinking MTTR can help availability as much as 
increasing MTTF. For example, tools for fault detection, diagnosis, and repair can 
help reduce the time to repair faults and thereby improve availability.

We want availability to be very high. One shorthand is to quote the number of 
“nines of availability” per year. For example, a very good Internet service today 
off ers 4 or 5 nines of availability. Given 365 days per year, which is 365 � 24 � 
60 � 526,000 minutes, then the shorthand is decoded as follows:

One nine: 90% =>  36.5 days of repair/year
Two nines: 99% =>  3.65 days of repair/year
Th ree nines: 99.9% =>  526 minutes of repair/year
Four nines: 99.99% =>  52.6 minutes of repair/year
Five nines: 99.999% =>  5.26 minutes of repair/year

and so on. 
To increase MTTF, you can improve the quality of the components or design 

systems to continue operation in the presence of components that have failed. 
Hence, failure needs to be defi ned with respect to a context, as failure of a component 
may not lead to a failure of the system. To make this distinction clear, the term fault 
is used to mean failure of a component. Here are three ways to improve MTTF:

1. Fault avoidance: Preventing fault occurrence by construction.

2. Fault tolerance: Using redundancy to allow the service to comply with the 
service specifi cation despite faults occurring. 

3. Fault forecasting: Predicting the presence and creation of faults, allowing 
the component to be replaced before it fails.

ANSWER
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The Hamming Single Error Correcting, Double Error 
Detecting Code (SEC/DED)
Richard Hamming invented a popular redundancy scheme for memory, for which 
he received the Turing Award in 1968. To invent redundant codes, it is helpful 
to talk about how “close” correct bit patterns can be. What we call the Hamming 
distance is just the minimum number of bits that are diff erent between any two 
correct bit patterns. For example, the distance between 011011 and 001111 is two. 
What happens if the minimum distance between members of a codes is two, and 
we get a one-bit error? It will turn a valid pattern in a code to an invalid one. Th us, 
if we can detect whether members of a code are valid or not, we can detect single 
bit errors, and can say we have a single bit error detection code.

Hamming used a parity code for error detection. In a parity code, the number 
of 1s in a word is counted; the word has odd parity if the number of 1s is odd and 
even otherwise. When a word is written into memory, the parity bit is also written 
(1 for odd, 0 for even). Th at is, the parity of the N+1 bit word should always be even. 
Th en, when the word is read out, the parity bit is read and checked. If the parity of the 
memory word and the stored parity bit do not match, an error has occurred.

Calculate the parity of a byte with the value 31ten and show the pattern stored to 
memory. Assume the parity bit is on the right. Suppose the most signifi cant bit 
was inverted in memory, and then you read it back. Did you detect the error? 
What happens if the two most signifi cant bits are inverted?

31ten is 00011111two, which has fi ve 1s. To make parity even, we need to write a 1 
in the parity bit, or 000111111two. If the most signifi cant bit is inverted when we 
read it back, we would see 100111111two which has seven 1s. Since we expect 
even parity and calculated odd parity, we would signal an error. If the two most 
signifi cant bits are inverted, we would see 110111111two which has eight 1s or 
even parity and we would not signal an error.

If there are 2 bits of error, then a 1-bit parity scheme will not detect any errors, 
since the parity will match the data with two errors. (Actually, a 1-bit parity scheme 
can detect any odd number of errors; however, the probability of having 3 errors is 
much lower than the probability of having two, so, in practice, a 1-bit parity code is 
limited to detecting a single bit of error.) 

Of course, a parity code cannot correct errors, which Hamming wanted to do 
as well as detect them. If we used a code that had a minimum distance of 3, then 
any single bit error would be closer to the correct pattern than to any other valid 
pattern. He came up with an easy to understand mapping of data into a distance 3 
code that we call Hamming Error Correction Code (ECC) in his honor. We use extra 
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parity bits to allow the position identifi cation of a single error. Here are the steps to 
calculate Hamming ECC

1. Start numbering bits from 1 on the left , as opposed to the traditional 
numbering of the rightmost bit being 0.

2. Mark all bit positions that are powers of 2 as parity bits (positions 1, 2, 4, 8, 
16, …) .

3. All other bit positions are used for data bits (positions 3, 5, 6, 7, 9, 10, 11, 12, 
13, 14, 15, …).

4. Th e position of parity bit determines sequence of data bits that it checks 
(Figure 5.24 shows this coverage graphically) is:

■ Bit 1 (0001two) checks bits (1,3,5,7,9,11,...), which are bits where rightmost 
bit of address is 1 (0001two, 0011two, 0101two, 0111two, 1001two, 1011two,…).

■ Bit 2 (0010two) checks bits (2,3,6,7,10,11,14,15,…), which are the bits 
where the second bit to the right in the address is 1.

■ Bit 4 (0100two) checks bits (4–7, 12–15, 20–23,...) , which are the bits where 
the third bit to the right in the address is 1.

■ Bit 8 (1000two) checks bits (8–15, 24–31, 40–47,...), which are the bits 
where the fourth bit to the right in the address is 1.

 Note that each data bit is covered by two or more parity bits. 

5. Set parity bits to create even parity for each group.

Bit position

Encoded data bits

Parity
bit

coverage

p1

p1

p2

p4

p8

p2 d1 p4 d2 d3 d4 p8 d5 d6 d7 d8

X X X X X X

X X X X X X

X X X X X

X X X X X

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 5.24 Parity bits, data bits, and fi eld coverage in a Hamming ECC code for 
eight data bits.

In what seems like a magic trick, you can then determine whether bits are 
incorrect by looking at the parity bits. Using the 12 bit code in Figure 5.24, if the 
value of the four parity calculations (p8,p4,p2,p1) was 0000, then there was no 
error. However, if the pattern was, say, 1010, which is 10ten, then Hamming ECC 
tells us that bit 10 (d6) is an error. Since the number is binary, we can correct the 
error just by inverting the value of bit 10.
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Assume one byte data value is 10011010two. First show the Hamming ECC code 
for that byte, and then invert bit 10 and show that the ECC code fi nds and 
corrects the single bit error.

Leaving spaces for the parity bits, the 12 bit pattern is _ _ 1 _ 0 0 1 _ 1 0 1 0. 
Position 1 checks bits 1,3,5,7,9, and11, which we highlight: __ 1 _ 0 0 1 _ 1 0 1 
0. To make the group even parity, we should set bit 1 to 0. 
Position 2 checks bits 2,3,6,7,10,11, which is 0 _ 1 _ 0 0 1 _ 1 0 1 0 or odd parity, 
so we set position 2 to a 1. 
Position 4 checks bits 4,5,6,7,12, which is 0 1 1 _ 0 0 1 _ 1 0 1, so we set it to a 1. 
Position 8 checks bits 8,9,10,11,12, which is 0 1 1 1 0 0 1 _ 1 0 1 0, so we set it 
to a 0. 
Th e fi nal code word is 011100101010. Inverting bit 10 changes it to 
011100101110.
Parity bit 1 is 0 (011100101110 is four 1s, so even parity; this group is OK).
Parity bit 2 is 1 (011100101110 is fi ve 1s, so odd parity; there is an error 
somewhere).
Parity bit 4 is 1 (011100101110 is two 1s, so even parity; this group is OK).
Parity bit 8 is 1 (011100101110 is three 1s, so odd parity; there is an error 
somewhere).
Parity bits 2 and 10 are incorrect. As 2 + 8 = 10, bit 10 must be wrong. Hence, 
we can correct the error by inverting bit 10: 011100101010. Voila!

Hamming did not stop at single bit error correction code. At the cost of one more 
bit, we can make the minimum Hamming distance in a code be 4. Th is means 
we can correct single bit errors and detect double bit errors. Th e idea is to add a 
parity bit that is calculated over the whole word. Let’s use a four-bit data word as 
an example, which would only need 7 bits for single bit error detection. Hamming 
parity bits H (p1 p2 p3) are computed (even parity as usual) plus the even parity 
over the entire word, p4:

    1    2    3    4    5    6    7   8
     p1  p2   d1   p3   d2   d3  d4   p4

Th en the algorithm to correct one error and detect two is just to calculate parity 
over the ECC groups (H) as before plus one more over the whole group (p4). Th ere 
are four cases:

1. H is even and p4 is even, so no error occurred.

2. H is odd and p4 is odd, so a correctable single error occurred. (p4 should 
calculate odd parity if one error occurred.)

3. H is even and p4 is odd, a single error occurred in p4 bit, not in the rest of the 
word, so correct the p4 bit.

EXAMPLE

ANSWER
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4. H is odd and p4 is even, a double error occurred. (p4 should calculate even 
parity if two errors occurred.)

Single Error Correcting / Double Error Detecting (SEC/DED) is common in 
memory for servers today. Conveniently, eight byte data blocks can get SEC/DED 
with just one more byte, which is why many DIMMs are 72 bits wide.

Elaboration: To calculate how many bits are needed for SEC, let p be total number of 
parity bits and d number of data bits in p � d bit word. If p error correction bits are to 
point to error bit (p + d cases) plus one case to indicate that no error exists, we need:

2p � p � d � 1 bits, and thus p � log(p � d � 1).

For example, for 8 bits data means d � 8 and 2p � p � 8 � 1, so p � 4. Similarly, 
p � 5 for 16 bits of data, 6 for 32 bits, 7 for 64 bits, and so on. 

Elaboration: In very large systems, the possibility of multiple errors as well as 
complete failure of a single wide memory chip becomes signifi cant. IBM introduced 
chipkill to solve this problem, and many very large systems use this technology. (Intel 
calls their version SDDC.) Similar in nature to the RAID approach used for disks (see 

 Section 5.11), Chipkill distributes the data and ECC information, so that the complete 
failure of a single memory chip can be handled by supporting the reconstruction of the 
missing data from the remaining memory chips. Assuming a 10,000-processor cluster 
with 4 GiB per processor, IBM calculated the following rates of unrecoverable memory 
errors in three years of operation:

■  Parity only—about 90,000, or one unrecoverable (or undetected) failure every 17 
minutes.

■  SEC/DED only—about 3500, or about one undetected or unrecoverable failure 
every 7.5 hours.

■ Chipkill—6, or about one undetected or unrecoverable failure every 2 months.

Hence, Chipkill is a requirement for warehouse-scale computers.

Elaboration: While single or double bit errors are typical for memory systems, networks 
can have bursts of bit errors. One solution is called Cyclic Redundancy Check. For a 
block of k bits, a transmitter generates an n-k bit frame check sequence. It transmits 
n bits exactly divisible by some number. The receiver divides frame by that number. If 
there is no remainder, it assumes there is no error. If there is, the receiver rejects the 
message, and asks the transmitter to send again. As you might guess from Chapter 3, 
it is easy to calculate division for some binary numbers with a shift register, which made 
CRC codes popular even when hardware was more precious. Going even further, Reed-
Solomon codes use Galois fi elds to correct multibit transmission errors, but now data is 
considered coeffi cients of a polynomials and the code space is values of a polynomial. 
The Reed-Solomon calculation is considerably more complicated than binary division!
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 5.6 Virtual Machines

Virtual Machines (VM) were fi rst developed in the mid-1960s, and they have 
remained an important part of mainframe computing over the years. Although 
largely ignored in the single user PC era in the 1980s and 1990s, they have recently 
gained popularity due to

■ Th e increasing importance of isolation and security in modern systems

■ Th e failures in security and reliability of standard operating systems

■ Th e sharing of a single computer among many unrelated users, in particular 
for cloud computing

■ Th e dramatic increases in raw speed of processors over the decades, which 
makes the overhead of VMs more acceptable

Th e broadest defi nition of VMs includes basically all emulation methods that 
provide a standard soft ware interface, such as the Java VM. In this section, we are 
interested in VMs that provide a complete system-level environment at the binary 
instruction set architecture (ISA) level. Although some VMs run diff erent ISAs in 
the VM from the native hardware, we assume they always match the hardware. Such 
VMs are called (Operating) System Virtual Machines. IBM VM/370, VirtualBox, 
VMware ESX Server, and Xen are examples.

System virtual machines present the illusion that the users have an entire 
computer to themselves, including a copy of the operating system. A single 
computer runs multiple VMs and can support a number of diff erent operating 
systems (OSes). On a conventional platform, a single OS “owns” all the hardware 
resources, but with a VM, multiple OSes all share the hardware resources.

Th e soft ware that supports VMs is called a virtual machine monitor (VMM) or 
hypervisor; the VMM is the heart of virtual machine technology. Th e underlying 
hardware platform is called the host, and its resources are shared among the guest 
VMs. Th e VMM determines how to map virtual resources to physical resources: a 
physical resource may be time-shared, partitioned, or even emulated in soft ware. 
Th e VMM is much smaller than a traditional OS; the isolation portion of a VMM 
is perhaps only 10,000 lines of code.

Although our interest here is in VMs for improving protection, VMs provide 
two other benefi ts that are commercially signifi cant:

1. Managing soft ware. VMs provide an abstraction that can run the complete 
soft ware stack, even including old operating systems like DOS. A typical 
deployment might be some VMs running legacy OSes, many running the 
current stable OS release, and a few testing the next OS release.

2. Managing hardware. One reason for multiple servers is to have each 
application running with the compatible version of the operating system 
on separate computers, as this separation can improve dependability. VMs 
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allow these separate soft ware stacks to run independently yet share hardware, 
thereby consolidating the number of servers. Another example is that some 
VMMs support migration of a running VM to a diff erent computer, either 
to balance load or to evacuate from failing hardware.

Amazon Web Services (AWS) uses the virtual machines in its cloud computing 
off ering EC2 for fi ve reasons:

1. It allows AWS to protect users from each other while sharing the same server.

2. It simplifi es soft ware distribution within a warehouse scale computer. A 
customer installs a virtual machine image confi gured with the appropriate 
soft ware, and AWS distributes it to all the instances a customer wants to use.

3. Customers (and AWS) can reliably “kill” a VM to control resource usage 
when customers complete their work.

4. Virtual machines hide the identity of the hardware on which the customer is 
running, which means AWS can keep using old servers and introduce new, 
more effi  cient servers. Th e customer expects performance for instances to 
match their ratings in “EC2 Compute Units,” which AWS defi nes: to “provide 
the equivalent CPU capacity of a 1.0–1.2 GHz 2007 AMD Opteron or 2007 
Intel Xeon processor.” Th anks to Moore’s Law, newer servers clearly off er 
more EC2 Compute Units than older ones, but AWS can keep renting old 
servers as long as they are economical.

5. Virtual Machine Monitors can control the rate that a VM uses the processor, 
the network, and disk space, which allows AWS to off er many price points 
of instances of diff erent types running on the same underlying servers. 
For example, in 2012 AWS off ered 14 instance types, from small standard 
instances at $0.08 per hour to high I/O quadruple extra large instances at 
$3.10 per hour.

In general, the cost of processor virtualization depends on the workload. User-
level processor-bound programs have zero virtualization overhead, because the 
OS is rarely invoked, so everything runs at native speeds. I/O-intensive workloads 
are generally also OS-intensive, executing many system calls and privileged 
instructions that can result in high virtualization overhead. On the other hand, if 
the I/O-intensive workload is also I/O-bound, the cost of processor virtualization 
can be completely hidden, since the processor is oft en idle waiting for I/O.

Th e overhead is determined by both the number of instructions that must be 
emulated by the VMM and by how much time each takes to emulate them. Hence, 
when the guest VMs run the same ISA as the host, as we assume here, the goal 
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of the architecture and the VMM is to run almost all instructions directly on the 
native hardware.

Requirements of a Virtual Machine Monitor
What must a VM monitor do? It presents a soft ware interface to guest soft ware, it 
must isolate the state of guests from each other, and it must protect itself from guest 
soft ware (including guest OSes). Th e qualitative requirements are:

■ Guest soft ware should behave on a VM exactly as if it were running on the 
native hardware, except for performance-related behavior or limitations of 
fi xed resources shared by multiple VMs.

■ Guest soft ware should not be able to change allocation of real system resources 
directly.

To “virtualize” the processor, the VMM must control just about everything—access 
to privileged state, I/O, exceptions, and interrupts—even though the guest VM and 
OS currently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the 
currently running guest VM, save its state, handle the interrupt, determine which 
guest VM to run next, and then load its state. Guest VMs that rely on a timer 
interrupt are provided with a virtual timer and an emulated timer interrupt by the 
VMM.

To be in charge, the VMM must be at a higher privilege level than the guest 
VM, which generally runs in user mode; this also ensures that the execution of 
any privileged instruction will be handled by the VMM. Th e basic requirements of 
system virtual:

■ At least two processor modes, system and user.

■ A privileged subset of instructions that is available only in system mode, 
resulting in a trap if executed in user mode; all system resources must be 
controllable only via these instructions.

(Lack of) Instruction Set Architecture Support for Virtual 
Machines
If VMs are planned for during the design of the ISA, it’s relatively easy to reduce 
both the number of instructions that must be executed by a VMM and improve 
their emulation speed. An architecture that allows the VM to execute directly on 
the hardware earns the title virtualizable, and the IBM 370 architecture proudly 
bears that label.

Alas, since VMs have been considered for PC and server applications only fairly 
recently, most instruction sets were created without virtualization in mind. Th ese 
culprits include x86 and most RISC architectures, including ARMv7 and MIPS.
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Because the VMM must ensure that the guest system only interacts with virtual 
resources, a conventional guest OS runs as a user mode program on top of the 
VMM. Th en, if a guest OS attempts to access or modify information related to 
hardware resources via a privileged instruction—for example, reading or writing 
a status bit that enables interrupts—it will trap to the VMM. Th e VMM can then 
eff ect the appropriate changes to corresponding real resources.

Hence, if any instruction that tries to read or write such sensitive information 
traps when executed in user mode, the VMM can intercept it and support a virtual 
version of the sensitive information, as the guest OS expects.

In the absence of such support, other measures must be taken. A VMM must 
take special precautions to locate all problematic instructions and ensure that they 
behave correctly when executed by a guest OS, thereby increasing the complexity 
of the VMM and reducing the performance of running the VM.

Protection and Instruction Set Architecture
Protection is a joint eff ort of architecture and operating systems, but architects 
had to modify some awkward details of existing instruction set architectures when 
virtual memory became popular. 

For example, the x86 instruction POPF loads the fl ag registers from the top of 
the stack in memory. One of the fl ags is the Interrupt Enable (IE) fl ag. If you run 
the POPF instruction in user mode, rather than trap it, it simply changes all the 
fl ags except IE. In system mode, it does change the IE. Since a guest OS runs in user 
mode inside a VM, this is a problem, as it expects to see a changed IE.

Historically, IBM mainframe hardware and VMM took three steps to improve 
performance of virtual machines:

1. Reduce the cost of processor virtualization.

2. Reduce interrupt overhead cost due to the virtualization.

3. Reduce interrupt cost by steering interrupts to the proper VM without 
invoking VMM.

AMD and Intel tried to address the fi rst point in 2006 by reducing the cost of 
processor virtualization. It will be interesting to see how many generations of 
architecture and VMM modifi cations it will take to address all three points, and 
how long before virtual machines of the 21st century will be as effi  cient as the IBM 
mainframes and VMMs of the 1970s.

 5.7 Virtual Memory

In earlier sections, we saw how caches provided fast access to recently used portions 
of a program’s code and data. Similarly, the main memory can act as a “cache” for 

… a system has 
been devised to 
make the core drum 
combination appear 
to the programmer 
as a single level 
store, the requisite 
transfers taking place 
automatically.
Kilburn et al., One-level 
storage system, 1962
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the secondary storage, usually implemented with magnetic disks. Th is technique is 
called virtual memory. Historically, there were two major motivations for virtual 
memory: to allow effi  cient and safe sharing of memory among multiple programs, 
such as for the memory needed by multiple virtual machines for cloud computing, 
and to remove the programming burdens of a small, limited amount of main 
memory. Five decades aft er its invention, it’s the former reason that reigns today.

Of course, to allow multiple virtual machines to share the same memory, we 
must be able to protect the virtual machines from each other, ensuring that a 
program can only read and write the portions of main memory that have been 
assigned to it. Main memory need contain only the active portions of the many 
virtual machines, just as a cache contains only the active portion of one program. 
Th us, the principle of locality enables virtual memory as well as caches, and virtual 
memory allows us to effi  ciently share the processor as well as the main memory.

We cannot know which virtual machines will share the memory with other 
virtual machines when we compile them. In fact, the virtual machines sharing 
the memory change dynamically while the virtual machines are running. Because 
of this dynamic interaction, we would like to compile each program into its 
own address space—a separate range of memory locations accessible only to this 
program. Virtual memory implements the translation of a program’s address space 
to physical addresses. Th is translation process enforces protection of a program’s 
address space from other virtual machines.

Th e second motivation for virtual memory is to allow a single user program 
to exceed the size of primary memory. Formerly, if a program became too large 
for memory, it was up to the programmer to make it fi t. Programmers divided 
programs into pieces and then identifi ed the pieces that were mutually exclusive. 
Th ese overlays were loaded or unloaded under user program control during 
execution, with the programmer ensuring that the program never tried to access 
an overlay that was not loaded and that the overlays loaded never exceeded the 
total size of the memory. Overlays were traditionally organized as modules, each 
containing both code and data. Calls between procedures in diff erent modules 
would lead to overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on 
programmers. Virtual memory, which was invented to relieve programmers of 
this diffi  culty, automatically manages the two levels of the memory hierarchy 
represented by main memory (sometimes called physical memory to distinguish it 
from virtual memory) and secondary storage.

Although the concepts at work in virtual memory and in caches are the same, 
their diff ering historical roots have led to the use of diff erent terminology. A virtual 
memory block is called a page, and a virtual memory miss is called a page fault. 
With virtual memory, the processor produces a virtual address, which is translated 
by a combination of hardware and soft ware to a physical address, which in turn can 
be used to access main memory. Figure 5.25 shows the virtually addressed memory 
with pages mapped to main memory. Th is process is called address mapping or 

virtual memory 
A technique that uses 
main memory as a “cache” 
for secondary storage.

physical address 
An address in main 
memory.

protection A set 
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address translation. Today, the two memory hierarchy levels controlled by virtual 
memory are usually DRAMs and fl ash memory in personal mobile devices and 
DRAMs and magnetic disks in servers (see Section 5.2). If we return to our library 
analogy, we can think of a virtual address as the title of a book and a physical 
address as the location of that book in the library, such as might be given by the 
Library of Congress call number.

Virtual memory also simplifi es loading the program for execution by providing 
relocation. Relocation maps the virtual addresses used by a program to diff erent 
physical addresses before the addresses are used to access memory. Th is relocation 
allows us to load the program anywhere in main memory. Furthermore, all virtual 
memory systems in use today relocate the program as a set of fi xed-size blocks 
(pages), thereby eliminating the need to fi nd a contiguous block of memory to 
allocate to a program; instead, the operating system need only fi nd a suffi  cient 
number of pages in main memory.

In virtual memory, the address is broken into a virtual page number and a page 
off set. Figure 5.26 shows the translation of the virtual page number to a physical 
page number. Th e physical page number constitutes the upper portion of the 
physical address, while the page off set, which is not changed, constitutes the lower 
portion. Th e number of bits in the page off set fi eld determines the page size. Th e 
number of pages addressable with the virtual address need not match the number 
of pages addressable with the physical address. Having a larger number of virtual 
pages than physical pages is the basis for the illusion of an essentially unbounded 
amount of virtual memory.

address translation 
Also called address 
mapping. Th e process by 
which a virtual address 
is mapped to an address 
used to access memory.

Virtual addresses Physical addresses
Address translation

Disk addresses

FIGURE 5.25 In virtual memory, blocks of memory (called pages) are mapped from one 
set of addresses (called virtual addresses) to another set (called physical addresses). 
Th e processor generates virtual addresses while the memory is accessed using physical addresses. Both the 
virtual memory and the physical memory are broken into pages, so that a virtual page is mapped to a physical 
page. Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to 
a physical address; in that case, the page resides on disk. Physical pages can be shared by having two virtual 
addresses point to the same physical address. Th is capability is used to allow two diff erent programs to share 
data or code.
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Many design choices in virtual memory systems are motivated by the high cost 
of a page fault. A page fault to disk will take millions of clock cycles to process. 
(Th e table on page 378 shows that main memory latency is about 100,000 times 
quicker than disk.) Th is enormous miss penalty, dominated by the time to get the 
fi rst word for typical page sizes, leads to several key decisions in designing virtual 
memory systems:

■ Pages should be large enough to try to amortize the high access time. Sizes 
from 4 KiB to 16 KiB are typical today. New desktop and server systems are 
being developed to support 32 KiB and 64 KiB pages, but new embedded 
systems are going in the other direction, to 1 KiB pages.

■ Organizations that reduce the page fault rate are attractive. Th e primary 
technique used here is to allow fully associative placement of pages in 
memory.

■ Page faults can be handled in soft ware because the overhead will be small 
compared to the disk access time. In addition, soft ware can aff ord to use clever 
algorithms for choosing how to place pages because even small reductions in 
the miss rate will pay for the cost of such algorithms.

■ Write-through will not work for virtual memory, since writes take too long. 
Instead, virtual memory systems use write-back.

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

FIGURE 5.26 Mapping from a virtual to a physical address. Th e page size is 212 � 4 KiB. Th e 
number of physical pages allowed in memory is 218, since the physical page number has 18 bits in it. Th us, 
main memory can have at most 1 GiB, while the virtual address space is 4 GiB.
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Th e next few subsections address these factors in virtual memory design.

Elaboration: We present the motivation for virtual memory as many virtual machines 
sharing the same memory, but virtual memory was originally invented so that many 
programs could share a computer as part of a timesharing system. Since many readers 
today have no experience with time-sharing systems, we use virtual machines to motivate 
this section.

Elaboration: For servers and even PCs, 32-bit address processors are problematic. 
Although we normally think of virtual addresses as much larger than physical addresses, 
the opposite can occur when the processor address size is small relative to the state 
of the memory technology. No single program or virtual machine can benefi t, but a 
collection of programs or virtual machines running at the same time can benefi t from 
not having to be swapped to memory or by running on parallel processors. 

Elaboration: The discussion of virtual memory in this book focuses on paging, 
which uses fi xed-size blocks. There is also a variable-size block scheme called 
segmentation. In segmentation, an address consists of two parts: a segment number 
and a segment offset. The segment number is mapped to a physical address, and 
the offset is added to fi nd the actual physical address. Because the segment can 
vary in size, a bounds check is also needed to make sure that the offset is within 
the segment. The major use of segmentation is to support more powerful methods 
of protection and sharing in an address space. Most operating system textbooks 
contain extensive discussions of segmentation compared to paging and of the use 
of segmentation to logically share the address space. The major disadvantage of 
segmentation is that it splits the address space into logically separate pieces that 
must be manipulated as a two-part address: the segment number and the offset. 
Paging, in contrast, makes the boundary between page number and offset invisible 
to programmers and compilers.

Segments have also been used as a method to extend the address space without 
changing the word size of the computer. Such attempts have been unsuccessful because 
of the awkwardness and performance penalties inherent in a two-part address, of which 
programmers and compilers must be aware.

Many architectures divide the address space into large fi xed-size blocks that simplify 
protection between the operating system and user programs and increase the effi ciency 
of implementing paging. Although these divisions are often called “segments,” this 
mechanism is much simpler than variable block size segmentation and is not visible to 
user programs; we discuss it in more detail shortly.

Placing a Page and Finding It Again
Because of the incredibly high penalty for a page fault, designers reduce page fault 
frequency by optimizing page placement. If we allow a virtual page to be mapped 
to any physical page, the operating system can then choose to replace any page 
it wants when a page fault occurs. For example, the operating system can use a 
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sophisticated algorithm and complex data structures that track page usage to try 
to choose a page that will not be needed for a long time. Th e ability to use a clever 
and fl exible replacement scheme reduces the page fault rate and simplifi es the use 
of fully associative placement of pages.

As mentioned in Section 5.4, the diffi  culty in using fully associative placement 
is in locating an entry, since it can be anywhere in the upper level of the hierarchy. 
A full search is impractical. In virtual memory systems, we locate pages by using a 
table that indexes the memory; this structure is called a page table, and it resides 
in memory. A page table is indexed with the page number from the virtual address 
to discover the corresponding physical page number. Each program has its own 
page table, which maps the virtual address space of that program to main memory. 
In our library analogy, the page table corresponds to a mapping between book 
titles and library locations. Just as the card catalog may contain entries for books 
in another library on campus rather than the local branch library, we will see that 
the page table may contain entries for pages not present in memory. To indicate the 
location of the page table in memory, the hardware includes a register that points to 
the start of the page table; we call this the page table register. Assume for now that 
the page table is in a fi xed and contiguous area of memory.

Th e page table, together with the program counter and the registers, specifi es 
the state of a virtual machine. If we want to allow another virtual machine to use 
the processor, we must save this state. Later, aft er restoring this state, the virtual 
machine can continue execution. We oft en refer to this state as a process. Th e 
process is considered active when it is in possession of the processor; otherwise, it 
is considered inactive. Th e operating system can make a process active by loading 
the process’s state, including the program counter, which will initiate execution at 
the value of the saved program counter.

Th e process’s address space, and hence all the data it can access in memory, is 
defi ned by its page table, which resides in memory. Rather than save the entire page 
table, the operating system simply loads the page table register to point to the page 
table of the process it wants to make active. Each process has its own page table, 
since diff erent processes use the same virtual addresses. Th e operating system is 
responsible for allocating the physical memory and updating the page tables, so 
that the virtual address spaces of diff erent processes do not collide. As we will see 
shortly, the use of separate page tables also provides protection of one process from 
another.

page table Th e table 
containing the virtual 
to physical address 
translations in a virtual 
memory system. Th e 
table, which is stored 
in memory, is typically 
indexed by the virtual 
page number; each entry 
in the table contains the 
physical page number 
for that virtual page if 
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Figure 5.27 uses the page table register, the virtual address, and the indicated page 
table to show how the hardware can form a physical address. A valid bit is used 
in each page table entry, just as we did in a cache. If the bit is off , the page is not 
present in main memory and a page fault occurs. If the bit is on, the page is in 
memory and the entry contains the physical page number.

Because the page table contains a mapping for every possible virtual page, no 
tags are required. In cache terminology, the index that is used to access the page 
table consists of the full block address, which is the virtual page number.

Virtual page number Page offset

3 1  3 0  2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  1 1  1 0  9  8

Physical page number Page offset

2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  1 1  1 0  9  8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

20 12

18

FIGURE 5.27 The page table is indexed with the virtual page number to obtain the 
corresponding portion of the physical address. We assume a 32-bit address. Th e page table pointer 
gives the starting address of the page table. In this fi gure, the page size is 212 bytes, or 4 KiB. Th e virtual 
address space is 232 bytes, or 4 GiB, and the physical address space is 230 bytes, which allows main memory 
of up to 1 GiB. Th e number of entries in the page table is 220, or 1 million entries. Th e valid bit for each entry 
indicates whether the mapping is legal. If it is off , then the page is not present in memory. Although the 
page table entry shown here need only be 19 bits wide, it would typically be rounded up to 32 bits for ease of 
indexing. Th e extra bits would be used to store additional information that needs to be kept on a per-page 
basis, such as protection.
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Page Faults
If the valid bit for a virtual page is off , a page fault occurs. Th e operating system 
must be given control. Th is transfer is done with the exception mechanism, which 
we saw in Chapter 4 and will discuss again later in this section. Once the operating 
system gets control, it must fi nd the page in the next level of the hierarchy (usually 
fl ash memory or magnetic disk) and decide where to place the requested page in 
main memory.

Th e virtual address alone does not immediately tell us where the page is on disk. 
Returning to our library analogy, we cannot fi nd the location of a library book on 
the shelves just by knowing its title. Instead, we go to the catalog and look up the 
book, obtaining an address for the location on the shelves, such as the Library of 
Congress call number. Likewise, in a virtual memory system, we must keep track 
of the location on disk of each page in virtual address space.

Because we do not know ahead of time when a page in memory will be replaced, 
the operating system usually creates the space on fl ash memory or disk for all the 
pages of a process when it creates the process. Th is space is called the swap space. 
At that time, it also creates a data structure to record where each virtual page is 
stored on disk. Th is data structure may be part of the page table or may be an 
auxiliary data structure indexed in the same way as the page table. Figure 5.28 
shows the organization when a single table holds either the physical page number 
or the disk address.

Th e operating system also creates a data structure that tracks which processes 
and which virtual addresses use each physical page. When a page fault occurs, 
if all the pages in main memory are in use, the operating system must choose a 
page to replace. Because we want to minimize the number of page faults, most 
operating systems try to choose a page that they hypothesize will not be needed 
in the near future. Using the past to predict the future, operating systems follow 
the least recently used (LRU) replacement scheme, which we mentioned in Section 
5.4. Th e operating system searches for the least recently used page, assuming that 
a page that has not been used in a long time is less likely to be needed than a more 
recently accessed page. Th e replaced pages are written to swap space on the disk. 
In case you are wondering, the operating system is just another process, and these 
tables controlling memory are in memory; the details of this seeming contradiction 
will be explained shortly.

swap space Th e space on 
the disk reserved for the 
full virtual memory space 
of a process.
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Implementing a completely accurate LRU scheme is too expensive, since it requires 
updating a data structure on every memory reference. Instead, most operating 
systems approximate LRU by keeping track of which pages have and which pages 
have not been recently used. To help the operating system estimate the LRU pages, 
some computers provide a reference bit or use bit, which is set whenever a page 
is accessed. Th e operating system periodically clears the reference bits and later 
records them so it can determine which pages were touched during a particular 
time period. With this usage information, the operating system can select a page 
that is among the least recently referenced (detected by having its reference bit off ). 
If this bit is not provided by the hardware, the operating system must fi nd another 
way to estimate which pages have been accessed.

Hardware/ 
Software 
Interface
reference bit Also called 
use bit. A fi eld that is 
set whenever a page 
is accessed and that is 
used to implement LRU 
or other replacement 
schemes.
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FIGURE 5.28 The page table maps each page in virtual memory to either a page in main 
memory or a page stored on disk, which is the next level in the hierarchy. Th e virtual page 
number is used to index the page table. If the valid bit is on, the page table supplies the physical page number 
(i.e., the starting address of the page in memory) corresponding to the virtual page. If the valid bit is off , the 
page currently resides only on disk, at a specifi ed disk address. In many systems, the table of physical page 
addresses and disk page addresses, while logically one table, is stored in two separate data structures. Dual 
tables are justifi ed in part because we must keep the disk addresses of all the pages, even if they are currently 
in main memory. Remember that the pages in main memory and the pages on disk are the same size.
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Elaboration: With a 32-bit virtual address, 4 KiB pages, and 4 bytes per page table 
entry, we can compute the total page table size:

Number of page table entries
2

2
32

20� �
212

Size of page table 2  page table entries 2
bytes

page tabl
20 2

ee entry
4 MiB

That is, we would need to use 4 MiB of memory for each program in execution at any 
time. This amount is not so bad for a single process. What if there are hundreds of 
processes running, each with their own page table? And how should we handle 64-bit 
addresses, which by this calculation would need 252 words?

A range of techniques is used to reduce the amount of storage required for the page 
table. The fi ve techniques below aim at reducing the total maximum storage required as 
well as minimizing the main memory dedicated to page tables:

1.  The simplest technique is to keep a limit register that restricts the size of the 
page table for a given process. If the virtual page number becomes larger than 
the contents of the limit register, entries must be added to the page table. This 
technique allows the page table to grow as a process consumes more space. 
Thus, the page table will only be large if the process is using many pages of 
virtual address space. This technique requires that the address space expand in 
only one direction. 

2.  Allowing growth in only one direction is not suffi cient, since most languages require 
two areas whose size is expandable: one area holds the stack and the other area 
holds the heap. Because of this duality, it is convenient to divide the page table 
and let it grow from the highest address down, as well as from the lowest address 
up. This means that there will be two separate page tables and two separate 
limits. The use of two page tables breaks the address space into two segments. 
The high-order bit of an address usually determines which segment and thus which 
page table to use for that address. Since the high-order address bit specifi es the 
segment, each segment can be as large as one-half of the address space. A 
limit register for each segment specifi es the current size of the segment, which 
grows in units of pages. This type of segmentation is used by many architectures, 
including MIPS. Unlike the type of segmentation discussed in the third elaboration 
on page 431, this form of segmentation is invisible to the application program, 
although not to the operating system. The major disadvantage of this scheme is 
that it does not work well when the address space is used in a sparse fashion 
rather than as a contiguous set of virtual addresses.

3.  Another approach to reducing the page table size is to apply a hashing function 
to the virtual address so that the page table need be only the size of the number 
of physical pages in main memory. Such a structure is called an inverted page 
table. Of course, the lookup process is slightly more complex with an inverted 
page table, because we can no longer just index the page table.

4.  Multiple levels of page tables can also be used to reduce the total amount of 
page table storage. The fi rst level maps large fi xed-size blocks of virtual address 
space, perhaps 64 to 256 pages in total. These large blocks are sometimes 
called segments, and this fi rst-level mapping table is sometimes called a 
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segment table, though the segments are again invisible to the user. Each entry 
in the segment table indicates whether any pages in that segment are allocated 
and, if so, points to a page table for that segment. Address translation happens 
by fi rst looking in the segment table, using the highest-order bits of the address. 
If the segment address is valid, the next set of high-order bits is used to index 
the page table indicated by the segment table entry. This scheme allows the 
address space to be used in a sparse fashion (multiple noncontiguous segments 
can be active) without having to allocate the entire page table. Such schemes 
are particularly useful with very large address spaces and in software systems 
that require noncontiguous allocation. The primary disadvantage of this two-level 
mapping is the more complex process for address translation.

5.  To reduce the actual main memory tied up in page tables, most modern systems 
also allow the page tables to be paged. Although this sounds tricky, it works 
by using the same basic ideas of virtual memory and simply allowing the page 
tables to reside in the virtual address space. In addition, there are some small 
but critical problems, such as a never-ending series of page faults, which must 
be avoided. How these problems are overcome is both very detailed and typically 
highly processor specifi c. In brief, these problems are avoided by placing all the 
page tables in the address space of the operating system and placing at least 
some of the page tables for the operating system in a portion of main memory 
that is physically addressed and is always present and thus never on disk.

What about Writes?
Th e diff erence between the access time to the cache and main memory is tens to 
hundreds of cycles, and write-through schemes can be used, although we need a 
write buff er to hide the latency of the write from the processor. In a virtual memory 
system, writes to the next level of the hierarchy (disk) can take millions of processor 
clock cycles; therefore, building a write buff er to allow the system to write-through 
to disk would be completely impractical. Instead, virtual memory systems must use 
write-back, performing the individual writes into the page in memory, and copying 
the page back to disk when it is replaced in the memory.

A write-back scheme has another major advantage in a virtual memory system. 
Because the disk transfer time is small compared with its access time, copying back 
an entire page is much more effi  cient than writing individual words back to the disk. 
A write-back operation, although more effi  cient than transferring individual words, is 
still costly. Th us, we would like to know whether a page needs to be copied back when 
we choose to replace it. To track whether a page has been written since it was read into 
the memory, a dirty bit is added to the page table. Th e dirty bit is set when any word 
in a page is written. If the operating system chooses to replace the page, the dirty bit 
indicates whether the page needs to be written out before its location in memory can be 
given to another page. Hence, a modifi ed page is oft en called a dirty page.

Hardware/ 
Software 
Interface
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Making Address Translation Fast: the TLB
Since the page tables are stored in main memory, every memory access by a program 
can take at least twice as long: one memory access to obtain the physical address 
and a second access to get the data. Th e key to improving access performance is to 
rely on locality of reference to the page table. When a translation for a virtual page 
number is used, it will probably be needed again in the near future, because the 
references to the words on that page have both temporal and spatial locality.

Accordingly, modern processors include a special cache that keeps track of recently 
used translations. Th is special address translation cache is traditionally referred to as 
a translation-lookaside buff er (TLB), although it would be more accurate to call it 
a translation cache. Th e TLB corresponds to that little piece of paper we typically use 
to record the location of a set of books we look up in the card catalog; rather than 
continually searching the entire catalog, we record the location of several books and 
use the scrap of paper as a cache of Library of Congress call numbers.

Figure 5.29 shows that each tag entry in the TLB holds a portion of the virtual 
page number, and each data entry of the TLB holds a physical page number. 

translation-lookaside 
buff er (TLB) A cache 
that keeps track of 
recently used address 
mappings to try to avoid 
an access to the page 
table.
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FIGURE 5.29 The TLB acts as a cache of the page table for the entries that map to 
physical pages only. Th e TLB contains a subset of the virtual-to-physical page mappings that are in the 
page table. Th e TLB mappings are shown in color. Because the TLB is a cache, it must have a tag fi eld. If there 
is no matching entry in the TLB for a page, the page table must be examined. Th e page table either supplies a 
physical page number for the page (which can then be used to build a TLB entry) or indicates that the page 
resides on disk, in which case a page fault occurs. Since the page table has an entry for every virtual page, no 
tag fi eld is needed; in other words, unlike a TLB, a page table is not a cache.
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Because we access the TLB instead of the page table on every reference, the TLB 
will need to include other status bits, such as the dirty and the reference bits.

On every reference, we look up the virtual page number in the TLB. If we get a 
hit, the physical page number is used to form the address, and the corresponding 
reference bit is turned on. If the processor is performing a write, the dirty bit is also 
turned on. If a miss in the TLB occurs, we must determine whether it is a page fault 
or merely a TLB miss. If the page exists in memory, then the TLB miss indicates 
only that the translation is missing. In such cases, the processor can handle the TLB 
miss by loading the translation from the page table into the TLB and then trying the 
reference again. If the page is not present in memory, then the TLB miss indicates 
a true page fault. In this case, the processor invokes the operating system using an 
exception. Because the TLB has many fewer entries than the number of pages in 
main memory, TLB misses will be much more frequent than true page faults.

TLB misses can be handled either in hardware or in soft ware. In practice, with 
care there can be little performance diff erence between the two approaches, because 
the basic operations are the same in either case.

Aft er a TLB miss occurs and the missing translation has been retrieved from the 
page table, we will need to select a TLB entry to replace. Because the reference and 
dirty bits are contained in the TLB entry, we need to copy these bits back to the page 
table entry when we replace an entry. Th ese bits are the only portion of the TLB 
entry that can be changed. Using write-back—that is, copying these entries back at 
miss time rather than when they are written—is very effi  cient, since we expect the 
TLB miss rate to be small. Some systems use other techniques to approximate the 
reference and dirty bits, eliminating the need to write into the TLB except to load 
a new table entry on a miss.

Some typical values for a TLB might be

■ TLB size: 16–512 entries

■ Block size: 1–2 page table entries (typically 4–8 bytes each)

■ Hit time: 0.5–1 clock cycle

■ Miss penalty: 10–100 clock cycles

■ Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use 
small, fully associative TLBs because a fully associative mapping has a lower miss 
rate; furthermore, since the TLB is small, the cost of a fully associative mapping is 
not too high. Other systems use large TLBs, oft en with small associativity. With 
a fully associative mapping, choosing the entry to replace becomes tricky since 
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB 
misses are much more frequent than page faults and thus must be handled more 
cheaply, we cannot aff ord an expensive soft ware algorithm, as we can for page faults. 
As a result, many systems provide some support for randomly choosing an entry 
to replace. We’ll examine replacement schemes in a little more detail in Section 5.8.
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The Intrinsity FastMATH TLB

To see these ideas in a real processor, let’s take a closer look at the TLB of the 
Intrinsity FastMATH. Th e memory system uses 4 KiB pages and a 32-bit address 
space; thus, the virtual page number is 20 bits long, as in the top of Figure 5.30. 
Th e physical address is the same size as the virtual address. Th e TLB contains 16 
entries, it is fully associative, and it is shared between the instruction and data 
references. Each entry is 64 bits wide and contains a 20-bit tag (which is the virtual 
page number for that TLB entry), the corresponding physical page number (also 20 
bits), a valid bit, a dirty bit, and other bookkeeping bits. Like most MIPS systems, 
it uses soft ware to handle TLB misses.

Figure 5.30 shows the TLB and one of the caches, while Figure 5.31 shows the 
steps in processing a read or write request. When a TLB miss occurs, the MIPS 
hardware saves the page number of the reference in a special register and generates 
an exception. Th e exception invokes the operating system, which handles the miss 
in soft ware. To fi nd the physical address for the missing page, the TLB miss routine 
indexes the page table using the page number of the virtual address and the page 
table register, which indicates the starting address of the active process page table. 
Using a special set of system instructions that can update the TLB, the operating 
system places the physical address from the page table into the TLB. A TLB miss 
takes about 13 clock cycles, assuming the code and the page table entry are in the 
instruction cache and data cache, respectively. (We will see the MIPS TLB code 
on page 449.) A true page fault occurs if the page table entry does not have a valid 
physical address. Th e hardware maintains an index that indicates the recommended 
entry to replace; the recommended entry is chosen randomly.

Th ere is an extra complication for write requests: namely, the write access bit in 
the TLB must be checked. Th is bit prevents the program from writing into pages 
for which it has only read access. If the program attempts a write and the write 
access bit is off , an exception is generated. Th e write access bit forms part of the 
protection mechanism, which we will discuss shortly.

Integrating Virtual Memory, TLBs, and Caches
Our virtual memory and cache systems work together as a hierarchy, so that data 
cannot be in the cache unless it is present in main memory. Th e operating system 
helps maintain this hierarchy by fl ushing the contents of any page from the cache 
when it decides to migrate that page to disk. At the same time, the OS modifi es the 
page tables and TLB, so that an attempt to access any data on the migrated page 
will generate a page fault.

Under the best of circumstances, a virtual address is translated by the TLB and 
sent to the cache where the appropriate data is found, retrieved, and sent back to 
the processor. In the worst case, a reference can miss in all three components of the 
memory hierarchy: the TLB, the page table, and the cache. Th e following example 
illustrates these interactions in more detail.
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FIGURE 5.30 The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity 
FastMATH. Th is fi gure shows the organization of the TLB and the data cache, assuming a 4 KiB page size. Th is diagram focuses on a read; 
Figure 5.31 describes how to handle writes. Note that unlike Figure 5.12, the tag and data RAMs are split. By addressing the long but narrow 
data RAM with the cache index concatenated with the block off set, we select the desired word in the block without a 16:1 multiplexor. While 
the cache is direct mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every TLB tag be compared against 
the virtual page number, since the entry of interest can be anywhere in the TLB. (See content addressable memories in the Elaboration on 
page 408.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical page number together with bits from 
the page off set form the index that is used to access the cache.
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FIGURE 5.31 Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. If the TLB generates a hit, 
the cache can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall 
while the data is brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to 
the write buff er if we assume write-through. A write miss is just like a read miss except that the block is modifi ed aft er it is read from memory. 
Write-back requires writes to set a dirty bit for the cache block, and a write buff er is loaded with the whole block only on a read miss or write 
miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur aft er a TLB 
hit occurs, which means that the data must be present in memory. Th e relationship between TLB misses and cache misses is examined further 
in the following example and the exercises at the end of this chapter.
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Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 5.30, which includes a TLB and a 
cache organized as shown, a memory reference can encounter three diff erent 
types of misses: a TLB miss, a page fault, and a cache miss. Consider all 
the combinations of these three events with one or more occurring (seven 
possibilities). For each possibility, state whether this event can actually occur 
and under what circumstances.

Figure 5.32 shows all combinations and whether each is possible in practice.

Elaboration: Figure 5.32 assumes that all memory addresses are translated to 
physical addresses before the cache is accessed. In this organization, the cache is 
physically indexed and physically tagged (both the cache index and tag are physical, 
rather than virtual, addresses). In such a system, the amount of time to access memory, 
assuming a cache hit, must accommodate both a TLB access and a cache access; of 
course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely 
or partially virtual. This is called a virtually addressed cache, and it uses tags that 
are virtual addresses; hence, such a cache is virtually indexed and virtually tagged. In 
such caches, the address translation hardware (TLB) is unused during the normal cache 
access, since the cache is accessed with a virtual address that has not been translated 
to a physical address. This takes the TLB out of the critical path, reducing cache latency. 
When a cache miss occurs, however, the processor needs to translate the address to a 
physical address so that it can fetch the cache block from main memory.

EXAMPLE

ANSWER

virtually addressed 
cache A cache that is 
accessed with a virtual 
address rather than a 
physical address.

TLB
Page 
table Cache Possible? If so, under what circumstance?

Hit Hit Miss Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss TLB misses, but entry found in page table; after retry, data misses in cache.

Miss Miss Miss TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit Miss Miss Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 5.32 The possible combinations of events in the TLB, virtual memory system, 
and cache. Th ree of these combinations are impossible, and one is possible (TLB hit, virtual memory hit, 
cache miss) but never detected.
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When the cache is accessed with a virtual address and pages are shared between 
processes (which may access them with different virtual addresses), there is the 
possibility of aliasing. Aliasing occurs when the same object has two names—in this 
case, two virtual addresses for the same page. This ambiguity creates a problem, because 
a word on such a page may be cached in two different locations, each corresponding 
to different virtual addresses. This ambiguity would allow one program to write the data 
without the other program being aware that the data had changed. Completely virtually 
addressed caches either introduce design limitations on the cache and TLB to reduce 
aliases or require the operating system, and possibly the user, to take steps to ensure 
that aliases do not occur.

A common compromise between these two design points is caches that are virtually 
indexed—sometimes using just the page-offset portion of the address, which is really 
a physical address since it is not translated—but use physical tags. These designs, 
which are virtually indexed but physically tagged, attempt to achieve the performance 
advantages of virtually indexed caches with the architecturally simpler advantages of a 
physically addressed cache. For example, there is no alias problem in this case. Figure 
5.30 assumed a 4 KiB page size, but it’s really 16 KiB, so the Intrinsity FastMATH can 
use this trick. To pull it off, there must be careful coordination between the minimum 
page size, the cache size, and associativity.

Implementing Protection with Virtual Memory
Perhaps the most important function of virtual memory today is to allow sharing of 
a single main memory by multiple processes, while providing memory protection 
among these processes and the operating system. Th e protection mechanism must 
ensure that although multiple processes are sharing the same main memory, one 
renegade process cannot write into the address space of another user process or into 
the operating system either intentionally or unintentionally. Th e write access bit in 
the TLB can protect a page from being written. Without this level of protection, 
computer viruses would be even more widespread.

To enable the operating system to implement protection in the virtual memory 
system, the hardware must provide at least the three basic capabilities summarized 
below. Note that the fi rst two are the same requirements as needed for virtual 
machines (Section 5.6).

1. Support at least two modes that indicate whether the running process is a 
user process or an operating system process, variously called a supervisor 
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but not 
write. Th is includes the user/supervisor mode bit, which dictates whether 
the processor is in user or supervisor mode, the page table pointer, and the 

aliasing A situation 
in which two addresses 
access the same object; 
it can occur in virtual 
memory when there are 
two virtual addresses for 
the same physical page.

physically addressed 
cache A cache that is 
addressed by a physical 
address.
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supervisor mode Also 
called kernel mode. A 
mode indicating that a 
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operating system process.
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TLB. To write these elements, the operating system uses special instructions 
that are only available in supervisor mode.

3. Provide mechanisms whereby the processor can go from user mode to 
supervisor mode and vice versa. Th e fi rst direction is typically accomplished 
by a system call exception, implemented as a special instruction (syscall in 
the MIPS instruction set) that transfers control to a dedicated location in 
supervisor code space. As with any other exception, the program counter 
from the point of the system call is saved in the exception PC (EPC), and 
the processor is placed in supervisor mode. To return to user mode from the 
exception, use the return from exception (ERET) instruction, which resets to 
user mode and jumps to the address in EPC.

By using these mechanisms and storing the page tables in the operating system’s 
address space, the operating system can change the page tables while preventing a 
user process from changing them, ensuring that a user process can access only the 
storage provided to it by the operating system.

We also want to prevent a process from reading the data of another process. For 
example, we wouldn’t want a student program to read the grades while they were 
in the processor’s memory. Once we begin sharing main memory, we must provide 
the ability for a process to protect its data from both reading and writing by another 
process; otherwise, sharing the main memory will be a mixed blessing!

Remember that each process has its own virtual address space. Th us, if the 
operating system keeps the page tables organized so that the independent virtual 
pages map to disjoint physical pages, one process will not be able to access another’s 
data. Of course, this also requires that a user process be unable to change the page 
table mapping. Th e operating system can assure safety if it prevents the user process 
from modifying its own page tables. However, the operating system must be able 
to modify the page tables. Placing the page tables in the protected address space of 
the operating system satisfi es both requirements.

When processes want to share information in a limited way, the operating system 
must assist them, since accessing the information of another process requires 
changing the page table of the accessing process. Th e write access bit can be used 
to restrict the sharing to just read sharing, and, like the rest of the page table, this 
bit can be changed only by the operating system. To allow another process, say, P1, 
to read a page owned by process P2, P2 would ask the operating system to create 
a page table entry for a virtual page in P1’s address space that points to the same 
physical page that P2 wants to share. Th e operating system could use the write 
protection bit to prevent P1 from writing the data, if that was P2’s wish. Any bits 
that determine the access rights for a page must be included in both the page table 
and the TLB, because the page table is accessed only on a TLB miss.

system call A special 
instruction that transfers 
control from user mode 
to a dedicated location 
in supervisor code space, 
invoking the exception 
mechanism in the process.
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Elaboration: When the operating system decides to change from running process 
P1 to running process P2 (called a context switch or process switch), it must ensure 
that P2 cannot get access to the page tables of P1 because that would compromise 
protection. If there is no TLB, it suffi ces to change the page table register to point to P2’s 
page table (rather than to P1’s); with a TLB, we must clear the TLB entries that belong to 
P1—both to protect the data of P1 and to force the TLB to load the entries for P2. If the 
process switch rate were high, this could be quite ineffi cient. For example, P2 might load 
only a few TLB entries before the operating system switched back to P1. Unfortunately, 
P1 would then fi nd that all its TLB entries were gone and would have to pay TLB misses 
to reload them. This problem arises because the virtual addresses used by P1 and P2 
are the same, and we must clear out the TLB to avoid confusing these addresses.

A common alternative is to extend the virtual address space by adding a process 
identifi er or task identifi er. The Intrinsity FastMATH has an 8-bit address space ID (ASID) 
fi eld for this purpose. This small fi eld identifi es the currently running process; it is kept 
in a register loaded by the operating system when it switches processes. The process 
identifi er is concatenated to the tag portion of the TLB, so that a TLB hit occurs only if 
both the page number and the process identifi er match. This combination eliminates the 
need to clear the TLB, except on rare occasions.

Similar problems can occur for a cache, since on a process switch the cache will 
contain data from the running process. These problems arise in different ways for 
physically addressed and virtually addressed caches, and a variety of different solutions, 
such as process identifi ers, are used to ensure that a process gets its own data.

Handling TLB Misses and Page Faults
Although the translation of virtual to physical addresses with a TLB is 
straightforward when we get a TLB hit, as we saw earlier, handling TLB misses and 
page faults is more complex. A TLB miss occurs when no entry in the TLB matches 
a virtual address. Recall that a TLB miss can indicate one of two possibilities:

1. Th e page is present in memory, and we need only create the missing TLB 
entry.

2. Th e page is not present in memory, and we need to transfer control to the 
operating system to deal with a page fault.

MIPS traditionally handles a TLB miss in soft ware. It brings in the page table 
entry from memory and then re-executes the instruction that caused the TLB miss. 
Upon re-executing, it will get a TLB hit. If the page table entry indicates the page is 
not in memory, this time it will get a page fault exception.

Handling a TLB miss or a page fault requires using the exception mechanism 
to interrupt the active process, transferring control to the operating system, and 
later resuming execution of the interrupted process. A page fault will be recognized 
sometime during the clock cycle used to access memory. To restart the instruction 
aft er the page fault is handled, the program counter of the instruction that caused 
the page fault must be saved. Just as in Chapter 4, the exception program counter 
(EPC) is used to hold this value.

context switch 
A changing of the internal 
state of the processor to 
allow a diff erent process 
to use the processor 
that includes saving the 
state needed to return to 
the currently executing 
process.
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In addition, a TLB miss or page fault exception must be asserted by the end 
of the same clock cycle that the memory access occurs, so that the next clock 
cycle will begin exception processing rather than continue normal instruction 
execution. If the page fault was not recognized in this clock cycle, a load instruction 
could overwrite a register, and this could be disastrous when we try to restart the 
instruction. For example, consider the instruction lw $1,0($1): the computer 
must be able to prevent the write pipeline stage from occurring; otherwise, it could 
not properly restart the instruction, since the contents of $1 would have been 
destroyed. A similar complication arises on stores. We must prevent the write into 
memory from actually completing when there is a page fault; this is usually done 
by deasserting the write control line to the memory.

Between the time we begin executing the exception handler in the operating 
system and the time that the operating system has saved all the state of the process, 
the operating system is particularly vulnerable. For example, if another exception 
occurred when we were processing the fi rst exception in the operating system, the 
control unit would overwrite the exception program counter, making it impossible 
to return to the instruction that caused the page fault! We can avoid this disaster 
by providing the ability to disable and enable exceptions. When an exception fi rst 
occurs, the processor sets a bit that disables all other exceptions; this could happen 
at the same time the processor sets the supervisor mode bit. Th e operating system 
will then save just enough state to allow it to recover if another exception occurs—
namely, the exception program counter (EPC) and Cause registers. EPC and Cause 
are two of the special control registers that help with exceptions, TLB misses, and 
page faults; Figure 5.33 shows the rest. Th e operating system can then re-enable 
exceptions. Th ese steps make sure that exceptions will not cause the processor 
to lose any state and thereby be unable to restart execution of the interrupting 
instruction.

Once the operating system knows the virtual address that caused the page fault, it 
must complete three steps:

1. Look up the page table entry using the virtual address and fi nd the location 
of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be 
written out to disk before we can bring a new virtual page into this physical 
page.

3. Start a read to bring the referenced page from disk into the chosen physical 
page.

Hardware/ 
Software 
Interface

exception enable Also 
called interrupt enable. 
A signal or action that 
controls whether the 
process responds to 
an exception or not; 
necessary for preventing 
the occurrence of 
exceptions during 
intervals before the 
processor has safely saved 
the state needed to restart.
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Of course, this last step will take millions of processor clock cycles (so will the 
second if the replaced page is dirty); accordingly, the operating system will usually 
select another process to execute in the processor until the disk access completes. 
Because the operating system has saved the state of the process, it can freely give 
control of the processor to another process.

When the read of the page from disk is complete, the operating system can 
restore the state of the process that originally caused the page fault and execute 
the instruction that returns from the exception. Th is instruction will reset the 
processor from kernel to user mode, as well as restore the program counter. Th e 
user process then re-executes the instruction that faulted, accesses the requested 
page successfully, and continues execution.

Page fault exceptions for data accesses are diffi  cult to implement properly in a 
processor because of a combination of three characteristics:

1. Th ey occur in the middle of instructions, unlike instruction page faults.

2. Th e instruction cannot be completed before handling the exception.

3. Aft er handling the exception, the instruction must be restarted as if nothing 
had occurred.

Making instructions restartable, so that the exception can be handled and the 
instruction later continued, is relatively easy in an architecture like the MIPS. 
Because each instruction writes only one data item and this write occurs at the end 
of the instruction cycle, we can simply prevent the instruction from completing (by 
not writing) and restart the instruction at the beginning.

Let’s look in more detail at MIPS. When a TLB miss occurs, the MIPS hardware 
saves the page number of the reference in a special register called BadVAddr and 
generates an exception.

restartable 
instruction An 
instruction that can 
resume execution aft er 
an exception is resolved 
without the exception’s 
aff ecting the result of the 
instruction.

Register CP0 register number Description

EPC 14 Where to restart after exception

Cause 13 Cause of exception

BadVAddr 8 Address that caused exception

Index 0 Location in TLB to be read or written

Random 1 Pseudorandom location in TLB

EntryLo 2 Physical page address and flags

EntryHi 10 Virtual page address

Context 4 Page table address and page number

FIGURE 5.33 MIPS control registers. Th ese are considered to be in coprocessor 0, and hence are 
read using mfc0 and written using mtc0.
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Th e exception invokes the operating system, which handles the miss in soft ware. 
Control is transferred to address 8000 0000hex, the location of the TLB miss handler. 
To fi nd the physical address for the missing page, the TLB miss routine indexes the 
page table using the page number of the virtual address and the page table register, 
which indicates the starting address of the active process page table. To make this 
indexing fast, MIPS hardware places everything you need in the special Context 
register: the upper 12 bits have the address of the base of the page table, and the 
next 18 bits have the virtual address of the missing page. Each page table entry is 
one word, so the last 2 bits are 0. Th us, the fi rst two instructions copy the Context 
register into the kernel temporary register $k1 and then load the page table entry 
from that address into $k1. Recall that $k0 and $k1 are reserved for the operating 
system to use without saving; a major reason for this convention is to make the TLB 
miss handler fast. Below is the MIPS code for a typical TLB miss handler:

TLBmiss:
mfc0 $k1,Context # copy address of PTE into temp $k1
lw $k1,0($k1) # put PTE into temp $k1
mtc0 $k1,EntryLo # put PTE into special register EntryLo
tlbwr  # put EntryLo into TLB entry at Random
eret  # return from TLB miss exception

As shown above, MIPS has a special set of system instructions to update the 
TLB. Th e instruction tlbwr copies from control register EntryLo into the TLB 
entry selected by the control register Random. Random implements random 
replacement, so it is basically a free-running counter. A TLB miss takes about a 
dozen clock cycles.

Note that the TLB miss handler does not check to see if the page table entry is 
valid. Because the exception for TLB entry missing is much more frequent than 
a page fault, the operating system loads the TLB from the page table without 
examining the entry and restarts the instruction. If the entry is invalid, another 
and diff erent exception occurs, and the operating system recognizes the page fault. 
Th is method makes the frequent case of a TLB miss fast, at a slight performance 
penalty for the infrequent case of a page fault.

Once the process that generated the page fault has been interrupted, it transfers 
control to 8000 0180hex, a diff erent address than the TLB miss handler. Th is is 
the general address for exception; TLB miss has a special entry point to lower the 
penalty for a TLB miss. Th e operating system uses the exception Cause register 
to diagnose the cause of the exception. Because the exception is a page fault, the 
operating system knows that extensive processing will be required. Th us, unlike a 
TLB miss, it saves the entire state of the active process. Th is state includes all the 
general-purpose and fl oating-point registers, the page table address register, the 
EPC, and the exception Cause register. Since exception handlers do not usually use 
the fl oating-point registers, the general entry point does not save them, leaving that 
to the few handlers that need them.

handler Name of a 
soft ware routine invoked 
to “handle” an exception 
or interrupt.
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Figure 5.34 sketches the MIPS code of an exception handler. Note that we 
save and restore the state in MIPS code, taking care when we enable and disable 
exceptions, but we invoke C code to handle the particular exception.

Th e virtual address that caused the fault depends on whether the fault was an 
instruction or data fault. Th e address of the instruction that generated the fault is 
in the EPC. If it was an instruction page fault, the EPC contains the virtual address 
of the faulting page; otherwise, the faulting virtual address can be computed by 
examining the instruction (whose address is in the EPC) to fi nd the base register 
and off set fi eld.

Elaboration: This simplifi ed version assumes that the stack pointer (sp) is valid. To 
avoid the problem of a page fault during this low-level exception code, MIPS sets aside 
a portion of its address space that cannot have page faults, called unmapped. The 
operating system places the exception entry point code and the exception stack in 
unmapped memory. MIPS hardware translates virtual addresses 8000 0000hex to BFFF 
FFFFhex to physical addresses simply by ignoring the upper bits of the virtual address, 
thereby placing these addresses in the low part of physical memory. Thus, the operating 
system places exception entry points and exception stacks in unmapped memory.

Elaboration: The code in Figure 5.34 shows the MIPS-32 exception return sequence. 
The older MIPS-I architecture uses rfe and jr instead of eret.

Elaboration: For processors with more complex instructions that can touch many 
memory locations and write many data items, making instructions restartable is much 
harder. Processing one instruction may generate a number of page faults in the middle 
of the instruction. For example, x86 processors have block move instructions that touch 
thousands of data words. In such processors, instructions often cannot be restarted 
from the beginning, as we do for MIPS instructions. Instead, the instruction must be 
interrupted and later continued midstream in its execution. Resuming an instruction in 
the middle of its execution usually requires saving some special state, processing the 
exception, and restoring that special state. Making this work properly requires careful 
and detailed coordination between the exception-handling code in the operating system 
and the hardware.

Elaboration: Rather than pay an extra level of indirection on every memory access, the 
VMM maintains a shadow page table that maps directly from the guest virtual address 
space to the physical address space of the hardware. By detecting all modifi cations to 
the guest’s page table, the VMM can ensure the shadow page table entries being used 
by the hardware for translations correspond to those of the guest OS environment, with 
the exception of the correct physical pages substituted for the real pages in the guest 
tables. Hence, the VMM must trap any attempt by the guest OS to change its page table 
or to access the page table pointer. This is commonly done by write protecting the guest 
page tables and trapping any access to the page table pointer by a guest OS. As noted 
above, the latter happens naturally if accessing the page table pointer is a privileged 
operation.

unmapped A portion 
of the address space that 
cannot have page faults.
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Save state

Save GPR  addi $k1,$sp, -XCPSIZE # save space on stack for state 
 sw $sp, XCT_SP($k1) # save $sp on stack 
 sw $v0, XCT_V0($k1) # save $v0 on stack 
 ...   # save $v1, $ai, $si, $ti,... on stack
 sw $ra, XCT_RA($k1) # save $ra on stack

Save hi, lo  mfhi $v0  # copy Hi 
 mflo $v1  # copy Lo 
 sw $v0, XCT_HI($k1) # save Hi value on stack 
 sw $v1, XCT_LO($k1) # save Lo value on stack

Save exception
registers

 mfc0 $a0, $cr  # copy cause register 
 sw $a0, XCT_CR($k1) # save $cr value on stack 
 ...   # save $v1,.... 
 mfc0 $a3, $sr  # copy status register 
 sw $a3, XCT_SR($k1) # save $sr on stack

Set sp  move $sp, $k1  # sp = sp - XCPSIZE

Enable nested exceptions

 andi $v0, $a3, MASK1 # $v0 = $sr & MASK1, enable exceptions 
 mtc0 $v0, $sr  # $sr = value that enables exceptions

Call C exception handler

Set $gp  move $gp, GPINIT # set $gp to point to heap area

Call C code  move $a0, $sp  # arg1 = pointer to exception stack 
 jal xcpt_deliver  # call C code to handle exception

Restoring state

Restore most 
GPR, hi, lo

 move $at, $sp  # temporary value of $sp 
 lw $ra, XCT_RA($at) # restore $ra from stack 
 ...   # restore $t0,...., $a1 
 lw $a0, XCT_A0($k1) # restore $a0 from stack

Restore status 
register

 lw $v0, XCT_SR($at) # load old $sr from stack 
 li $v1, MASK2 # mask to disable exceptions 
 and $v0, $v0, $v1 # $v0 = $sr & MASK2, disable exceptions 
 mtc0 $v0, $sr  # set status register

Exception return

Restore $sp 
and rest of 
GPR used as 
temporary 
registers

 lw $sp, XCT_SP($at) # restore $sp from stack 

 lw $v0, XCT_V0($at) # restore $v0 from stack 

 lw $v1, XCT_V1($at) # restore $v1 from stack 

 lw $k1, XCT_EPC($at) # copy old $epc from stack 

 lw $at, XCT_AT($at) # restore $at from stack

Restore ERC 
and return

 mtc0 $k1, $epc # restore $epc 

 eret $ra  # return to interrupted instruction

FIGURE 5.34 MIPS code to save and restore state on an exception.
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Elaboration: The fi nal portion of the architecture to virtualize is I/O. This is by far 
the most diffi cult part of system virtualization because of the increasing number of 
I/O devices attached to the computer and the increasing diversity of I/O device types. 
Another diffi culty is the sharing of a real device among multiple VMs, and yet another 
comes from supporting the myriad of device drivers that are required, especially if 
different guest OSes are supported on the same VM system. The VM illusion can be 
maintained by giving each VM generic versions of each type of I/O device driver, and then 
leaving it to the VMM to handle real I/O.

Elaboration: In addition to virtualizing the instruction set for a virtual machine, 
another challenge is virtualization of virtual memory, as each guest OS in every virtual 
machine manages its own set of page tables. To make this work, the VMM separates 
the notions of real and physical memory (which are often treated synonymously), and 
makes real memory a separate, intermediate level between virtual memory and physical 
memory. (Some use the terms virtual memory, physical memory, and machine memory 
to name the same three levels.) The guest OS maps virtual memory to real memory 
via its page tables, and the VMM page tables map the guest’s real memory to physical 
memory. The virtual memory architecture is specifi ed either via page tables, as in IBM 
VM/370 and the x86, or via the TLB structure, as in MIPS.

Summary
Virtual memory is the name for the level of memory hierarchy that manages 
caching between the main memory and secondary memory. Virtual memory 
allows a single program to expand its address space beyond the limits of main 
memory. More importantly, virtual memory supports sharing of the main memory 
among multiple, simultaneously active processes, in a protected manner.

Managing the memory hierarchy between main memory and disk is challenging 
because of the high cost of page faults. Several techniques are used to reduce the 
miss rate:

1. Pages are made large to take advantage of spatial locality and to reduce the 
miss rate.

2. Th e mapping between virtual addresses and physical addresses, which is 
implemented with a page table, is made fully associative so that a virtual 
page can be placed anywhere in main memory.

3. Th e operating system uses techniques, such as LRU and a reference bit, to 
choose which pages to replace.
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Writes to secondary memory are expensive, so virtual memory uses a write-back 
scheme and also tracks whether a page is unchanged (using a dirty bit) to avoid 
writing unchanged pages.

Th e virtual memory mechanism provides address translation from a virtual 
address used by the program to the physical address space used for accessing 
memory. Th is address translation allows protected sharing of the main memory 
and provides several additional benefi ts, such as simplifying memory allocation. 
Ensuring that processes are protected from each other requires that only the 
operating system can change the address translations, which is implemented by 
preventing user programs from changing the page tables. Controlled sharing of 
pages among processes can be implemented with the help of the operating system 
and access bits in the page table that indicate whether the user program has read or 
write access to a page.

If a processor had to access a page table resident in memory to translate every 
access, virtual memory would be too expensive, as caches would be pointless! 
Instead, a TLB acts as a cache for translations from the page table. Addresses are 
then translated from virtual to physical using the translations in the TLB.

Caches, virtual memory, and TLBs all rely on a common set of principles and 
policies. Th e next section discusses this common framework.

Although virtual memory was invented to enable a small memory to act as a large 
one, the performance diff erence between secondary memory and main memory 
means that if a program routinely accesses more virtual memory than it has 
physical memory, it will run very slowly. Such a program would be continuously 
swapping pages between memory and disk, called thrashing. Th rashing is a disaster 
if it occurs, but it is rare. If your program thrashes, the easiest solution is to run it on 
a computer with more memory or buy more memory for your computer. A more 
complex choice is to re-examine your algorithm and data structures to see if you 
can change the locality and thereby reduce the number of pages that your program 
uses simultaneously. Th is set of popular pages is informally called the working set.

A more common performance problem is TLB misses. Since a TLB might 
handle only 32–64 page entries at a time, a program could easily see a high TLB 
miss rate, as the processor may access less than a quarter mebibyte directly: 64 
� 4 KiB � 0.25 MiB. For example, TLB misses are oft en a challenge for Radix 
Sort. To try to alleviate this problem, most computer architectures now support 
variable page sizes. For example, in addition to the standard 4 KiB page, MIPS 
hardware supports 16 KiB, 64 KiB, 256 KiB, 1 MiB, 4 MiB, 16 MiB, 64 MiB, and 
256 MiB pages. Hence, if a program uses large page sizes, it can access more 
memory directly without TLB misses.

Th e practical challenge is getting the operating system to allow programs to 
select these larger page sizes. Once again, the more complex solution to reducing 

Understanding 
Program 
Performance
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TLB misses is to re-examine the algorithm and data structures to reduce the 
working set of pages; given the importance of memory accesses to performance 
and the frequency of TLB misses, some programs with large working sets have 
been redesigned with that goal.

Match the defi nitions in the right column to the terms in the left  column.

1. L1 cache a. A cache for a cache
2. L2 cache b. A cache for disks
3. Main memory c. A cache for a main memory
4. TLB d. A cache for page table entries

 5.8  A Common Framework for Memory 
Hierarchy

By now, you’ve recognized that the diff erent types of memory hierarchies have a 
great deal in common. Although many of the aspects of memory hierarchies diff er 
quantitatively, many of the policies and features that determine how a hierarchy 
functions are similar qualitatively. Figure 5.35 shows how some of the quantitative 
characteristics of memory hierarchies can diff er. In the rest of this section, we will 
discuss the common operational alternatives for memory hierarchies, and how 
these determine their behavior. We will examine these policies as a series of four 
questions that apply between any two levels of a memory hierarchy, although for 
simplicity we will primarily use terminology for caches.

Check 
Yourself

Feature
Typical values 
for L1 caches

Typical values 
for L2 caches

Typical values for 
paged memory

Typical values 
for a TLB

Total size in blocks 250–2000 2,500–25,000 16,000–250,000 40–1024

Total size in kilobytes 16–64 125–2000 1,000,000–1,000,000,000 0.25–16

Block size in bytes 16–64 64–128 4000–64,000 4–32

Miss penalty in clocks 10–25 100–1000 10,000,000–100,000,000 10–1000

Miss rates (global for L2) 2%–5% 0.1%–2% 0.00001%–0.0001% 0.01%–2%

FIGURE 5.35 The key quantitative design parameters that characterize the major elements of memory hierarchy in a 
computer. Th ese are typical values for these levels as of 2012. Although the range of values is wide, this is partially because many of the values 
that have shift ed over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. While not 
shown, server microprocessors today also have L3 caches, which can be 2 to 8 MiB and contain many more blocks than L2 caches. L3 caches 
lower the L2 miss penalty to 30 to 40 clock cycles.
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Question 1: Where Can a Block Be Placed?
We have seen that block placement in the upper level of the hierarchy can use a range 
of schemes, from direct mapped to set associative to fully associative. As mentioned 
above, this entire range of schemes can be thought of as variations on a set-associative 
scheme where the number of sets and the number of blocks per set varies:

Scheme name Number of sets Blocks per set

Direct mapped Number of blocks in cache 1

Set associative
Number of blocks in the cache

Associativity
Associativity (typically 2–16)

Fully associative 1 Number of blocks in the cache

Th e advantage of increasing the degree of associativity is that it usually decreases 
the miss rate. Th e improvement in miss rate comes from reducing misses that 
compete for the same location. We will examine these in more detail shortly. First, 
let’s look at how much improvement is gained. Figure 5.36 shows the miss rates 
for several cache sizes as associativity varies from direct mapped to eight-way set 
associative. Th e largest gains are obtained in going from direct mapped to two-way 
set associative, which yields between a 20% and 30% reduction in the miss rate. 
As cache sizes grow, the relative improvement from associativity increases only 
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FIGURE 5.36 The data cache miss rates for each of eight cache sizes improve as the 
associativity increases. While the benefi t of going from one-way (direct mapped) to two-way set 
associative is signifi cant, the benefi ts of further associativity are smaller (e.g., 1%–10% improvement going 
from two-way to four-way versus 20%–30% improvement going from one-way to two-way). Th ere is even 
less improvement in going from four-way to eight-way set associative, which, in turn, comes very close to 
the miss rates of a fully associative cache. Smaller caches obtain a signifi cantly larger absolute benefi t from 
associativity because the base miss rate of a small cache is larger. Figure 5.16 explains how this data was 
collected.
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slightly; since the overall miss rate of a larger cache is lower, the opportunity for 
improving the miss rate decreases and the absolute improvement in the miss rate 
from associativity shrinks signifi cantly. Th e potential disadvantages of associativity, 
as we mentioned earlier, are increased cost and slower access time.

Question 2: How Is a Block Found?
Th e choice of how we locate a block depends on the block placement scheme, since 
that dictates the number of possible locations. We can summarize the schemes as 
follows:

Associativity Location method Comparisons required

Direct mapped Index 1

Set associative Index the set, search among elements Degree of associativity

Full
Search all cache entries Size of the cache

Separate lookup table 0

Th e choice among direct-mapped, set-associative, or fully associative mapping 
in any memory hierarchy will depend on the cost of a miss versus the cost of 
implementing associativity, both in time and in extra hardware. Including the 
L2 cache on the chip enables much higher associativity, because the hit times are 
not as critical and the designer does not have to rely on standard SRAM chips as 
the building blocks. Fully associative caches are prohibitive except for small sizes, 
where the cost of the comparators is not overwhelming and where the absolute 
miss rate improvements are greatest.

In virtual memory systems, a separate mapping table—the page table—is kept 
to index the memory. In addition to the storage required for the table, using an 
index table requires an extra memory access. Th e choice of full associativity for 
page placement and the extra table is motivated by these facts:

1. Full associativity is benefi cial, since misses are very expensive.

2. Full associativity allows soft ware to use sophisticated replacement schemes 
that are designed to reduce the miss rate.

3. Th e full map can be easily indexed with no extra hardware and no searching 
required.

Th erefore, virtual memory systems almost always use fully associative placement.
Set-associative placement is oft en used for caches and TLBs, where the access 

combines indexing and the search of a small set. A few systems have used direct-
mapped caches because of their advantage in access time and simplicity. Th e 
advantage in access time occurs because fi nding the requested block does not 
depend on a comparison. Such design choices depend on many details of the 
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implementation, such as whether the cache is on-chip, the technology used for 
implementing the cache, and the critical role of cache access time in determining 
the processor cycle time.

Question 3: Which Block Should Be Replaced on 
a Cache Miss?
When a miss occurs in an associative cache, we must decide which block to replace. 
In a fully associative cache, all blocks are candidates for replacement. If the cache is 
set associative, we must choose among the blocks in the set. Of course, replacement 
is easy in a direct-mapped cache because there is only one candidate.

Th ere are the two primary strategies for replacement in set-associative or fully 
associative caches:

■ Random: Candidate blocks are randomly selected, possibly using some hardware 
assistance. For example, MIPS supports random replacement for TLB misses.

■ Least recently used (LRU): Th e block replaced is the one that has been unused 
for the longest time.

In practice, LRU is too costly to implement for hierarchies with more than a small 
degree of associativity (two to four, typically), since tracking the usage information 
is costly. Even for four-way set associativity, LRU is oft en approximated—for 
example, by keeping track of which pair of blocks is LRU (which requires 1 bit), 
and then tracking which block in each pair is LRU (which requires 1 bit per pair).

For larger associativity, either LRU is approximated or random replacement is 
used. In caches, the replacement algorithm is in hardware, which means that the 
scheme should be easy to implement. Random replacement is simple to build in 
hardware, and for a two-way set-associative cache, random replacement has a miss 
rate about 1.1 times higher than LRU replacement. As the caches become larger, the 
miss rate for both replacement strategies falls, and the absolute diff erence becomes 
small. In fact, random replacement can sometimes be better than the simple LRU 
approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated, since even a tiny 
reduction in the miss rate can be important when the cost of a miss is enormous. 
Reference bits or equivalent functionality are oft en provided to make it easier for 
the operating system to track a set of less recently used pages. Because misses are 
so expensive and relatively infrequent, approximating this information primarily 
in soft ware is acceptable.

Question 4: What Happens on a Write?
A key characteristic of any memory hierarchy is how it deals with writes. We have 
already seen the two basic options:

■ Write-through: Th e information is written to both the block in the cache and 
the block in the lower level of the memory hierarchy (main memory for a 
cache). Th e caches in Section 5.3 used this scheme.
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■ Write-back: Th e information is written only to the block in the cache. Th e 
modifi ed block is written to the lower level of the hierarchy only when it 
is replaced. Virtual memory systems always use write-back, for the reasons 
discussed in Section 5.7.

Both write-back and write-through have their advantages. Th e key advantages of 
write-back are the following:

■ Individual words can be written by the processor at the rate that the cache, 
rather than the memory, can accept them.

■ Multiple writes within a block require only one write to the lower level in the 
hierarchy.

■ When blocks are written back, the system can make eff ective use of a high-
bandwidth transfer, since the entire block is written.

Write-through has these advantages:

■ Misses are simpler and cheaper because they never require a block to be 
written back to the lower level.

■ Write-through is easier to implement than write-back, although to be 
practical, a write-through cache will still need to use a write buff er.

Caches, TLBs, and virtual memory may initially look very diff erent, but 
they rely on the same two principles of locality, and they can be understood 
by their answers to four questions:

Question 1: Where can a block be placed?
Answer: One place (direct mapped), a few places (set associative), 

or any place (fully associative).
Question 2: How is a block found?
Answer: Th ere are four methods: indexing (as in a direct-mapped 

cache), limited search (as in a set-associative cache), full 
search (as in a fully associative cache), and a separate 
lookup table (as in a page table).

Question 3: What block is replaced on a miss?
Answer: Typically, either the least recently used or a random block.
Question 4: How are writes handled?
Answer: Each level in the hierarchy can use either write-through 

or write-back.

The BIG
Picture
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In virtual memory systems, only a write-back policy is practical because of the long 
latency of a write to the lower level of the hierarchy. Th e rate at which writes are 
generated by a processor generally exceeds the rate at which the memory system can 
process them, even allowing for physically and logically wider memories and burst 
modes for DRAM. Consequently, today lowest-level caches typically use write-back.

The Three Cs: An Intuitive Model for Understanding the 
Behavior of Memory Hierarchies
In this subsection, we look at a model that provides insight into the sources of 
misses in a memory hierarchy and how the misses will be aff ected by changes 
in the hierarchy. We will explain the ideas in terms of caches, although the ideas 
carry over directly to any other level in the hierarchy. In this model, all misses are 
classifi ed into one of three categories (the three Cs):

■ Compulsory misses: Th ese are cache misses caused by the fi rst access to 
a block that has never been in the cache. Th ese are also called cold-start 
misses.

■ Capacity misses: Th ese are cache misses caused when the cache cannot 
contain all the blocks needed during execution of a program. Capacity misses 
occur when blocks are replaced and then later retrieved.

■ Confl ict misses: Th ese are cache misses that occur in set-associative or 
direct-mapped caches when multiple blocks compete for the same set. 
Confl ict misses are those misses in a direct-mapped or set-associative cache 
that are eliminated in a fully associative cache of the same size. Th ese cache 
misses are also called collision misses.

Figure 5.37 shows how the miss rate divides into the three sources. Th ese sources of 
misses can be directly attacked by changing some aspect of the cache design. Since 
confl ict misses arise directly from contention for the same cache block, increasing 
associativity reduces confl ict misses. Associativity, however, may slow access time, 
leading to lower overall performance.

Capacity misses can easily be reduced by enlarging the cache; indeed, second-
level caches have been growing steadily larger for many years. Of course, when we 
make the cache larger, we must also be careful about increasing the access time, 
which could lead to lower overall performance. Th us, fi rst-level caches have been 
growing slowly, if at all.

Because compulsory misses are generated by the fi rst reference to a block, the 
primary way for the cache system to reduce the number of compulsory misses is 
to increase the block size. Th is will reduce the number of references required to 
touch each block of the program once, because the program will consist of fewer 

three Cs model A cache 
model in which all cache 
misses are classifi ed into 
one of three categories: 
compulsory misses, 
capacity misses, and 
confl ict misses.

compulsory miss Also 
called cold-start miss. 
A cache miss caused by 
the fi rst access to a block 
that has never been in the 
cache.

capacity miss A cache 
miss that occurs because 
the cache, even with 
full associativity, cannot 
contain all the blocks 
needed to satisfy the 
request.

confl ict miss Also called 
collision miss. A cache 
miss that occurs in a 
set-associative or direct-
mapped cache when 
multiple blocks compete 
for the same set and that 
are eliminated in a fully 
associative cache of the 
same size.
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FIGURE 5.37 The miss rate can be broken into three sources of misses. Th is graph shows 
the total miss rate and its components for a range of cache sizes. Th is data is for the SPEC CPU2000 integer 
and fl oating-point benchmarks and is from the same source as the data in Figure 5.36 Th e compulsory 
miss component is 0.006% and cannot be seen in this graph. Th e next component is the capacity miss rate, 
which depends on cache size. Th e confl ict portion, which depends both on associativity and on cache size, is 
shown for a range of associativities from one-way to eight-way. In each case, the labeled section corresponds 
to the increase in the miss rate that occurs when the associativity is changed from the next higher degree to 
the labeled degree of associativity. For example, the section labeled two-way indicates the additional misses 
arising when the cache has associativity of two rather than four. Th us, the diff erence in the miss rate incurred 
by a direct-mapped cache versus a fully associative cache of the same size is given by the sum of the sections 
marked four-way, two-way, and one-way. Th e diff erence between eight-way and four-way is so small that it 
is diffi  cult to see on this graph.

Th e challenge in designing memory hierarchies is that every change 
that potentially improves the miss rate can also negatively aff ect overall 
performance, as Figure 5.38 summarizes. Th is combination of positive 
and negative eff ects is what makes the design of a memory hierarchy 
interesting.

The BIG
Picture
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cache blocks. As mentioned above, increasing the block size too much can have a 
negative eff ect on performance because of the increase in the miss penalty.

Th e decomposition of misses into the three Cs is a useful qualitative model. In 
real cache designs, many of the design choices interact, and changing one cache 
characteristic will oft en aff ect several components of the miss rate. Despite such 
shortcomings, this model is a useful way to gain insight into the performance of 
cache designs.

Which of the following statements (if any) are generally true?

1. Th ere is no way to reduce compulsory misses.

2. Fully associative caches have no confl ict misses.

3. In reducing misses, associativity is more important than capacity.

 5.9  Using a Finite-State Machine to Control a 
Simple Cache

We can now implement control for a cache, just as we implemented control for 
the single-cycle and pipelined datapaths in Chapter 4. Th is section starts with a 
defi nition of a simple cache and then a description of fi nite-state machines (FSMs). 
It fi nishes with the FSM of a controller for this simple cache.  Section 5.12 goes 
into more depth, showing the cache and controller in a new hardware description 
language.

A Simple Cache
We’re going to design a controller for a simple cache. Here are the key characteristics 
of the cache:

■ Direct-mapped cache

Check 
Yourself

Design change Effect on miss rate
Possible negative  

performance effect

Increases cache size Decreases capacity misses May increase access time

Increases associativity Decreases miss rate due to conflict 
misses

May increase access time

Increases block size Decreases miss rate for a wide range of 
block sizes due to spatial locality

Increases miss penalty. Very large 
block could increase miss rate

FIGURE 5.38 Memory hierarchy design challenges.
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■ Write-back using write allocate

■ Block size is 4 words (16 bytes or 128 bits)

■ Cache size is 16 KiB, so it holds 1024 blocks

■ 32-byte addresses

■ Th e cache includes a valid bit and dirty bit per block

From Section 5.3, we can now calculate the fi elds of an address for the cache:

■ Cache index is 10 bits

■ Block off set is 4 bits

■ Tag size is 32 � (10 � 4) or 18 bits

Th e signals between the processor to the cache are

■ 1-bit Read or Write signal

■ 1-bit Valid signal, saying whether there is a cache operation or not

■ 32-bit address

■ 32-bit data from processor to cache

■ 32-bit data from cache to processor

■ 1-bit Ready signal, saying the cache operation is complete

Th e interface between the memory and the cache has the same fi elds as between 
the processor and the cache, except that the data fi elds are now 128 bits wide. Th e 
extra memory width is generally found in microprocessors today, which deal with 
either 32-bit or 64-bit words in the processor while the DRAM controller is oft en 
128 bits. Making the cache block match the width of the DRAM simplifi ed the 
design. Here are the signals:

■ 1-bit Read or Write signal

■ 1-bit Valid signal, saying whether there is a memory operation or not

■ 32-bit address

■ 128-bit data from cache to memory

■ 128-bit data from memory to cache

■ 1-bit Ready signal, saying the memory operation is complete

Note that the interface to memory is not a fi xed number of cycles. We assume a 
memory controller that will notify the cache via the Ready signal when the memory 
read or write is fi nished.

Before describing the cache controller, we need to review fi nite-state machines, 
which allow us to control an operation that can take multiple clock cycles.
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Finite-State Machines
To design the control unit for the single-cycle datapath, we used a set of truth tables 
that specifi ed the setting of the control signals based on the instruction class. For a 
cache, the control is more complex because the operation can be a series of steps. 
Th e control for a cache must specify both the signals to be set in any step and the 
next step in the sequence.

Th e most common multistep control method is based on fi nite-state machines, 
which are usually represented graphically. A fi nite-state machine consists of a set 
of states and directions on how to change states. Th e directions are defi ned by a 
next-state function, which maps the current state and the inputs to a new state. 
When we use a fi nite-state machine for control, each state also specifi es a set of 
outputs that are asserted when the machine is in that state. Th e implementation 
of a fi nite-state machine usually assumes that all outputs that are not explicitly 
asserted are deasserted. Similarly, the correct operation of the datapath depends on 
the fact that a signal that is not explicitly asserted is deasserted, rather than acting 
as a don’t care.

Multiplexor controls are slightly diff erent, since they select one of the inputs 
whether they are 0 or 1. Th us, in the fi nite-state machine, we always specify the 
setting of all the multiplexor controls that we care about. When we implement 
the fi nite-state machine with logic, setting a control to 0 may be the default and 
thus may not require any gates. A simple example of a fi nite-state machine appears 
in Appendix B, and if you are unfamiliar with the concept of a fi nite-state machine, 
you may want to examine Appendix B before proceeding.

A fi nite-state machine can be implemented with a temporary register that holds 
the current state and a block of combinational logic that determines both the 
data-path signals to be asserted and the next state. Figure 5.39 shows how such an 
implementation might look.  Appendix D describes in detail how the fi nite-state 
machine is implemented using this structure. In Section B.3, the combinational 
control logic for a fi nite-state machine is implemented both with either a ROM 
(read-only memory) or a PLA (programmable logic array). (Also see Appendix B 
for a description of these logic elements.)

Elaboration: Note that this simple design is called a blocking cache, in that the 
processor must wait until the cache has fi nished the request.  Section 5.12 describes 
the alternative, which is called a nonblocking cache.

Elaboration: The style of fi nite-state machine in this book is called a Moore machine, 
after Edward Moore. Its identifying characteristic is that the output depends only on the 
current state. For a Moore machine, the box labeled combinational control logic can be 
split into two pieces. One piece has the control output and only the state input, while the 
other has only the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The 
Mealy machine allows both the input and the current state to be used to determine the 
output. Moore machines have potential implementation advantages in speed and size 
of the control unit. The speed advantages arise because the control outputs, which are 

fi nite-state machine 
A sequential logic 
function consisting of a 
set of inputs and outputs, 
a next-state function that 
maps the current state and 
the inputs to a new state, 
and an output function 
that maps the current 
state and possibly the 
inputs to a set of asserted 
outputs.

next-state function 
A combinational function 
that, given the inputs 
and the current state, 
determines the next state 
of a fi nite-state machine.



464 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

needed early in the clock cycle, do not depend on the inputs, but only on the current 
state. In Appendix B, when the implementation of this fi nite-state machine is taken down 
to logic gates, the size advantage can be clearly seen. The potential disadvantage of a 
Moore machine is that it may require additional states. For example, in situations where 
there is a one-state difference between two sequences of states, the Mealy machine 
may unify the states by making the outputs depend on the inputs.

FSM for a Simple Cache Controller
Figure 5.40 shows the four states of our simple cache controller:

■ Idle: Th is state waits for a valid read or write request from the processor, 
which moves the FSM to the Compare Tag state.

■ Compare Tag: As the name suggests, this state tests to see if the requested read 
or write is a hit or a miss. Th e index portion of the address selects the tag to 
be compared. If the data in the cache block referred to by the index portion 
of the address is valid, and the tag portion of the address matches the tag, 
then it is a hit. Either the data is read from the selected word if it is a load or  
written to the selected word if it is a store. Th e Cache Ready signal is then 

Combinational
control logic

Outputs

Inputs

State register
Next state

Datapath control outputs

Inputs from cache
datapath

FIGURE 5.39 Finite-state machine controllers are typically implemented using a block of 
combinational logic and a register to hold the current state. Th e outputs of the combinational 
logic are the next-state number and the control signals to be asserted for the current state. Th e inputs to the 
combinational logic are the current state and any inputs used to determine the next state. Notice that in the 
fi nite-state machine used in this chapter, the outputs depend only on the current state, not on the inputs. Th e 
Elaboration explains this in more detail.
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set. If it is a write, the dirty bit is set to 1. Note that a write hit also sets the 
valid bit and the tag fi eld; while it seems unnecessary, it is included because 
the tag is a single memory, so to change the dirty bit we also need to change 
the valid and tag fi elds. If it is a hit and the block is valid, the FSM returns to 
the idle state. A miss fi rst updates the cache tag and then goes either to the 
Write-Back state, if the block at this location has dirty bit value of 1, or to the 
Allocate state if it is 0.

■ Write-Back: Th is state writes the 128-bit block to memory using the address 
composed from the tag and cache index. We remain in this state waiting for 
the Ready signal from memory. When the memory write is complete, the 
FSM goes to the Allocate state.

■ Allocate: Th e new block is fetched from memory. We remain in this state 
waiting for the Ready signal from memory. When the memory read is 
complete, the FSM goes to the Compare Tag state. Although we could 
have gone to a new state to complete the operation instead of reusing the 
Compare Tag state, there is a good deal of overlap, including the update of the 
appropriate word in the block if the access was a write.

Cache
Miss
and
Old Block
is Dirty

Cache
Miss
and
Old Block
is Clean

Valid CPU request

Mark Cache Ready
Idle

Cache Hit
Compare Tag

If Valid && Hit ,
Set Valid, SetTag,
if Write Set Dirty

Memory Ready

M
em

or
y R

ea
dy

Memory
not

Ready

Memory
not

Ready

Write Old
Block to
Memory

Write-Back

Read new block
from Memory

Allocate

FIGURE 5.40 Four states of the simple controller.



466 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Th is simple model could easily be extended with more states to try to improve 
performance. For example, the Compare Tag state does both the compare and the 
read or write of the cache data in a single clock cycle. Oft en the compare and cache 
access are done in separate states to try to improve the clock cycle time. Another 
optimization would be to add a write buff er so that we could save the dirty block 
and then read the new block fi rst so that the processor doesn’t have to wait for two 
memory accesses on a dirty miss. Th e cache would then write the dirty block from 
the write buff er while the processor is operating on the requested data.

 Section 5.12, goes into more detail about the FSM, showing the full controller 
in a hardware description language and a block diagram of this simple cache.

  5.10  Parallelism and Memory Hierarchy: 
Cache Coherence

Given that a multicore multiprocessor means multiple processors on a single chip, 
these processors very likely share a common physical address space. Caching shared 
data introduces a new problem, because the view of memory held by two diff erent 
processors is through their individual caches, which, without any additional 
precautions, could end up seeing two diff erent values. Figure 5.41 illustrates the 
problem and shows how two diff erent processors can have two diff erent values 
for the same location. Th is diffi  culty is generally referred to as the cache coherence 
problem.

Informally, we could say that a memory system is coherent if any read of a data 
item returns the most recently written value of that data item. Th is defi nition, 
although intuitively appealing, is vague and simplistic; the reality is much more 
complex. Th is simple defi nition contains two diff erent aspects of memory system 
behavior, both of which are critical to writing correct shared memory programs. 
Th e fi rst aspect, called coherence, defi nes what values can be returned by a read. Th e 
second aspect, called consistency, determines when a written value will be returned 
by a read.

Let’s look at coherence fi rst. A memory system is coherent if

1. A read by a processor P to a location X that follows a write by P to X, with no 
writes of X by another processor occurring between the write and the read 
by P, always returns the value written by P. Th us, in Figure 5.41, if CPU A 
were to read X aft er time step 3, it should see the value 1.

2. A read by a processor to location X that follows a write by another processor 
to X returns the written value if the read and write are suffi  ciently separated 
in time and no other writes to X occur between the two accesses. Th us, in 
Figure 5.41, we need a mechanism so that the value 0 in the cache of CPU B 
is replaced by the value 1 aft er CPU A stores 1 into memory at address X in 
time step 3.
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3. Writes to the same location are serialized; that is, two writes to the same 
location by any two processors are seen in the same order by all processors. 
For example, if CPU B stores 2 into memory at address X aft er time step 3, 
processors can never read the value at location X as 2 and then later read 
it as 1.

Th e fi rst property simply preserves program order—we certainly expect this 
property to be true in uniprocessors, for example. Th e second property defi nes 
the notion of what it means to have a coherent view of memory: if a processor 
could continuously read an old data value, we would clearly say that memory was 
incoherent.

Th e need for write serialization is more subtle, but equally important. Suppose 
we did not serialize writes, and processor P1 writes location X followed by P2 
writing location X. Serializing the writes ensures that every processor will see the 
write done by P2 at some point. If we did not serialize the writes, it might be the 
case that some processor could see the write of P2 fi rst and then see the write of P1, 
maintaining the value written by P1 indefi nitely. Th e simplest way to avoid such 
diffi  culties is to ensure that all writes to the same location are seen in the same 
order, which we call write serialization.

Basic Schemes for Enforcing Coherence
In a cache coherent multiprocessor, the caches provide both migration and 
replication of shared data items:

■ Migration: A data item can be moved to a local cache and used there in a 
transparent fashion. Migration reduces both the latency to access a shared 
data item that is allocated remotely and the bandwidth demand on the shared 
memory.

Time
step Event

Cache  contents for 
CPU A

Cache  contents 
for CPU B

Memory 
contents for 
location X

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A stores 1 into X 1 0 1

FIGURE 5.41 The cache coherence problem for a single memory location (X), read and 
written by two processors (A and B). We initially assume that neither cache contains the variable and 
that X has the value 0. We also assume a write-through cache; a write-back cache adds some additional but 
similar complications. Aft er the value of X has been written by A, A’s cache and the memory both contain the 
new value, but B’s cache does not, and if B reads the value of X, it will receive 0!
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■ Replication: When shared data are being simultaneously read, the caches 
make a copy of the data item in the local cache. Replication reduces both 
latency of access and contention for a read shared data item.

Supporting migration and replication is critical to performance in accessing 
shared data, so many multiprocessors introduce a hardware protocol to maintain 
coherent caches. Th e protocols to maintain coherence for multiple processors are 
called cache coherence protocols. Key to implementing a cache coherence protocol 
is tracking the state of any sharing of a data block.

Th e most popular cache coherence protocol is snooping. Every cache that has a 
copy of the data from a block of physical memory also has a copy of the sharing 
status of the block, but no centralized state is kept. Th e caches are all accessible via 
some broadcast medium (a bus or network), and all cache controllers monitor or 
snoop on the medium to determine whether or not they have a copy of a block that 
is requested on a bus or switch access.

In the following section we explain snooping-based cache coherence as 
implemented with a shared bus, but any communication medium that broadcasts 
cache misses to all processors can be used to implement a snooping-based 
coherence scheme. Th is broadcasting to all caches makes snooping protocols 
simple to implement but also limits their scalability.

Snooping Protocols
One method of enforcing coherence is to ensure that a processor has exclusive 
access to a data item before it writes that item. Th is style of protocol is called a write 
invalidate protocol because it invalidates copies in other caches on a write. Exclusive 
access ensures that no other readable or writable copies of an item exist when the 
write occurs: all other cached copies of the item are invalidated.

Figure 5.42 shows an example of an invalidation protocol for a snooping bus 
with write-back caches in action. To see how this protocol ensures coherence, 
consider a write followed by a read by another processor: since the write requires 
exclusive access, any copy held by the reading processor must be invalidated (hence 
the protocol name). Th us, when the read occurs, it misses in the cache, and the 
cache is forced to fetch a new copy of the data. For a write, we require that the 
writing processor have exclusive access, preventing any other processor from being 
able to write simultaneously. If two processors do attempt to write the same data 
simultaneously, one of them wins the race, causing the other processor’s copy to be 
invalidated. For the other processor to complete its write, it must obtain a new copy 
of the data, which must now contain the updated value. Th erefore, this protocol 
also enforces write serialization.
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One insight is that block size plays an important role in cache coherency. For 
example, take the case of snooping on a cache with a block size of eight words, 
with a single word alternatively written and read by two processors. Most protocols 
exchange full blocks between processors, thereby increasing coherency bandwidth 
demands.

Large blocks can also cause what is called false sharing: when two unrelated 
shared variables are located in the same cache block, the full block is exchanged 
between processors even though the processors are accessing diff erent variables. 
Programmers and compilers should lay out data carefully to avoid false sharing.

Elaboration: Although the three properties on pages 466 and 467 are suffi cient to 
ensure coherence, the question of when a written value will be seen is also important. To 
see why, observe that we cannot require that a read of X in Figure 5.41 instantaneously 
sees the value written for X by some other processor. If, for example, a write of X on one 
processor precedes a read of X on another processor very shortly beforehand, it may be 
impossible to ensure that the read returns the value of the data written, since the written 
data may not even have left the processor at that point. The issue of exactly when a 
written value must be seen by a reader is defi ned by a memory consistency model.

Hardware/ 
Software 
Interface

false sharing When two 
unrelated shared variables 
are located in the same 
cache block and the 
full block is exchanged 
between processors even 
though the processors 
are accessing diff erent 
variables.

FIGURE 5.42 An example of an invalidation protocol working on a snooping bus for a 
single cache block (X) with write-back caches. We assume that neither cache initially holds X 
and that the value of X in memory is 0. Th e CPU and memory contents show the value aft er the processor 
and bus activity have both completed. A blank indicates no activity or no copy cached. When the second 
miss by B occurs, CPU A responds with the value canceling the response from memory. In addition, both 
the contents of B’s cache and the memory contents of X are updated. Th is update of memory, which occurs 
when a block becomes shared, simplifi es the protocol, but it is possible to track the ownership and force the 
write-back only if the block is replaced. Th is requires the introduction of an additional state called “owner,” 
which indicates that a block may be shared, but the owning processor is responsible for updating any other 
processors and memory when it changes the block or replaces it.

Processor activity Bus activity
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CPU A’s cache
Contents of  

CPU B’s cache

Contents of  
memory  

location X

0

00XrofssimehcaCXsdaerAUPC

CPU B reads X Cache miss for X 0 0 0
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CPU B reads X Cache miss for X 1 1 1
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We make the following two assumptions. First, a write does not complete (and allow 
the next write to occur) until all processors have seen the effect of that write. Second, 
the processor does not change the order of any write with respect to any other memory 
access. These two conditions mean that if a processor writes location X followed by 
location Y, any processor that sees the new value of Y must also see the new value of 
X. These restrictions allow the processor to reorder reads, but forces the processor to 
fi nish a write in program order.

Elaboration: Since input can change memory behind the caches and since output 
could need the latest value in a write back cache, there is also a cache coherency 
problem for I/O with the caches of a single processor as well as just between caches 
of multiple processors. The cache coherence problem for multiprocessors and I/O 
(see Chapter 6), although similar in origin, has different characteristics that affect the 
appropriate solution. Unlike I/O, where multiple data copies are a rare event—one to 
be avoided whenever possible—a program running on multiple processors will normally 
have copies of the same data in several caches.

Elaboration: In addition to the snooping cache coherence protocol where the status 
of shared blocks is distributed, a directory-based cache coherence protocol keeps the 
sharing status of a block of physical memory in just one location, called the directory. 
Directory-based coherence has slightly higher implementation overhead than snooping, 
but it can reduce traffi c between caches and thus scale to larger processor counts.

5.11   Parallelism and Memory Hierarchy: 
Redundant Arrays of Inexpensive Disks 

Th is online section describes how using many disks in conjunction can off er much 
higher throughput, which was the orginal inspiration of Redundant Arrays of 
Inexpensive Disks (RAID). Th e real popularlity of RAID, however, was due more to 
the much greater dependability off ered by including a modest number of redundant 
disks. Th e section explains the diff erences in performance, cost, and dependability 
between the diff erent RAID levels.

5.12   Advanced Material: Implementing Cache 
Controllers 

Th is online section shows how to implement control for a cache, just as we 
implemented control for the single-cycle and pipelined datapaths in Chapter 4. 
Th is section starts with a description of fi nite-state machines and the implemention 
of a cache controller for a simple data cache, including a description of the cache 
controller in a hardware description language. It then goes into details of an example 
cache coherence protocol and the diffi  culties in implementing such a protocol.
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  5.13  Real Stuff: The ARM Cortex-A8 and Intel 
Core i7 Memory Hierarchies

In this section, we will look at the memory hierarchy of the same two microprocessors 
described in Chapter 4: the ARM Cortex-A8 and Intel Core i7. Th is section is based 
on Section 2.6 of Computer Architecture: A Quantitative Approach, 5th edition.

Figure 5.43 summarizes the address sizes and TLBs of the two processors. Note 
that the A8 has two TLBs with a 32-bit virtual address space and a 32-bit physical 
address space. Th e Core i7 has three TLBs with a 48-bit virtual address and a 44-bit 
physical address. Although the 64-bit registers of the Core i7 could hold a larger 
virtual address, there was no soft ware need for such a large space and 48-bit virtual 
addresses shrinks both the page table memory footprint and the TLB hardware.

Figure 5.44 shows their caches. Keep in mind that the A8 has just one processor 
or core while the Core i7 has four. Both have identically organized 32 KiB, 4-way 
set associative, L1 instruction caches (per core) with 64 byte blocks. Th e A8 uses the 
same design for data cache, while the Core i7 keeps everything the same except the 
associativity, which it increases to 8-way. Both use an 8-way set associative unifi ed 
L2 cache (per core) with 64 byte blocks, although the A8 varies in size from 128 KiB 
to 1 MiB while the Core i7 is fi xed at 256 KiB. As the Core i7 is used for servers, it 

Characteristic ARM Cortex-A8 Intel Core i7

Virtual address 32 bits 48 bits

Physical address 32 bits 44 bits

Page size Variable: 4, 16, 64 KiB, 1, 16 MiB Variable: 4 KiB, 2/4 MiB

TLB organization 1 TLB for instructions and 1 TLB
for data

Both TLBs are fully associative,
with 32 entries, round robin
replacement

TLB misses handled in hardware

1 TLB for instructions and 1 TLB for
data per core

Both L1 TLBs are four-way set
associative, LRU replacement

L1 I-TLB has 128 entries for small
pages, 7 per thread for large pages

L1 D-TLB has 64 entries for small 
pages, 32 for large pages

The L2 TLB is four-way set associative,
LRU replacement

The L2 TLB has 512 entries 

TLB misses handled in hardware

FIGURE 5.43 Address translation and TLB hardware for the ARM Cortex-A8 and Intel 
Core i7 920. Both processors provide support for large pages, which are used for things like the operating 
system or mapping a frame buff er. Th e large-page scheme avoids using a large number of entries to map a 
single object that is always present. 
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also off ers an L3 cache shared by all the cores on the chip. Its size varies depending 
on the number of cores. With four cores, as in this case, the size is 8 MiB.

A signifi cant challenge facing cache designers is to support processors like the 
A8 and the Core i7 that can execute more than one memory instruction per clock 
cycle. A popular technique is to break the cache into banks and allow multiple, 
independent, parallel accesses, provided the accesses are to diff erent banks. Th e 
technique is similar to interleaved DRAM banks (see Section 5.2).

Th e Core i7 has additional optimizations that allow them to reduce the miss 
penalty. Th e fi rst of these is the return of the requested word fi rst on a miss. It also 
continues to execute instructions that access the data cache during a cache miss. 
Designers who are attempting to hide the cache miss latency commonly use this 
technique, called a nonblocking cache, when building out-of-order processors. 
Th ey implement two fl avors of nonblocking. Hit under miss allows additional cache 
hits during a miss, while miss under miss allows multiple outstanding cache misses. 
Th e aim of the fi rst of these two is hiding some miss latency with other work, while 
the aim of the second is overlapping the latency of two diff erent misses.

Overlapping a large fraction of miss times for multiple outstanding misses 
requires a high-bandwidth memory system capable of handling multiple misses in 
parallel. In a personal mobile device, the memory may only be able to take limited 

nonblocking cache 
A cache that allows 
the processor to make 
references to the cache 
while the cache is 
handling an earlier miss.

Characteristic ARM Cortex-A8 Intel Nehalem

L1 cache organization Split instruction and data caches Split instruction and data caches

L1 cache size 32 KiB each for instructions/data 32 KiB each for instructions/data
per core

L1 cache associativityy 4-way (I), 4-way (D) set associative 4-way (I), 8-way (D) set associative

L1 replacement Random Approximated LRU 

L1 block size 64 bytes 64 bytes

L1 write policy Write-back, Write-allocate(?) Write-back, No-write-allocate

L1 hit time (load-use)) 1 clock cycle 4 clock cycles, pipelined

L2 cache organization Unified (instruction and data) Unified (instruction and data) per core

L2 cache size 128 KiB to 1 MiB 256 KiB (0.25 MiB)

L2 cache associativity 8-way set associative 8-way set associative

L2 replacement Random(?) Approximated LRU 

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate (?) Write-back, Write-allocate

L2 hit time 11 clock cycles 10 clock cycles

L3 cache organization --

--

--

--

--

--

--

Unified (instruction and data)

8 MiB, sharedL3 cache size

L3 cache associativity 16-way set associative

L3 replacement Approximated LRU

L3 block size 64 bytes

L3 write policy Write-back, Write-allocate

L3 hit time 35 clock cycles

FIGURE 5.44 Caches in the ARM Cortex-A8 and Intel Core i7 920.
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advantage of this capability, but large servers and multiprocessors oft en have 
memory systems capable of handling more than one outstanding miss in parallel.

Th e Core i7 has a prefetch mechanism for data accesses. It looks at a pattern 
of data misses and use this information to try to predict the next address to start 
fetching the data before the miss occurs. Such techniques generally work best when 
accessing arrays in loops.

Th e sophisticated memory hierarchies of these chips and the large fraction of 
the dies dedicated to caches and TLBs show the signifi cant design eff ort expended 
to try to close the gap between processor cycle times and memory latency.

Performance of the A8 and Core i7 Memory Hierarchies
Th e memory hierarchy of the Cortex-A8 was simulated with a 1 MiB eight-way 
set associative L2 cache using the integer Minnespec benchmarks. As mentioned 
in Chapter 4, Minnespec is a set of benchmarks consisting of the SPEC2000 
benchmarks but with diff erent inputs that reduce the running times by several 
orders of magnitude. Although the use of smaller inputs does not change the 
instruction mix, it does aff ect the cache behavior. For example, on mcf, the most 
memory-intensive SPEC2000 integer benchmark, Minnespec has a miss rate for a 
32 KiB cache that is only 65% of the miss rate for the full SPEC2000 version. For 
a 1 MiB cache the diff erence is a factor of six! For this reason, one cannot compare 
the Minnespec benchmarks against the SPEC2000 benchmarks, much less the even 
larger SPEC2006 benchmarks used for the Core i7 in Figure 5.47. Instead, the data 
are useful for looking at the relative impact of L1 and L2 misses and on overall CPI, 
which we used in Chapter 4.

Th e A8 instruction cache miss rates for these benchmarks (and also for the 
full SPEC2000 versions on which Minnespec is based) are very small even for 
just the L1: close to zero for most and under 1% for all of them. Th is low rate 
probably results from the computationally intensive nature of the SPEC programs 
and the four-way set associative cache that eliminates most confl ict misses. Figure 
5.45 shows the data cache results for the A8, which have signifi cant L1 and L2 
miss rates. Th e L1 miss penalty for a 1 GHz Cortex-A8 is 11 clock cycles, while 
the L2 miss penalty is assumed to be 60 clock cycles. Using these miss penalties, 
Figure 5.46 shows the average miss penalty per data access. 

Figure 5.47 shows the miss rates for the caches of the Core i7 using the SPEC2006 
benchmarks. Th e L1 instruction cache miss rate varies from 0.1% to 1.8%, 
averaging just over 0.4%. Th is rate is in keeping with other studies of instruction 
cache behavior for the SPECCPU2006 benchmarks, which show low instruction 
cache miss rates. With L1 data cache miss rates running 5% to 10%, and sometimes 
higher, the importance of the L2 and L3 caches should be obvious. Since the cost 
for a miss to memory is over 100 cycles and the average data miss rate in L2 is 4%, 
L3 is obviously critical. Assuming about half the instructions are loads or stores, 
without L3 the L2 cache misses could add two cycles per instruction to the CPI! In 
comparison, the average L3 data miss rate of 1% is still signifi cant but four times 
lower than the L2 miss rate and six times less than the L1 miss rate.
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FIGURE 5.45 Data cache miss rates for ARM Cortex-A8 when running Minnespec, a small 
version of SPEC2000. Applications with larger memory footprints tend to have higher miss rates in both 
L1 and L2. Note that the L2 rate is the global miss rate; that is, counting all references, including those that hit 
in L1. (See Elaboration in Section 5.4.) Mcf is known as a cache buster. Note that this fi gure is for the same 
systems and benchmarks as Figure 4.76 in Chapter 4.

FIGURE 5.46 The average memory access penalty in clock cycles per data memory 
reference coming from L1 and L2 is shown for the ARM processor when running Minnespec. 
Although the miss rates for L1 are signifi cantly higher, the L2 miss penalty, which is more than fi ve times 
higher, means that the L2 misses can contribute signifi cantly.
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FIGURE 5.47 The L1, L2, and L3 data cache miss rates for the Intel Core i7 920 running 

the full integer SPECCPU2006 benchmarks. 

Elaboration: Because speculation may sometimes be wrong (see Chapter 4), there 
are references to the L1 data cache that do not correspond to loads or stores that 
eventually complete execution. The data in Figure 5.45 is measured against all data 
requests including some that are cancelled. The miss rate when measured against only 
completed data accesses is 1.6 times higher (an average of 9.5% versus 5.9% for L1 
Dcache misses)

  5.14   Going Faster: Cache Blocking and Matrix 
Multiply

Our next step in the continuing saga of improving performance of DGEMM by 
tailoring it to the underlying hardware is to add cache blocking to the subword 
parallelism and instruction level parallelism optimizations of Chapters 3 and 4. 
Figure 5.48 shows the blocked version of DGEMM from Figure 4.80. Th e changes 
are the same as was made earlier in going from unoptimized DGEMM in Figure 
3.21 to blocked DGEMM in Figure 5.21 above. Th is time we taking the unrolled 
version of DGEMM from Chapter 4 and invoke it many times on the submatrices 
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#include <x86intrin.h>
#define UNROLL (4)
#define BLOCKSIZE 32
void do_block (int n, int si, int sj, int sk, 
               double *A, double *B, double *C)
{
  for ( int i = si; i < si+BLOCKSIZE; i+=UNROLL*4 )
    for ( int j = sj; j < sj+BLOCKSIZE; j++ ) {
      __m256d c[4];
      for ( int x = 0; x < UNROLL; x++ ) 
        c[x] = _mm256_load_pd(C+i+x*4+j*n);
     /* c[x] = C[i][j] */
      for( int k = sk; k < sk+BLOCKSIZE; k++ )
      {
        __m256d b = _mm256_broadcast_sd(B+k+j*n);
     /* b = B[k][j] */
        for (int x = 0; x < UNROLL; x++)
          c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */
                 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
      }

      for ( int x = 0; x < UNROLL; x++ ) 
        _mm256_store_pd(C+i+x*4+j*n, c[x]);
        /* C[i][j] = c[x] */
    }
}

void dgemm (int n, double* A, double* B, double* C)
{
  for ( int sj = 0; sj < n; sj += BLOCKSIZE ) 
    for ( int si = 0; si < n; si += BLOCKSIZE )
      for ( int sk = 0; sk < n; sk += BLOCKSIZE )
        do_block(n, si, sj, sk, A, B, C);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34

FIGURE 5.48 Optimized C version of DGEMM from Figure 4.80 using cache blocking. Th ese changes 
are the same ones found in Figure 5.21. Th e assembly language produced by the compiler for the do_block function 
is nearly identical to Figure 4.81. Once again, there is no overhead to call the do_block because the compiler inlines 
the function call.



of A, B, and C. Indeed, lines 28 – 34 and lines 7 – 8 in Figure 5.48 are identical to 
lines 14 – 20 and lines 5 – 6 in Figure 5.21, with the exception of incrementing the 
for loop in line 7 by the amount unrolled.

Unlike the earlier chapters, we do not show the resulting x86 code because the 
inner loop code is nearly identical to Figure 4.81, as the blocking does not aff ect the 
computation, just the order that it accesses data in memory. What does change is 
the bookkeeping integer instructions to implement the for loops. It expands from 
14 instructions before the inner loop and 8 aft er the loop for Figure 4.80 to 40 and 
28 instructions respectively for the bookkeeping code generated for Figure 5.48. 
Nevertheless, the extra instructions executed pale in comparison to the performance 
improvement of reducing cache misses. Figure 5.49 compares unoptimzed to 
optimizations for subword parallelism, instruction level parallelism, and caches. 
Blocking improves performance over unrolled AVX code by factors of 2 to 2.5 for 
the larger matrices. When we compare unoptimized code to the code with all three 
optimizations, the performance improvement is factors of 8 to 15, with the largest 
increase for the largest matrix.

32x32 160x160 480x480 960x960
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Unoptimized AVX AVX + unroll AVX + unroll +
blocked
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FIGURE 5.49 Performance of four versions of DGEMM from matrix dimensions 32x32 to 
960x960. Th e fully optimized code for largest matrix is almost 15 times as fast the unoptimized version in 
Figure 3.21 in Chapter 3.

Elaboration: As mentioned in the Elaboration in Section 3.8, these results are 
with Turbo mode turned off. As in Chapters 3 and 4, when we turn it on we improve all 
the results by the temporary increase in the clock rate of 3.3/2.6 � 1.27. Turbo mode 
works particularly well in this case because it is using only a single core of an eight-
core chip. However, if we want to run fast we should use all cores, which we’ll see in 
Chapter 6.
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 5.15 Fallacies and Pitfalls

As one of the most naturally quantitative aspects of computer architecture, the 
memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Not 
only have there been many fallacies propagated and pitfalls encountered, but some 
have led to major negative outcomes. We start with a pitfall that oft en traps students 
in exercises and exams.

Pitfall: Ignoring memory system behavior when writing programs or when 
generating code in a compiler.

Th is could easily be rewritten as a fallacy: “Programmers can ignore memory 
hierarchies in writing code.” Th e evaluation of sort in Figure 5.19 and of cache blocking 
in Section 5.14 demonstrate that programmers can easily double performance if they 
factor the behavior of the memory system into the design of their algorithms.

Pitfall: Forgetting to account for byte addressing or the cache block size in simulating 
a cache.

When simulating a cache (by hand or by computer), we need to make sure we 
account for the eff ect of byte addressing and multiword blocks in determining into 
which cache block a given address maps. For example, if we have a 32-byte direct-
mapped cache with a block size of 4 bytes, the byte address 36 maps into block 1 
of the cache, since byte address 36 is block address 9 and (9 modulo 8) = 1. On the 
other hand, if address 36 is a word address, then it maps into block (36 mod 8) = 4. 
Make sure the problem clearly states the base of the address.

In like fashion, we must account for the block size. Suppose we have a cache with 
256 bytes and a block size of 32 bytes. Into which block does the byte address 300 
fall? If we break the address 300 into fi elds, we can see the answer:

31 30 29 . . . . . . . . . 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 . . . . . . . . . 0 0 0 1 0 0 1 0 1 1 0 0

Cache block 
number

Block offset

Block address

Byte address 300 is block address

300
32
⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥
� 9

Th e number of blocks in the cache is

256
32
⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥
� 8

Block number 9 falls into cache block number (9 modulo 8) � 1.



 5.15 Fallacies and Pitfalls 479

Th is mistake catches many people, including the authors (in earlier draft s) and 
instructors who forget whether they intended the addresses to be in words, bytes, 
or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Having less set associativity for a shared cache than the number of cores or 
threads sharing that cache.

Without extra care, a parallel program running on 2n processors or threads can 
easily allocate data structures to addresses that would map to the same set of a 
shared L2 cache. If the cache is at least 2n-way associative, then these accidental 
confl icts are hidden by the hardware from the program. If not, programmers could 
face apparently mysterious performance bugs—actually due to L2 confl ict misses—
when migrating from, say, a 16-core design to 32-core design if both use 16-way 
associative L2 caches.

Pitfall: Using average memory access time to evaluate the memory hierarchy of an 
out-of-order processor.

If a processor stalls during a cache miss, then you can separately calculate the 
memory-stall time and the processor execution time, and hence evaluate the memory 
hierarchy independently using average memory access time (see page 399).

If the processor continues to execute instructions, and may even sustain more 
cache misses during a cache miss, then the only accurate assessment of the memory 
hierarchy is to simulate the out-of-order processor along with the memory hierarchy.

Pitfall: Extending an address space by adding segments on top of an unsegmented 
address space.

During the 1970s, many programs grew so large that not all the code and data could 
be addressed with just a 16-bit address. Computers were then revised to off er 32-
bit addresses, either through an unsegmented 32-bit address space (also called a fl at 
address space) or by adding 16 bits of segment to the existing 16-bit address. From 
a marketing point of view, adding segments that were programmer-visible and that 
forced the programmer and compiler to decompose programs into segments could 
solve the addressing problem. Unfortunately, there is trouble any time a programming 
language wants an address that is larger than one segment, such as indices for large 
arrays, unrestricted pointers, or reference parameters. Moreover, adding segments 
can turn every address into two words—one for the segment number and one for the 
segment off set—causing problems in the use of addresses in registers.

Fallacy: Disk failure rates in the fi eld match their specifi cations.
Two recent studies evaluated large collections of disks to check the relationship 
between results in the fi eld compared to specifi cations. One study was of almost 
100,000 disks that had quoted MTTF of 1,000,000 to 1,500,000 hours, or AFR of 
0.6% to 0.8%. Th ey found AFRs of 2% to 4% to be common, oft en three to fi ve 
times higher than the specifi ed rates [Schroeder and Gibson, 2007]. A second study 
of more than 100,000 disks at Google, which had a quoted AFR of about 1.5%, saw 
failure rates of 1.7% for drives in their fi rst year rise to 8.6% for drives in their third 
year, or about fi ve to six times the specifi ed rate [Pinheiro, Weber, and Barroso, 
2007].
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Fallacy: Operating systems are the best place to schedule disk accesses.
As mentioned in Section 5.2, higher-level disk interfaces off er logical block 
addresses to the host operating system. Given this high-level abstraction, the best 
an OS can do to try to help performance is to sort the logical block addresses into 
increasing order. However, since the disk knows the actual mapping of the logical 
addresses onto the physical geometry of sectors, tracks, and surfaces, it can reduce 
the rotational and seek latencies by rescheduling.

For example, suppose the workload is four reads [Anderson, 2003]:

Operation Starting LBA Length

Read  724   8

Read  100  16

Read 9987   1

Read   26 128

Th e host might reorder the four reads into logical block order:

Operation Starting LBA Length

Read   26 128

Read  100  16

Read  724   8

Read 9987   1

Depending on the relative location of the data on the disk, reordering could 
make it worse, as Figure 5.50 shows. Th e disk-scheduled reads complete in three-
quarters of a disk revolution, but the OS-scheduled reads take three revolutions.

Host-ordered queue
Drive-ordered queue

724

100

26

9987

FIGURE 5.50 Example showing OS versus disk schedule accesses, labeled host-ordered 
versus drive-ordered. Th e former takes three revolutions to complete the four reads, while the latter 
completes them in just three-fourths of a revolution (from Anderson [2003]).



FIGURE 5.51 Summary of 18 x86 instructions that cause problems for virtualization 
[Robin and Irvine, 2000]. Th e fi rst fi ve instructions in the top group allow a program in user mode to 
read a control register, such as descriptor table registers, without causing a trap. Th e pop fl ags instruction 
modifi es a control register with sensitive information but fails silently when in user mode. Th e protection 
checking of the segmented architecture of the x86 is the downfall of the bottom group, as each of these 
instructions checks the privilege level implicitly as part of instruction execution when reading a control 
register. Th e checking assumes that the OS must be at the highest privilege level, which is not the case for 
guest VMs. Only the Move to segment register tries to modify control state, and protection checking foils it 
as well.

Problem category Problem x86 instructions

Access sensitive registers without 
trapping when running in user mode 

Store global descriptor table register (SGDT) 
Store local descriptor table register (SLDT) 
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory 
mechanisms in user mode, instructions 
fail the x86 protection checks

Load access rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LSL)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, . . .)
Push segment register (PUSH CS, PUSH SS, . . .)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)
Store segment selector register (STR)
Move to/from segment registers (MOVE)

Pitfall: Implementing a virtual machine monitor on an instruction set architecture 
that wasn’t designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all 
instructions reading or writing information related to hardware resource 
information were privileged. Th is laissez-faire attitude causes problems for VMMs 
for all of these architectures, including the x86, which we use here as an example.

Figure 5.51 describes the 18 instructions that cause problems for virtualization 
[Robin and Irvine, 2000]. Th e two broad classes are instructions that

■ Read control registers in user mode that reveals that the guest operating 
system is running in a virtual machine (such as POPF, mentioned earlier)

■ Check protection as required by the segmented architecture but assume that 
the operating system is running at the highest privilege level

To simplify implementations of VMMs on the x86, both AMD and Intel have 
proposed extensions to the architecture via a new mode. Intel’s VT-x provides 
a new execution mode for running VMs, an architected defi nition of the VM 
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state, instructions to swap VMs rapidly, and a large set of parameters to select the 
circumstances where a VMM must be invoked. Altogether, VT-x adds 11 new 
instructions for the x86. AMD’s Pacifi ca makes similar proposals.

An alternative to modifying the hardware is to make small modifi cations to the 
operating system to avoid using the troublesome pieces of the architecture. Th is 
technique is called paravirtualization, and the open source Xen VMM is a good 
example. Th e Xen VMM provides a guest OS with a virtual machine abstraction 
that uses only the easy-to-virtualize parts of the physical x86 hardware on which 
the VMM runs.

 5.16 Concluding Remarks

Th e diffi  culty of building a memory system to keep pace with faster processors 
is underscored by the fact that the raw material for main memory, DRAMs, is 
essentially the same in the fastest computers as it is in the slowest and cheapest.

It is the principle of locality that gives us a chance to overcome the long latency of 
memory access—and the soundness of this strategy is demonstrated at all levels of 
the memory hierarchy. Although these levels of the hierarchy look quite diff erent 
in quantitative terms, they follow similar strategies in their operation and exploit 
the same properties of locality.

Multilevel caches make it possible to use more cache optimizations more easily 
for two reasons. First, the design parameters of a lower-level cache are diff erent 
from a fi rst-level cache. For example, because a lower-level cache will be much 
larger, it is possible to use larger block sizes. Second, a lower-level cache is not 
constantly being used by the processor, as a fi rst-level cache is. Th is allows us to 
consider having the lower-level cache do something when it is idle that may be 
useful in preventing future misses.

Another trend is to seek soft ware help. Effi  ciently managing the memory 
hierarchy using a variety of program transformations and hardware facilities is a 
major focus of compiler enhancements. Two diff erent ideas are being explored. 
One idea is to reorganize the program to enhance its spatial and temporal locality. 
Th is approach focuses on loop-oriented programs that use large arrays as the 
major data structure; large linear algebra problems are a typical example, such as 
DGEMM. By restructuring the loops that access the arrays, substantially improved 
locality—and, therefore, cache performance—can be obtained.

Another approach is prefetching. In prefetching, a block of data is brought into 
the cache before it is actually referenced. Many microprocessors use hardware 
prefetching to try to predict accesses that may be diffi  cult for soft ware to notice.

A third approach is special cache-aware instructions that optimize memory 
transfer. For example, the microprocessors in Section 6.10 in Chapter 6 use 
an optimization that does not fetch the contents of a block from memory on a 
write miss because the program is going to write the full block. Th is optimization 
signifi cantly reduces memory traffi  c for one kernel.

prefetching 
A technique in which 
data blocks needed in the 
future are brought into 
the cache early by the use 
of special instructions that 
specify the address of the 
block.



As we will see in Chapter 6, memory systems are a central design issue for parallel 
processors. Th e growing importance of the memory hierarchy in determining 
system performance means that this important area will continue to be a focus for 
both designers and researchers for some years to come.

5.17   Historical Perspective and Further 
Reading

Th is section, which appears online, gives an overview of memory technologies, 
from mercury delay lines to DRAM, the invention of the memory hierarchy, 
protection mechanisms, and virtual machines, and concludes with a brief history 
of operating systems, including CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, 
Windows, and Linux.

 5.18 Exercises

5.1 In this exercise we look at memory locality properties of matrix computation. 
Th e following code is written in C, where elements within the same row are stored 
contiguously.  Assume each word is a 32-bit integer.

for (I=0; I<8; I++)

  for (J=0; J<8000; J++)

    A[I][J]=B[I][0]+A[J][I];

5.1.1 [5] <§5.1> How many 32-bit integers can be stored in a 16-byte cache block?

5.1.2 [5] <§5.1> References to which variables exhibit temporal locality?

5.1.3 [5] <§5.1> References to which variables exhibit spatial locality?

Locality is aff ected by both the reference order and data layout. Th e same computation 
can also be written below in Matlab, which diff ers from C by storing matrix elements 
within the same column contiguously in memory.

for I=1:8

  for J=1:8000

    A(I,J)=B(I,0)+A(J,I);

  end

end
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5.1.4 [10] <§5.1> How many 16-byte cache blocks are needed to store all 32-bit 
matrix elements being referenced?

5.1.5 [5] <§5.1> References to which variables exhibit temporal locality?

5.1.6 [5] <§5.1> References to which variables exhibit spatial locality?

5.2 Caches are important to providing a high-performance memory hierarchy 
to processors. Below is a list of 32-bit memory address references, given as word 
addresses.

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

5.2.1 [10] <§5.3> For each of these references, identify the binary address, the tag, 
and the index given a direct-mapped cache with 16 one-word blocks. Also list if each 
reference is a hit or a miss, assuming the cache is initially empty.

5.2.2 [10] <§5.3> For each of these references, identify the binary address, the tag, 
and the index given a direct-mapped cache with two-word blocks and a total size of 8 
blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty.

5.2.3 [20] <§§5.3, 5.4> You are asked to optimize a cache design for the given 
references. Th ere are three direct-mapped cache designs possible, all with a total of 8 
words of data: C1 has 1-word blocks, C2 has 2-word blocks, and C3 has 4-word blocks. 
In terms of miss rate, which cache design is the best? If the miss stall time is 25 cycles, 
and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is 
the best cache design?

Th ere are many diff erent design parameters that are important to a cache’s overall 
performance. Below are listed parameters for diff erent direct-mapped cache designs.

Cache Data Size:  32 KiB

Cache Block Size:  2 words

Cache Access Time:  1 cycle

5.2.4 [15] <§5.3> Calculate the total number of bits required for the cache listed 
above, assuming a 32-bit address. Given that total size, fi nd the total size of the closest 
direct-mapped cache with 16-word blocks of equal size or greater. Explain why the 
second cache, despite its larger data size, might provide slower performance than the 
fi rst cache.

5.2.5 [20] <§§5.3, 5.4> Generate a series of read requests that have a lower miss rate 
on a 2 KiB 2-way set associative cache than the cache listed above. Identify one possible 
solution that would make the cache listed have an equal or lower miss rate than the 2 
KiB cache. Discuss the advantages and disadvantages of such a solution.

5.2.6 [15] <§5.3> Th e formula shown in Section 5.3 shows the typical method to 
index a direct-mapped cache, specifi cally (Block address) modulo (Number of blocks in 
the cache). Assuming a 32-bit address and 1024 blocks in the cache, consider a diff erent 



indexing function, specifi cally (Block address[31:27] XOR Block address[26:22]). Is it 
possible to use this to index a direct-mapped cache? If so, explain why and discuss any 
changes that might need to be made to the cache. If it is not possible, explain why.

5.3 For a direct-mapped cache design with a 32-bit address, the following bits of the 
address are used to access the cache.

 Tag Index Offset

31–10 9–5 4–0

5.3.1 [5] <§5.3> What is the cache block size (in words)?

5.3.2 [5] <§5.3> How many entries does the cache have?

5.3.3 [5] <§5.3> What is the ratio between total bits required for such a cache 
implementation over the data storage bits?

Starting from power on, the following byte-addressed cache references are recorded.

Address

0 4 16 132 232 160 1024 30 140 3100 180 2180

5.3.4 [10] <§5.3> How many blocks are replaced?

5.3.5 [10] <§5.3> What is the hit ratio?

5.3.6 [20] <§5.3> List the fi nal state of the cache, with each valid entry represented as 
a record of <index, tag, data>.

5.4 Recall that we have two write policies and write allocation policies, and their 
combinations can be implemented either in L1 or L2 cache. Assume the following 
choices for L1 and L2 caches:

L1 L2 

Write through, non-write allocate Write back, write allocate

5.4.1 [5] <§§5.3, 5.8> Buff ers are employed between diff erent levels of memory 
hierarchy to reduce access latency. For this given confi guration, list the possible buff ers 
needed between L1 and L2 caches, as well as L2 cache and memory.

5.4.2 [20] <§§5.3, 5.8> Describe the procedure of handling an L1 write-miss, 
considering the component involved and the possibility of replacing a dirty block.

5.4.3 [20] <§§5.3, 5.8> For a multilevel exclusive cache (a block can only reside in 
one of the L1 and L2 caches), confi guration, describe the procedure of handling an L1 
write-miss, considering the component involved and the possibility of replacing a dirty 
block.
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Consider the following program and cache behaviors.

Data Reads per 
1000 Instructions

Data Writes per 
1000 Instructions

Instruction Cache 
Miss Rate

Data Cache 
Miss Rate

Block Size 
(byte)

250 100 0.30% 2% 64

5.4.4 [5] <§§5.3, 5.8> For a write-through, write-allocate cache, what are the minimum 
read and write bandwidths (measured by byte per cycle) needed to achieve a CPI of 2?

5.4.5 [5] <§§5.3, 5.8> For a write-back, write-allocate cache, assuming 30% of 
replaced data cache blocks are dirty, what are the minimal read and write bandwidths 
needed for a CPI of 2?

5.4.6 [5] <§§5.3, 5.8> What are the minimal bandwidths needed to achieve the 
performance of CPI=1.5?

5.5 Media applications that play audio or video fi les are part of a class of workloads 
called “streaming” workloads; i.e., they bring in large amounts of data but do not reuse 
much of it. Consider a video streaming workload that accesses a 512 KiB working set 
sequentially with the following address stream:

0, 2, 4, 6, 8, 10, 12, 14, 16, …

5.5.1 [5] <§§5.4, 5.8> Assume a 64 KiB direct-mapped cache with a 32-byte block. 
What is the miss rate for the address stream above? How is this miss rate sensitive to 
the size of the cache or the working set? How would you categorize the misses this 
workload is experiencing, based on the 3C model?

5.5.2 [5] <§§5.1, 5.8> Re-compute the miss rate when the cache block size is 16 bytes, 
64 bytes, and 128 bytes. What kind of locality is this workload exploiting?

5.5.3 [10] <§5.13>“Prefetching” is a technique that leverages predictable address 
patterns to speculatively bring in additional cache blocks when a particular cache block 
is accessed. One example of prefetching is a stream buff er that prefetches sequentially 
adjacent cache blocks into a separate buff er when a particular cache block is brought 
in. If the data is found in the prefetch buff er, it is considered as a hit and moved into 
the cache and the next cache block is prefetched. Assume a two-entry stream buff er 
and assume that the cache latency is such that a cache block can be loaded before the 
computation on the previous cache block is completed. What is the miss rate for the 
address stream above?

Cache block size (B) can aff ect both miss rate and miss latency. Assuming a 1-CPI 
machine with an average of 1.35 references (both instruction and data) per instruction, 
help fi nd the optimal block size given the following miss rates for various block sizes.

8: 4% 16: 3% 32: 2% 64: 1.5% 128: 1%

5.5.4 [10] <§5.3> What is the optimal block size for a miss latency of 20×B cycles?

5.5.5 [10] <§5.3> What is the optimal block size for a miss latency of 24+B cycles?

5.5.6 [10] <§5.3> For constant miss latency, what is the optimal block size?



5.6 In this exercise, we will look at the diff erent ways capacity aff ects overall 
performance. In general, cache access time is proportional to capacity. Assume that 
main memory accesses take 70 ns and that memory accesses are 36% of all instructions. 
Th e following table shows data for L1 caches attached to each of two processors, P1 and 
P2.

 L1 Size L1 Miss Rate L1 Hit Time

P1 2 KiB 8.0% 0.66 ns

P2 4 KiB 6.0% 0.90 ns

5.6.1 [5] <§5.4> Assuming that the L1 hit time determines the cycle times for P1 and 
P2, what are their respective clock rates?

5.6.2 [5] <§5.4> What is the Average Memory Access Time for P1 and P2?

5.6.3 [5] <§5.4> Assuming a base CPI of 1.0 without any memory stalls, what is the 
total CPI for P1 and P2? Which processor is faster?

For the next three problems, we will consider the addition of an L2 cache to P1 to 
presumably make up for its limited L1 cache capacity. Use the L1 cache capacities 
and hit times from the previous table when solving these problems. Th e L2 miss rate 
indicated is its local miss rate.

L2 Size L2 Miss Rate L2 Hit Time

1 MiB 95% 5.62 ns

5.6.4 [10] <§5.4> What is the AMAT for P1 with the addition of an L2 cache? Is the 
AMAT better or worse with the L2 cache?

5.6.5 [5] <§5.4> Assuming a base CPI of 1.0 without any memory stalls, what is the 
total CPI for P1 with the addition of an L2 cache?

5.6.6 [10] <§5.4> Which processor is faster, now that P1 has an L2 cache? If P1 is 
faster, what miss rate would P2 need in its L1 cache to match P1’s performance? If P2 is 
faster, what miss rate would P1 need in its L1 cache to match P2’s performance?

5.7 Th is exercise examines the impact of diff erent cache designs, specifi cally 
comparing associative caches to the direct-mapped caches from Section 5.4. For these 
exercises, refer to the address stream shown in Exercise 5.2.

5.7.1 [10] <§5.4> Using the sequence of references from Exercise 5.2, show the fi nal 
cache contents for a three-way set associative cache with two-word blocks and a total 
size of 24 words. Use LRU replacement. For each reference identify the index bits, the 
tag bits, the block off set bits, and if it is a hit or a miss.

5.7.2 [10] <§5.4> Using the references from Exercise 5.2, show the fi nal cache 
contents for a fully associative cache with one-word blocks and a total size of 8 words. 
Use LRU replacement. For each reference identify the index bits, the tag bits, and if it 
is a hit or a miss.
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5.7.3 [15] <§5.4> Using the references from Exercise 5.2, what is the miss rate for 
a fully associative cache with two-word blocks and a total size of 8 words, using LRU 
replacement? What is the miss rate using MRU (most recently used) replacement? 
Finally what is the best possible miss rate for this cache, given any replacement policy?

Multilevel caching is an important technique to overcome the limited amount of 
space that a fi rst level cache can provide while still maintaining its speed. Consider a 
processor with the following parameters:
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1.5 2 GHz 100 ns 7% 12 cycles 3.5% 28 cycles 1.5%

5.7.4 [10] <§5.4> Calculate the CPI for the processor in the table using: 1) only a 
fi rst level cache, 2) a second level direct-mapped cache, and 3) a second level eight-way 
set associative cache. How do these numbers change if main memory access time is 
doubled? If it is cut in half?

5.7.5 [10] <§5.4> It is possible to have an even greater cache hierarchy than two 
levels. Given the processor above with a second level, direct-mapped cache, a designer 
wants to add a third level cache that takes 50 cycles to access and will reduce the global 
miss rate to 1.3%. Would this provide better performance? In general, what are the 
advantages and disadvantages of adding a third level cache?

5.7.6 [20] <§5.4> In older processors such as the Intel Pentium or Alpha 21264, the 
second level of cache was external (located on a diff erent chip) from the main processor 
and the fi rst level cache. While this allowed for large second level caches, the latency to 
access the cache was much higher, and the bandwidth was typically lower because the 
second level cache ran at a lower frequency. Assume a 512 KiB off -chip second level 
cache has a global miss rate of 4%. If each additional 512 KiB of cache lowered global 
miss rates by 0.7%, and the cache had a total access time of 50 cycles, how big would 
the cache have to be to match the performance of the second level direct-mapped cache 
listed above? Of the eight-way set associative cache?

5.8 Mean Time Between Failures (MTBF), Mean Time To Replacement (MTTR), and 
Mean Time To Failure (MTTF) are useful metrics for evaluating the reliability and 
availability of a storage resource. Explore these concepts by answering the questions 
about devices with the following metrics.

MTTF MTTR

3 Years 1 Day



5.8.1 [5] <§5.5> Calculate the MTBF for each of the devices in the table.

5.8.2 [5] <§5.5> Calculate the availability for each of the devices in the table.

5.8.3 [5] <§5.5> What happens to availability as the MTTR approaches 0? Is this a 
realistic situation?

5.8.4 [5] <§5.5> What happens to availability as the MTTR gets very high, i.e., a 
device is diffi  cult to repair? Does this imply the device has low availability?

5.9 Th is Exercise examines the single error correcting, double error detecting (SEC/
DED) Hamming code.

5.9.1 [5] <§5.5> What is the minimum number of parity bits required to protect a 
128-bit word using the SEC/DED code?

5.9.2 [5] <§5.5> Section 5.5 states that modern server memory modules (DIMMs) 
employ SEC/DED ECC to protect each 64 bits with 8 parity bits.  Compute the cost/
performance ratio of this code to the code from 5.9.1. In this case, cost is the relative 
number of parity bits needed while performance is the relative number of errors that 
can be corrected.  Which is better?

5.9.3 Consider a SEC code that protects 8 bit words with 4 parity bits.  If we read the 
value 0x375, is there an error?  If so, correct the error.

5.10 For a high-performance system such as a B-tree index for a database, the page 
size is determined mainly by the data size and disk performance. Assume that on 
average a B-tree index page is 70% full with fi x-sized entries. Th e utility of a page is 
its B-tree depth, calculated as log2(entries). Th e following table shows that for 16-byte 
entries, and a 10-year-old disk with a 10 ms latency and 10 MB/s transfer rate, the 
optimal page size is 16K.

Page Size (KiB)

Page Utility or B-Tree 
Depth (Number of Disk 

Accesses Saved)

Index Page 
Access 

Cost (ms) Utility/Cost

2 6.49 (or log2(2048/16×0.7)) 10.2 0.64

4 7.49 10.4 0.72

8 8.49 10.8 0.79

16 9.49 11.6 0.82

32 10.49 13.2 0.79

64 11.49 16.4 0.70

128 12.49 22.8 0.55

256 13.49 35.6 0.38

5.10.1 [10] <§5.7> What is the best page size if entries now become 128 bytes?

5.10.2 [10] <§5.7> Based on 5.10.1, what is the best page size if pages are half full?

5.10.3 [20] <§5.7> Based on 5.10.2, what is the best page size if using a modern disk 
with a 3 ms latency and 100 MB/s transfer rate? Explain why future servers are likely 
to have larger pages.
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Keeping “frequently used” (or “hot”) pages in DRAM can save disk accesses, but how 
do we determine the exact meaning of “frequently used” for a given system? Data 
engineers use the cost ratio between DRAM and disk access to quantify the reuse time 
threshold for hot pages. Th e cost of a disk access is $Disk/accesses_per_sec, while the 
cost to keep a page in DRAM is $DRAM_MiB/page_size. Th e typical DRAM and disk 
costs and typical database page sizes at several time points are listed below:

Year
DRAM Cost 

($/MiB)
Page Size 

(KiB)
Disk Cost 
($/disk)

Disk Access Rate 
(access/sec)

1987 5000 1 15,000 15

1997 15 8 2000 64

2007 0.05 64 80 83

5.10.4 [10] <§§5.1, 5.7> What are the reuse time thresholds for these three 
technology generations?

5.10.5 [10] <§5.7> What are the reuse time thresholds if we keep using the same 4K 
page size? What’s the trend here?

5.10.6 [20] <§5.7> What other factors can be changed to keep using the same page 
size (thus avoiding soft ware rewrite)? Discuss their likeliness with current technology 
and cost trends.

5.11 As described in Section 5.7, virtual memory uses a page table to track the 
mapping of virtual addresses to physical addresses. Th is exercise shows how this table 
must be updated as addresses are accessed. Th e following data constitutes a stream of 
virtual addresses as seen on a system. Assume 4 KiB pages, a 4-entry fully associative 
TLB, and true LRU replacement. If pages must be brought in from disk, increment the 
next largest page number.

4669, 2227, 13916, 34587, 48870, 12608, 49225

TLB

Valid Tag
Physical Page 

Number

1 11 12

1 7 4

1 3 6

0 4 9



Page table

Valid Physical Page or in Disk

1 5

0 Disk

0 Disk

1 6

1 9

1 11

0 Disk

1 4

0 Disk

0 Disk

1 3

1 12

5.11.1 [10] <§5.7> Given the address stream shown, and the initial TLB and page 
table states provided above, show the fi nal state of the system. Also list for each reference 
if it is a hit in the TLB, a hit in the page table, or a page fault.

5.11.2 [15] <§5.7> Repeat 5.11.1, but this time use 16 KiB pages instead of 4 KiB 
pages. What would be some of the advantages of having a larger page size? What are 
some of the disadvantages?

5.11.3 [15] <§§5.4, 5.7> Show the fi nal contents of the TLB if it is 2-way set 
associative. Also show the contents of the TLB if it is direct mapped. Discuss the 
importance of having a TLB to high performance. How would virtual memory 
accesses be handled if there were no TLB?

Th ere are several parameters that impact the overall size of the page table. Listed below 
are key page table parameters.

Virtual Address Size Page Size Page Table Entry Size

32 bits 8 KiB 4 bytes

5.11.4 [5] <§5.7> Given the parameters shown above, calculate the total page table 
size for a system running 5 applications that utilize half of the memory available.

5.11.5 [10] <§5.7> Given the parameters shown above, calculate the total page table 
size for a system running 5 applications that utilize half of the memory available, given 
a two level page table approach with 256 entries. Assume each entry of the main page 
table is 6 bytes. Calculate the minimum and maximum amount of memory required.

5.11.6 [10] <§5.7> A cache designer wants to increase the size of a 4 KiB virtually 
indexed, physically tagged cache. Given the page size shown above, is it possible to 
make a 16 KiB direct-mapped cache, assuming 2 words per block? How would the 
designer increase the data size of the cache?
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5.12 In this exercise, we will examine space/time optimizations for page tables. Th e 
following list provides parameters of a virtual memory system.

Virtual Address (bits)
Physical DRAM 

Installed Page Size PTE Size (byte)

43 16 GiB 4 KiB 4

5.12.1 [10] <§5.7> For a single-level page table, how many page table entries (PTEs) 
are needed? How much physical memory is needed for storing the page table?

5.12.2 [10] <§5.7> Using a multilevel page table can reduce the physical memory 
consumption of page tables, by only keeping active PTEs in physical memory. How 
many levels of page tables will be needed in this case? And how many memory 
references are needed for address translation if missing in TLB?

5.12.3 [15] <§5.7> An inverted page table can be used to further optimize space 
and time. How many PTEs are needed to store the page table? Assuming a hash table 
implementation, what are the common case and worst case numbers of memory 
references needed for servicing a TLB miss?

Th e following table shows the contents of a 4-entry TLB.

Entry-ID Valid VA Page Modifi ed Protection PA Page

1 1 140 1 RW 30

2 0 40 0 RX 34

3 1 200 1 RO 32

4 1 280 0 RW 31

5.12.4 [5] <§5.7> Under what scenarios would entry 2’s valid bit be set to zero?

5.12.5 [5] <§5.7> What happens when an instruction writes to VA page 30? When 
would a soft ware managed TLB be faster than a hardware managed TLB?

5.12.6 [5] <§5.7> What happens when an instruction writes to VA page 200?

5.13 In this exercise, we will examine how replacement policies impact miss rate. 
Assume a 2-way set associative cache with 4 blocks. To solve the problems in this 
exercise, you may fi nd it helpful to draw a table like the one below, as demonstrated for 
the address sequence “0, 1, 2, 3, 4.”

Address of 
Memory

Block Accessed Hit or Miss
Evicted 
Block

Contents of Cache Blocks After Reference

Set 0 Set 0 Set 1 Set 1

0 Miss Mem[0]

1 Miss Mem[0] Mem[1]

2 Miss Mem[0] Mem[2] Mem[1]

3 Miss Mem[0] Mem[2] Mem[1] Mem[3]

4 Miss 0 Mem[4] Mem[2] Mem[1] Mem[3]

…



Consider the following address sequence:  0, 2, 4, 8, 10, 12, 14, 16, 0

5.13.1 [5] <§§5.4, 5.8> Assuming an LRU replacement policy, how many hits does 
this address sequence exhibit?

5.13.2 [5] <§§5.4, 5.8> Assuming an MRU (most recently used) replacement policy, 
how many hits does this address sequence exhibit?

5.13.3 [5] <§§5.4, 5.8> Simulate a random replacement policy by fl ipping a coin. For 
example, “heads” means to evict the fi rst block in a set and “tails” means to evict the 
second block in a set. How many hits does this address sequence exhibit?

5.13.4 [10] <§§5.4, 5.8> Which address should be evicted at each replacement to 
maximize the number of hits? How many hits does this address sequence exhibit if you 
follow this “optimal” policy?

5.13.5 [10] <§§5.4, 5.8> Describe why it is diffi  cult to implement a cache replacement 
policy that is optimal for all address sequences.

5.13.6 [10] <§§5.4, 5.8> Assume you could make a decision upon each memory 
reference whether or not you want the requested address to be cached. What impact 
could this have on miss rate?

5.14 To support multiple virtual machines, two levels of memory virtualization are 
needed. Each virtual machine still controls the mapping of virtual address (VA) to 
physical address (PA), while the hypervisor maps the physical address (PA) of each 
virtual machine to the actual machine address (MA). To accelerate such mappings, 
a soft ware approach called “shadow paging” duplicates each virtual machine’s page 
tables in the hypervisor, and intercepts VA to PA mapping changes to keep both copies 
consistent. To remove the complexity of shadow page tables, a hardware approach 
called nested page table (NPT) explicitly supports two classes of page tables (VA ⇒ PA 
and PA ⇒ MA) and can walk such tables purely in hardware.

Consider the following sequence of operations: (1) Create process; (2) TLB miss; 
(3) page fault; (4) context switch;

5.14.1 [10] <§§5.6, 5.7> What would happen for the given operation sequence for 
shadow page table and nested page table, respectively?

5.14.2 [10] <§§5.6, 5.7> Assuming an x86-based 4-level page table in both guest and 
nested page table, how many memory references are needed to service a TLB miss for 
native vs. nested page table?

5.14.3 [15] <§§5.6, 5.7> Among TLB miss rate, TLB miss latency, page fault rate, and 
page fault handler latency, which metrics are more important for shadow page table? 
Which are important for nested page table?
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Assume the following parameters for a shadow paging system.

TLB Misses per 
1000 Instructions

NPT TLB Miss 
Latency

Page Faults per 
1000 Instructions

Shadowing Page 
Fault Overhead

0.2 200 cycles 0.001 30,000 cycles

5.14.4 [10] <§5.6> For a benchmark with native execution CPI of 1, what are the CPI 
numbers if using shadow page tables vs. NPT (assuming only page table virtualization 
overhead)?

5.14.5 [10] <§5.6> What techniques can be used to reduce page table shadowing 
induced overhead?

5.14.6 [10] <§5.6> What techniques can be used to reduce NPT induced overhead?

5.15 One of the biggest impediments to widespread use of virtual machines is the 
performance overhead incurred by running a virtual machine. Listed below are various 
performance parameters and application behavior.

Base CPI

Priviliged 
O/S 

Accesses 
per 10,000 

Instructions

Performance 
Impact to 
Trap to the 
Guest O/S

Performance 
Impact to Trap 

to VMM

I/O Access 
per 10,000 

Instructions

I/O Access Time 
(Includes Time 

to Trap to Guest 
O/S)

1.5 120 15 cycles 175 cycles 30 1100 cycles

5.15.1 [10] <§5.6> Calculate the CPI for the system listed above assuming that there 
are no accesses to I/O. What is the CPI if the VMM performance impact doubles? If it is 
cut in half? If a virtual machine soft ware company wishes to obtain a 10% performance 
degradation, what is the longest possible penalty to trap to the VMM?

5.15.2 [10] <§5.6> I/O accesses oft en have a large impact on overall system 
performance. Calculate the CPI of a machine using the performance characteristics 
above, assuming a non-virtualized system. Calculate the CPI again, this time using a 
virtualized system. How do these CPIs change if the system has half the I/O accesses? 
Explain why I/O bound applications have a smaller impact from virtualization.

5.15.3 [30] <§§5.6, 5.7> Compare and contrast the ideas of virtual memory and 
virtual machines. How do the goals of each compare? What are the pros and cons of 
each? List a few cases where virtual memory is desired, and a few cases where virtual 
machines are desired.

5.15.4 [20] <§5.6> Section 5.6 discusses virtualization under the assumption that 
the virtualized system is running the same ISA as the underlying hardware. However, 
one possible use of virtualization is to emulate non-native ISAs. An example of this is 
QEMU, which emulates a variety of ISAs such as MIPS, SPARC, and PowerPC. What 
are some of the diffi  culties involved in this kind of virtualization? Is it possible for an 
emulated system to run faster than on its native ISA?



5.16 In this exercise, we will explore the control unit for a cache controller for a 
processor with a write buff er. Use the fi nite state machine found in Figure 5.40 as a 
starting point for designing your own fi nite state machines. Assume that the cache 
controller is for the simple direct-mapped cache described on page 465 (Figure 5.40 in  
Section 5.9), but you will add a write buff er with a capacity of one block.

Recall that the purpose of a write buff er is to serve as temporary storage so that the 
processor doesn’t have to wait for two memory accesses on a dirty miss. Rather than 
writing back the dirty block before reading the new block, it buff ers the dirty block and 
immediately begins reading the new block. Th e dirty block can then be written to main 
memory while the processor is working.

5.16.1 [10] <§§5.8, 5.9> What should happen if the processor issues a request that 
hits in the cache while a block is being written back to main memory from the write 
buff er?

5.16.2 [10] <§§5.8, 5.9> What should happen if the processor issues a request that 
misses in the cache while a block is being written back to main memory from the write 
buff er?

5.16.3 [30] <§§5.8, 5.9> Design a fi nite state machine to enable the use of a write 
buff er.

5.17 Cache coherence concerns the views of multiple processors on a given cache 
block. Th e following data shows two processors and their read/write operations on two 
diff erent words of a cache block X (initially X[0] = X[1] = 0).  Assume the size of integers is 
32 bits.

P1 P2

X[0] ++; X[1] = 3; X[0] = 5; X[1] +=2;

5.17.1 [15] <§5.10> List the possible values of the given cache block for a correct 
cache coherence protocol implementation. List at least one more possible value of the 
block if the protocol doesn’t ensure cache coherency.

5.17.2 [15] <§5.10> For a snooping protocol, list a valid operation sequence on each 
processor/cache to fi nish the above read/write operations.

5.17.3 [10] <§5.10> What are the best-case and worst-case numbers of cache misses 
needed to execute the listed read/write instructions?

Memory consistency concerns the views of multiple data items. Th e following data 
shows two processors and their read/write operations on diff erent cache blocks (A and 
B initially 0).

P1 P2

A = 1; B = 2; A+=2; B++; C = B; D = A;
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5.17.4 [15] <§5.10> List the possible values of C and D for an implementation that 
ensures both consistency assumptions on page 470.

5.17.5 [15] <§5.10> List at least one more possible pair of values for C and D if such 
assumptions are not maintained.

5.17.6 [15] <§§5.3, 5.10> For various combinations of write policies and write 
allocation policies, which combinations make the protocol implementation simpler?

5.18 Chip multiprocessors (CMPs) have multiple cores and their caches on a single 
chip. CMP on-chip L2 cache design has interesting trade-off s. Th e following table 
shows the miss rates and hit latencies for two benchmarks with private vs. shared L2 
cache designs. Assume L1 cache misses once every 32 instructions.

 Private Shared

Benchmark A misses-per-instruction 0.30% 0.12%

Benchmark B misses-per-instruction 0.06% 0.03%

Assume the following hit latencies:

Private Cache Shared Cache Memory

5 20 180

5.18.1 [15] <§5.13> Which cache design is better for each of these benchmarks? Use 
data to support your conclusion.

5.18.2 [15] <§5.13> Shared cache latency increases with the CMP size. Choose 
the best design if the shared cache latency doubles. Off -chip bandwidth becomes the 
bottleneck as the number of CMP cores increases. Choose the best design if off -chip 
memory latency doubles.

5.18.3 [10] <§5.13> Discuss the pros and cons of shared vs. private L2 caches for both 
single-threaded, multi-threaded, and multiprogrammed workloads, and reconsider 
them if having on-chip L3 caches.

5.18.4 [15] <§5.13> Assume both benchmarks have a base CPI of 1 (ideal L2 cache). 
If having non-blocking cache improves the average number of concurrent L2 misses 
from 1 to 2, how much performance improvement does this provide over a shared L2 
cache? How much improvement can be achieved over private L2?

5.18.5 [10] <§5.13> Assume new generations of processors double the number of 
cores every 18 months. To maintain the same level of per-core performance, how much 
more off -chip memory bandwidth is needed for a processor released in three years?

5.18.6 [15] <§5.13> Consider the entire memory hierarchy. What kinds of 
optimizations can improve the number of concurrent misses?



5.19 In this exercise we show the defi nition of a web server log and examine code 
optimizations to improve log processing speed. Th e data structure for the log is defi ned 
as follows:

struct entry {
int srcIP;   // remote IP address
char URL[128]; // request URL (e.g., “GET index.html”)
long long refTime; // reference time
int status;  // connection status
char browser[64]; // client browser name

} log [NUM_ENTRIES];

Assume the following processing function for the log:

topK_sourceIP (int hour);

5.19.1 [5] <§5.15> Which fi elds in a log entry will be accessed for the given log 
processing function? Assuming 64-byte cache blocks and no prefetching, how many 
cache misses per entry does the given function incur on average?

5.19.2 [10] <§5.15> How can you reorganize the data structure to improve cache 
utilization and access locality? Show your structure defi nition code.

5.19.3 [10] <§5.15> Give an example of another log processing function that would 
prefer a diff erent data structure layout. If both functions are important, how would you 
rewrite the program to improve the overall performance? Supplement the discussion 
with code snippet and data.

For the problems below, use data from “Cache Performance for SPEC CPU2000 
Benchmarks” (http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/) for the 
pairs of benchmarks shown in the following table.

a. Mesa / gcc

b. mcf / swim

5.19.4 [10] <§5.15> For 64 KiB data caches with varying set associativities, what are 
the miss rates broken down by miss types (cold, capacity, and confl ict misses) for each 
benchmark?

5.19.5 [10] <§5.15> Select the set associativity to be used by a 64 KiB L1 data cache 
shared by both benchmarks. If the L1 cache has to be directly mapped, select the set 
associativity for the 1 MiB L2 cache.

5.19.6 [20] <§5.15> Give an example in the miss rate table where higher set 
associativity actually increases miss rate. Construct a cache confi guration and reference 
stream to demonstrate this.
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§5.1, page 377: 1 and 4. (3 is false because the cost of the memory hierarchy varies 
per computer, but in 2013 the highest cost is usually the DRAM.)
§5.3, page 398: 1 and 4: A lower miss penalty can enable smaller blocks, since you 
don’t have that much latency to amortize, yet higher memory bandwidth usually 
leads to larger blocks, since the miss penalty is only slightly larger.
§5.4, page 417: 1.
§5.7, page 454: 1-a, 2-c, 3-b, 4-d.
§5.8, page 461: 2. (Both large block sizes and prefetching may reduce compulsory 
misses, so 1 is false.)

Answers to 
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 6.1 Introduction

Computer architects have long sought the “Th e City of Gold” (El Dorado) of 
computer design: to create powerful computers simply by connecting many existing 
smaller ones. Th is golden vision is the fountainhead of multiprocessors. Ideally, 
customers order as many processors as they can aff ord and receive a commensurate 
amount of performance. Th us, multiprocessor soft ware must be designed to work 
with a variable number of processors. As mentioned in Chapter 1, energy has 
become the overriding issue for both microprocessors and datacenters. Replacing 
large ineffi  cient processors with many smaller, effi  cient processors can deliver 
better performance per joule both in the large and in the small, if soft ware can 
effi  ciently use them. Th us, improved energy effi  ciency joins scalable performance 
in the case for multiprocessors.

Since multiprocessor soft ware should scale, some designs support operation 
in the presence of broken hardware; that is, if a single processor fails in a 
multiprocessor with n processors, these system would continue to provide service 
with n – 1 processors. Hence, multiprocessors can also improve availability (see 
Chapter 5).

High performance can mean high throughput for independent tasks, called 
task-level parallelism or process-level parallelism. Th ese tasks are independent 
single-threaded applications, and they are an important and popular use of 
multiple processors. Th is approach is in contrast to running a single job on 
multiple processors. We use the term parallel processing program to refer to a 
single program that runs on multiple processors simultaneously.

Th ere have long been scientifi c problems that have needed much faster 
computers, and this class of problems has been used to justify many novel parallel 
computers over the decades. Some of these problems can be handled simply today, 
using a cluster composed of microprocessors housed in many independent servers 
(see Section 6.7). In addition, clusters can serve equally demanding applications 
outside the sciences, such as search engines, Web servers, email servers, and 
databases.

As described in Chapter 1, multiprocessors have been shoved into the spotlight 
because the energy problem means that future increases in performance will 
primarily come from explicit hardware parallelism rather than much higher 
clock rates or vastly improved CPI. As we said in Chapter 1, they are called 

Over the Mountains Of 
the Moon, Down the 
Valley of the Shadow, 
Ride, boldly ride the 
shade replied— If you 
seek for El Dorado!
Edgar Allan Poe, 
“El Dorado,” 
stanza 4, 1849

multiprocessor 
A computer system with at 
least two processors. Th is 
computer is in contrast to 
a uniprocessor, which has 
one, and is increasingly 
hard to fi nd today.

task-level parallelism 
or process-level 
parallelism Utilizing 
multiple processors by 
running independent 
programs simultaneously.

parallel processing 
program A single 
program that runs on 
multiple processors 
simultaneously.

cluster A set of 
computers connected over 
a local area network that 
function as a single large 
multiprocessor.
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multicore microprocessors instead of multiprocessor microprocessors, 
presumably to avoid redundancy in naming. Hence, processors are oft en called 
cores in a multicore chip. Th e number of cores is expected to increase with 
Moore’s Law. Th ese multicores are almost always Shared Memory Processors 
(SMPs), as they usually share a single physical address space. We’ll see SMPs 
more in Section 6.5.

Th e state of technology today means that programmers who care about 
performance must become parallel programmers, for sequential code now means 
slow code.

Th e tall challenge facing the industry is to create hardware and soft ware that 
will make it easy to write correct parallel processing programs that will execute 
effi  ciently in performance and energy as the number of cores per chip scales.

Th is abrupt shift  in microprocessor design caught many off  guard, so there is a 
great deal of confusion about the terminology and what it means. Figure 6.1 tries to 
clarify the terms serial, parallel, sequential, and concurrent. Th e columns of this fi gure 
represent the soft ware, which is either inherently sequential or concurrent. Th e rows 
of the fi gure represent the hardware, which is either serial or parallel. For example, the 
programmers of compilers think of them as sequential programs: the steps include 
parsing, code generation, optimization, and so on. In contrast, the programmers 
of operating systems normally think of them as concurrent programs: cooperating 
processes handling I/O events due to independent jobs running on a computer.

Th e point of these two axes of Figure 6.1 is that concurrent soft ware can run on 
serial hardware, such as operating systems for the Intel Pentium 4 uniprocessor, 
or on parallel hardware, such as an OS on the more recent Intel Core i7. Th e same 
is true for sequential soft ware. For example, the MATLAB programmer writes 
a matrix multiply thinking about it sequentially, but it could run serially on the 
Pentium 4 or in parallel on the Intel Core i7. 

You might guess that the only challenge of the parallel revolution is fi guring out how 
to make naturally sequential soft ware have high performance on parallel hardware, but 
it is also to make concurrent programs have high performance on multiprocessors as the 
number of processors increases. With this distinction made, in the rest of this chapter 
we will use parallel processing program or parallel soft ware to mean either sequential 
or concurrent soft ware running on parallel hardware. Th e next section of this chapter 
describes why it is hard to create effi  cient parallel processing programs. 

Software

Sequential Concurrent

Hardware

Serial
Matrix Multiply written in MatLab
running on an Intel Pentium 4

Windows Vista Operating System
running on an Intel Pentium 4

Parallel
Matrix Multiply written in MATLAB
running on an Intel Core i7

Windows Vista Operating System
running on an Intel Core i7

FIGURE 6.1 Hardware/software categorization and examples of application perspective 
on concurrency versus hardware perspective on parallelism.

multicore 
microprocessor 
A microprocessor 
containing multiple 
processors (“cores”) 
in a single integrated 
circuit. Virtually all 
microprocessors today in 
desktops and servers are 
multicore.

shared memory 
multiprocessor 
(SMP) A parallel 
processor with a single 
physical address space.



504 Chapter 6 Parallel Processors from Client to Cloud

Before proceeding further down the path to parallelism, don t forget our initial 
incursions from the earlier chapters:

■ Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization

■ Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Subword 
Parallelism

■ Chapter 4, Section 4.10: Parallelism via Instructions

■ Chapter 5, Section 5.10: Parallelism and Memory Hierarchy: Cache Coherence

True or false: To benefi t from a multiprocessor, an application must be concurrent.

 6.2 The Diffi culty of Creating Parallel 
Processing Programs

Th e diffi  culty with parallelism is not the hardware; it is that too few important 
application programs have been rewritten to complete tasks sooner on multiprocessors. 
It is diffi  cult to write soft ware that uses multiple processors to complete one task 
faster, and the problem gets worse as the number of processors increases.

Why has this been so? Why have parallel processing programs been so much 
harder to develop than sequential programs?

Th e fi rst reason is that you must get better performance or better energy 
effi  ciency from a parallel processing program on a multiprocessor; otherwise, you 
would just use a sequential program on a uniprocessor, as sequential programming 
is simpler. In fact, uniprocessor design techniques such as superscalar and out-of-
order execution take advantage of instruction-level parallelism (see Chapter 4), 
normally without the involvement of the programmer. Such innovations reduced 
the demand for rewriting programs for multiprocessors, since programmers 
could do nothing and yet their sequential programs would run faster on new 
computers.

Why is it diffi  cult to write parallel processing programs that are fast, especially 
as the number of processors increases? In Chapter 1, we used the analogy of 
eight reporters trying to write a single story in hopes of doing the work eight 
times faster. To succeed, the task must be broken into eight equal-sized pieces, 
because otherwise some reporters would be idle while waiting for the ones with 
larger pieces to fi nish. Another speed-up obstacle could be that the reporters 
would spend too much time communicating with each other instead of writing 
their pieces of the story. For both this analogy and parallel programming, 
the challenges include scheduling, partitioning the work into parallel pieces, 
balancing the load evenly between the workers, time to synchronize, and 

Check 
Yourself



overhead for communication between the parties. Th e challenge is stiff er with the 
more reporters for a newspaper story and with the more processors for parallel 
programming.

Our discussion in Chapter 1 reveals another obstacle, namely Amdahl s Law. It 
reminds us that even small parts of a program must be parallelized if the program 
is to make good use of many cores.

Speed-up Challenge

Suppose you want to achieve a speed-up of 90 times faster with 100 processors. 
What percentage of the original computation can be sequential?

Amdahl s Law (Chapter 1) says

Execution time after improvement =
Execution time affected byy improvement

Amount of improvement
Execution time unaffec+ tted

We can reformulate Amdahl s Law in terms of speed-up versus the original 
execution time:

Speed-up = Execution time before

(Execution time before Execu− ttion time affected) Execution time affected
+

Amount of improovement

Th is formula is usually rewritten assuming that the execution time before is 
1 for some unit of time, and the execution time aff ected by improvement is 
considered the fraction of the original execution time:

Speed-up = 1

(1 Fraction time affected) Fraction time affecte
− +

dd
Amount of improvement

Substituting 90 for speed-up and 100 for amount of improvement into the 
formula above:

90 = 1

(1 Fraction time affected) Fraction time affected
− +

100

EXAMPLE

ANSWER
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Th en simplifying the formula and solving for fraction time aff ected:

90 (1 0.99 Fraction time affected) = 1
90 (90 0.99 Fraction t
× − ×
− × × iime affected) = 1

90 = 90 0.99 Fraction time affected
Fractio

−1 × ×
nn time affected = 89/89.1 = 0.999

Th us, to achieve a speed-up of 90 from 100 processors, the sequential 
percentage can only be 0.1%.

Yet, there are applications with plenty of parallelism, as we shall see next.

Speed-up Challenge: Bigger Problem

Suppose you want to perform two sums: one is a sum of 10 scalar variables, and 
one is a matrix sum of a pair of two-dimensional arrays, with dimensions 10 by 10. 
For now let’s assume only the matrix sum is parallelizable; we’ll see soon how to 
parallelize scalar sums. What speed-up do you get with 10 versus 40 processors? 
Next, calculate the speed-ups assuming the matrices grow to 20 by 20.

If we assume performance is a function of the time for an addition, t, then 
there are 10 additions that do not benefi t from parallel processors and 100 
additions that do. If the time for a single processor is 110 t, the execution time 
for 10 processors is

Execution time after improvement =
Execution time affected byy improvement

Amount of improvement
Execution time unaffec+ tted

Execution time after improvement = 100
10

t t t+ =10 20

so the speed-up with 10 processors is 110t/20t = 5.5. Th e execution time for 
40 processors is

Execution time after improvement = 100
40

t t t+ =10 12 5.

so the speed-up with 40 processors is 110t/12.5t = 8.8. Th us, for this problem 
size, we get about 55% of the potential speed-up with 10 processors, but only 
22% with 40. 

EXAMPLE

ANSWER



Look what happens when we increase the matrix. Th e sequential program now 
takes 10t + 400t = 410t. Th e execution time for 10 processors is

Execution time after improvement = 400
10

t t t+ =10 50

so the speed-up with 10 processors is 410t/50t = 8.2. Th e execution time for 
40 processors is

Execution time after improvement = 400
40

t t t+ =10 20

so the speed-up with 40 processors is 410t/20t = 20.5. Th us, for this larger problem 
size, we get 82% of the potential speed-up with 10 processors and 51% with 40.

Th ese examples show that getting good speed-up on a multiprocessor while 
keeping the problem size fi xed is harder than getting good speed-up by increasing 
the size of the problem. Th is insight allows us to introduce two terms that describe 
ways to scale up.

Strong scaling means measuring speed-up while keeping the problem size fi xed. 
Weak scaling means that the problem size grows proportionally to the increase in 
the number of processors. Let’s assume that the size of the problem, M, is the working 
set in main memory, and we have P processors. Th en the memory per processor for 
strong scaling is approximately M/P, and for weak scaling, it is approximately M.

Note that the memory hierarchy can interfere with the conventional wisdom 
about weak scaling being easier than strong scaling. For example, if the weakly 
scaled dataset no longer fi ts in the last level cache of a multicore microprocessor, 
the resulting performance could be much worse than by using strong scaling.

Depending on the application, you can argue for either scaling approach. For 
example, the TPC-C debit-credit database benchmark requires that you scale up 
the number of customer accounts in proportion to the higher transactions per 
minute. Th e argument is that it s nonsensical to think that a given customer base 
is suddenly going to start using ATMs 100 times a day just because the bank gets a 
faster computer. Instead, if you re going to demonstrate a system that can perform 
100 times the numbers of transactions per minute, you should run the experiment 
with 100 times as many customers. Bigger problems oft en need more data, which 
is an argument for weak scaling.

Th is fi nal example shows the importance of load balancing.

Speed-up Challenge: Balancing Load

To achieve the speed-up of 20.5 on the previous larger problem with 40 
processors, we assumed the load was perfectly balanced. Th at is, each of the 40 

strong scaling Speed-
up achieved on a 
multiprocessor without 
increasing the size of the 
problem.

weak scaling Speed-
up achieved on a 
multiprocessor while 
increasing the size of the 
problem proportionally 
to the increase in the 
number of processors.

EXAMPLE
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processors had 2.5% of the work to do. Instead, show the impact on speed-up if 
one processor s load is higher than all the rest. Calculate at twice the load (5%) 
and fi ve times the load (12.5%) for that hardest working processor. How well 
utilized are the rest of the processors?

If one processor has 5% of the parallel load, then it must do 5% × 400 or 20 
additions, and the other 39 will share the remaining 380. Since they are operating 
simultaneously, we can just calculate the execution time as a maximum

Execution time after improvement = Max 380
39

20
1

t t,⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + 110t t= 30

Th e speed-up drops from 20.5 to 410t/30t = 14. Th e remaining 39 processors 
are utilized less than half the time: while waiting 20t for hardest working 
processor to fi nish, they only compute for 380t/39 = 9.7t. 

If one processor has 12.5% of the load, it must perform 50 additions. Th e 
formula is:

Execution time after improvement = Max 350
39

50
1

t t,⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + 110t t= 60

Th e speed-up drops even further to 410t/60t = 7. Th e rest of the processors 
are utilized less than 20% of the time (9t/50t). Th is example demonstrates the 
importance of balancing load, for just a single processor with twice the load 
of the others cuts speed-up by a third, and fi ve times the load on just one 
processor reduces speed-up by almost a factor of three.

Now that we better understand the goals and challenges of parallel processing, 
we give an overview of the rest of the chapter. Th e next Section (6.3) describes 
a much older classifi cation scheme than in Figure 6.1. In addition, it describes 
two styles of instruction set architectures that support running of sequential 
applications on parallel hardware, namely SIMD and vector. Section 6.4 then 
describes multithreading, a term oft en confused with multiprocessing, in part 
because it relies upon similar concurrency in programs. Section 6.5 describes the 
fi rst the two alternatives of a fundamental parallel hardware characteristic, which is 
whether or not all the processors in the systems rely upon a single physical address 
space. As mentioned above, the two popular versions of these alternatives are called 
shared memory multiprocessors (SMPs) and clusters, and this section covers the 
former. Section 6.6 describes a relatively new style of computer from the graphics 
hardware community, called a graphics-processing unit (GPU) that also assumes 
a single physical address. (  Appendix C describes GPUs in even more detail.) 
Section 6.7 describes clusters, a popular example of a computer with multiple 
physical address spaces.  Section 6.8 shows typical topologies used to connect many 
processors together, either server nodes in a cluster or cores in a microprocessor. 

 Section 6.9 describes the hardware and soft ware for communicating between 
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nodes in a cluster using Ethernet. It shows how to optimize its performance using 
custom soft ware and hardware. We next discuss the diffi  culty of fi nding parallel 
benchmarks in Section 6.10. Th is section also includes a simple, yet insightful 
performance model that helps in the design of applications as well as architectures. 
We use this model as well as parallel benchmarks in Section 6.11 to compare a 
multicore computer to a GPU. Section 6.12 divulges the fi nal and largest step in 
our journey of accelerating matrix multiply. For matrices that don’t fi t in the cache, 
parallel processing uses 16 cores to improve performance by a factor of 14. We 
close with fallacies and pitfalls and our conclusions for parallelism.

In the next section, we introduce acronyms that you probably have already seen 
to identify diff erent types of parallel computers.

True or false: Strong scaling is not bound by Amdahl s Law.

 6.3 SISD, MIMD, SIMD, SPMD, and Vector

One categorization of parallel hardware proposed in the 1960s is still used today. It 
was based on the number of instruction streams and the number of data streams. 
Figure 6.2 shows the categories. Th us, a conventional uniprocessor has a single 
instruction stream and single data stream, and a conventional multiprocessor has 
multiple instruction streams and multiple data streams. Th ese two categories are 
abbreviated SISD and MIMD, respectively.

While it is possible to write separate programs that run on diff erent processors 
on a MIMD computer and yet work together for a grander, coordinated goal, 
programmers normally write a single program that runs on all processors of an 
MIMD computer, relying on conditional statements when diff erent processors 
should execute diff erent sections of code. Th is style is called Single Program 
Multiple Data (SPMD), but it is just the normal way to program a MIMD computer.

Th e closest we can come to multiple instruction streams and single data stream 
(MISD) processor might be a “stream processor” that would perform a series of 
computations on a single data stream in a pipelined fashion: parse the input from 
the network, decrypt the data, decompress it, search for match, and so on. Th e 
inverse of MISD is much more popular. SIMD computers operate on vectors of 

Check 
Yourself

SISD or Single 
Instruction stream, 
Single Data stream. 
A uniprocessor.

MIMD or Multiple 
Instruction streams, 
Multiple Data streams. 
A multiprocessor.

SPMD Single Program, 
Multiple Data streams. 
Th e conventional MIMD 
programming model, 
where a single program 
runs across all processors.

SIMD or Single 
Instruction stream, 
Multiple Data streams. 
Th e same instruction 
is applied to many data 
streams, as in a vector 
processor.

FIGURE 6.2 Hardware categorization and examples based on number of instruction 
streams and data streams: SISD, SIMD, MISD, and MIMD.

Data Streams

Single Multiple

Instruction 

Streams

Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86

Multiple MISD: No examples today MIMD: Intel Core i7
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data. For example, a single SIMD instruction might add 64 numbers by sending 64 
data streams to 64 ALUs to form 64 sums within a single clock cycle. Th e subword 
parallel instructions that we saw in Sections 3.6 and 3.7 are another example of 
SIMD; indeed, the middle letter of Intel’s SSE acronym stands for SIMD.

Th e virtues of SIMD are that all the parallel execution units are synchronized and 
they all respond to a single instruction that emanates from a single program counter 
(PC). From a programmer s perspective, this is close to the already familiar SISD. 
Although every unit will be executing the same instruction, each execution unit has 
its own address registers, and so each unit can have diff erent data addresses. Th us, 
in terms of Figure 6.1, a sequential application might be compiled to run on serial 
hardware organized as a SISD or in parallel hardware that was organized as a SIMD.

Th e original motivation behind SIMD was to amortize the cost of the control 
unit over dozens of execution units. Another advantage is the reduced instruction 
bandwidth and space SIMD needs only one copy of the code that is being 
simultaneously executed, while message-passing MIMDs may need a copy in every 
processor, and shared memory MIMD will need multiple instruction caches.

SIMD works best when dealing with arrays in for loops. Hence, for parallelism 
to work in SIMD, there must be a great deal of identically structured data, which 
is called data-level parallelism. SIMD is at its weakest in case or switch 
statements, where each execution unit must perform a diff erent operation on its 
data, depending on what data it has. Execution units with the wrong data must be 
disabled so that units with proper data may continue. If there are n cases, in these 
situations SIMD processors essentially run at 1/nth of peak performance.

Th e so-called array processors that inspired the SIMD category have faded 
into history (see  Section 6.15 online), but two current interpretations of SIMD 
remain active today.

SIMD in x86: Multimedia Extensions
As described in Chapter 3, subword parallelism for narrow integer data was the 
original inspiration of the Multimedia Extension (MMX) instructions of the x86 
in 1996. As Moore’s Law continued, more instructions were added, leading fi rst 
to Streaming SIMD Extensions (SSE) and now Advanced Vector Extensions (AVX). 
AVX supports the simultaneous execution of four 64-bit fl oating-point numbers. 
Th e width of the operation and the registers is encoded in the opcode of these 
multimedia instructions. As the data width of the registers and operations grew, 
the number of opcodes for multimedia instructions exploded, and now there are 
hundreds of SSE and AVX instructions (see Chapter 3).

Vector
An older and, as we shall see, more elegant interpretation of SIMD is called a vector 
architecture, which has been closely identifi ed with computers designed by Seymour 
Cray starting in the 1970s. It is also a great match to problems with lots of data-level 
parallelism. Rather than having 64 ALUs perform 64 additions simultaneously, like 
the old array processors, the vector architectures pipelined the ALU to get good 
performance at lower cost. Th e basic philosophy of vector architecture is to collect 

data-level 
parallelism Parallelism 
achieved by performing 
the same operation on 
independent data.



data elements from memory, put them in order into a large set of registers, operate 
on them sequentially in registers using pipelined execution units, and then write 
the results back to memory. A key feature of vector architectures is then a set of 
vector registers. Th us, a vector architecture might have 32 vector registers, each 
with 64 64-bit elements.

Comparing Vector to Conventional Code

Suppose we extend the MIPS instruction set architecture with vector 
instructions and vector registers. Vector operations use the same names as 
MIPS operations, but with the letter V  appended. For example, addv.d 
adds two double-precision vectors. Th e vector instructions take as their input 
either a pair of vector registers (addv.d) or a vector register and a scalar 
register (addvs.d). In the latter case, the value in the scalar register is used 
as the input for all operations the operation addvs.d will add the contents 
of a scalar register to each element in a vector register. Th e names lv and sv 
denote vector load and vector store, and they load or store an entire vector 
of double-precision data. One operand is the vector register to be loaded or 
stored; the other operand, which is a MIPS general-purpose register, is the 
starting address of the vector in memory. Given this short description, show 
the conventional MIPS code versus the vector MIPS code for

Y a X Y= × +

where X and Y are vectors of 64 double precision fl oating-point numbers, 
initially resident in memory, and a is a scalar double precision variable. (Th is 
example is the so-called DAXPY loop that forms the inner loop of the Linpack 
benchmark; DAXPY stands for double precision a × X plus Y.). Assume that 
the starting addresses of X and Y are in $s0 and $s1, respectively.

Here is the conventional MIPS code for DAXPY:
 l.d $f0,a($sp) :load scalar a
 addiu $t0,$s0,#512 :upper bound of what to load

loop: l.d $f2,0($s0) :load x(i)
 mul.d $f2,$f2,$f0 :a x x(i)
 l.d $f4,0($s1) :load y(i)
 add.d $f4,$f4,$f2 :a x x(i) + y(i)
 s.d $f4,0($s1) :store into y(i)
 addiu $s0,$s0,#8 :increment index to x
 addiu $s1,$s1,#8 :increment index to y
 subu $t1,$t0,$s0 :compute bound
 bne $t1,$zero,loop :check if done

Here is the vector MIPS code for DAXPY:

EXAMPLE

ANSWER
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 l.d $f0,a($sp) :load scalar a
 lv $v1,0($s0) :load vector x
 mulvs.d $v2,$v1,$f0 :vector-scalar multiply
 lv $v3,0($s1) :load vector y
 addv.d $v4,$v2,$v3 :add y to product
 sv $v4,0($s1) :store the result

Th ere are some interesting comparisons between the two code segments in 
this example. Th e most dramatic is that the vector processor greatly reduces the 
dynamic instruction bandwidth, executing only 6 instructions versus almost 600 
for the traditional MIPS architecture. Th is reduction occurs both because the vector 
operations work on 64 elements at a time and because the overhead instructions 
that constitute nearly half the loop on MIPS are not present in the vector code. As 
you might expect, this reduction in instructions fetched and executed saves energy.

Another important diff erence is the frequency of pipeline hazards (Chapter 4). 
In the straightforward MIPS code, every add.d must wait for a mul.d, every 
s.d must wait for the add.d and every add.d and mul.d must wait on l.d. 
On the vector processor, each vector instruction will only stall for the fi rst element 
in each vector, and then subsequent elements will fl ow smoothly down the pipeline. 
Th us, pipeline stalls are required only once per vector operation, rather than once 
per vector element. In this example, the pipeline stall frequency on MIPS will be 
about 64 times higher than it is on the vector version of MIPS. Th e pipeline stalls 
can be reduced on MIPS by using loop unrolling (see Chapter 4). However, the 
large diff erence in instruction bandwidth cannot be reduced.

Since the vector elements are independent, they can be operated on in parallel, 
much like subword parallelism for AVX instructions. All modern vector computers 
have vector functional units with multiple parallel pipelines (called vector lanes; see 
Figures 6.2 and 6.3) that can produce two or more results per clock cycle.
Elaboration: The loop in the example above exactly matched the vector length. When 
loops are shorter, vector architectures use a register that reduces the length of vector 
operations. When loops are larger, we add bookkeeping code to iterate full-length vector 
operations and to handle the leftovers. This latter process is called strip mining.

Vector versus Scalar
Vector instructions have several important properties compared to conventional 
instruction set architectures, which are called scalar architectures in this context:

■ A single vector instruction specifi es a great deal of work it is equivalent 
to executing an entire loop. Th e instruction fetch and decode bandwidth 
needed is dramatically reduced.

■ By using a vector instruction, the compiler or programmer indicates that the 
computation of each result in the vector is independent of the computation of 
other results in the same vector, so hardware does not have to check for data 
hazards within a vector instruction.

■ Vector architectures and compilers have a reputation of making it much 
easier than when using MIMD multiprocessors to write effi  cient applications 
when they contain data-level parallelism.



■ Hardware need only check for data hazards between two vector instructions 
once per vector operand, not once for every element within the vectors. 
Reduced checking can save energy as well as time.

■ Vector instructions that access memory have a known access pattern. If 
the vector s elements are all adjacent, then fetching the vector from a set 
of heavily interleaved memory banks works very well. Th us, the cost of the 
latency to main memory is seen only once for the entire vector, rather than 
once for each word of the vector.

■ Because an entire loop is replaced by a vector instruction whose behavior 
is predetermined, control hazards that would normally arise from the loop 
branch are nonexistent.

■ Th e savings in instruction bandwidth and hazard checking plus the effi  cient 
use of memory bandwidth give vector architectures advantages in power and 
energy versus scalar architectures.

For these reasons, vector operations can be made faster than a sequence of 
scalar operations on the same number of data items, and designers are motivated 
to include vector units if the application domain can oft en use them.

Vector versus Multimedia Extensions
Like multimedia extensions found in the x86 AVX instructions, a vector instruction 
specifi es multiple operations. However, multimedia extensions typically specify a 
few operations while vector specifi es dozens of operations. Unlike multimedia 
extensions, the number of elements in a vector operation is not in the opcode but in a 
separate register. Th is distinction means diff erent versions of the vector architecture 
can be implemented with a diff erent number of elements just by changing the 
contents of that register and hence retain binary compatibility. In contrast, a new 
large set of opcodes is added each time the vector  length changes in the multimedia 
extension architecture of the x86: MMX, SSE, SSE2, AVX, AVX2, … .

Also unlike multimedia extensions, the data transfers need not be contiguous. 
Vectors support both strided accesses, where the hardware loads every nth data 
element in memory, and indexed accesses, where hardware fi nds the addresses of 
the items to be loaded in a vector register. Indexed accesses are also called gather-
scatter, in that indexed loads gather elements from main memory into contiguous 
vector elements and indexed stores scatter vector elements across main memory.

Like multimedia extensions, vector architectures easily capture the fl exibility 
in data widths, so it is easy to make a vector operation work on 32 64-bit data 
elements or 64 32-bit data elements or 128 16-bit data elements or 256 8-bit data 
elements. Th e parallel semantics of a vector instruction allows an implementation 
to execute these operations using a deeply pipelined functional unit, an array of 
parallel functional units, or a combination of parallel and pipelined functional 
units. Figure 6.3 illustrates how to improve vector performance by using parallel 
pipelines to execute a vector add instruction.

Vector arithmetic instructions usually only allow element N of one vector 
register to take part in operations with element N from other vector registers. Th is 
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dramatically simplifi es the construction of a highly parallel vector unit, which can 
be structured as multiple parallel vector lanes. As with a traffi  c highway, we can 
increase the peak throughput of a vector unit by adding more lanes. Figure 6.4 
shows the structure of a four-lane vector unit. Th us, going to four lanes from one 
lane reduces the number of clocks per vector instruction by roughly a factor of four. 
For multiple lanes to be advantageous, both the applications and the architecture 
must support long vectors. Otherwise, they will execute so quickly that you’ll run 
out of instructions, requiring instruction level parallel techniques like those in 
Chapter 4 to supply enough vector instructions.

Generally, vector architectures are a very effi  cient way to execute data parallel 
processing programs; they are better matches to compiler technology than 
multimedia extensions; and they are easier to evolve over time than the multimedia 
extensions to the x86 architecture.

Given these classic categories, we next see how to exploit parallel streams of 
instructions to improve the performance of a single processor, which we will reuse 
with multiple processors.

True or false: As exemplifi ed in the x86, multimedia extensions can be thought of 
as a vector architecture with short vectors that supports only contiguous vector 
data transfers.

vector lane One or 
more vector functional 
units and a portion of 
the vector register fi le. 
Inspired by lanes on 
highways that increase 
traffi  c speed, multiple 
lanes execute vector 
operations 
simultaneously.
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FIGURE 6.3 Using multiple functional units to improve the performance of a single vector 
add instruction, C = A + B. Th e vector processor (a) on the left  has a single add pipeline and can complete 
one addition per cycle. Th e vector processor (b) on the right has four add pipelines or lanes and can complete 
four additions per cycle. Th e elements within a single vector add instruction are interleaved across the four 
lanes.



Elaboration: Given the advantages of vector, why aren’t they more popular outside 
high-performance computing? There were concerns about the larger state for vector 
registers increasing context switch time and the diffi culty of handling page faults in 
vector loads and stores, and SIMD instructions achieved some of the benefi ts of vector 
instructions.  In addition, as long as advances in instruction level parallelism could 
deliver on the performance promise of Moore’s Law, there was little reason to take the 
chance of changing architecture styles.

Elaboration: Another advantage of vector and multimedia extensions is that it is 
relatively easy to extend a scalar instruction set architecture with these instructions to 
improve performance of data parallel operations.

Elaboration: The Haswell-generation x86 processors from Intel support AVX2, which 
has a gather operation but not a scatter operation.

Lane 0 Lane 1 Lane 2 Lane 3

FP add
pipe 0

FP mul
pipe 0

Vector
registers:
elements
0,4,8,...

FP add
pipe 1

FP mul
pipe 1

Vector
registers:
elements
1,5,9,...

FP add
pipe 2

FP mul
pipe 2

Vector
registers:
elements
2,6,10,...

FP add
pipe 3

FP mul
pipe 3

Vector
registers:
elements
3,7,11,...

Vector load store unit

FIGURE 6.4 Structure of a vector unit containing four lanes. Th e vector-register storage is 
divided across the lanes, with each lane holding every fourth element of each vector register. Th e fi gure 
shows three vector functional units: an FP add, an FP multiply, and a load-store unit. Each of the vector 
arithmetic units contains four execution pipelines, one per lane, which acts in concert to complete a single 
vector instruction. Note how each section of the vector-register fi le only needs to provide enough read and 
write ports (see Chapter 4) for functional units local to its lane. 

 6.3 SISD, MIMD, SIMD, SPMD, and Vector 515



516 Chapter 6 Parallel Processors from Client to Cloud

 6.4 Hardware Multithreading

A related concept to MIMD, especially from the programmer’s perspective, is 
hardware multithreading. While MIMD relies on multiple processes or threads 
to try to keep multiple processors busy, hardware multithreading allows multiple 
threads to share the functional units of a single processor in an overlapping fashion 
to try to utilize the hardware resources effi  ciently. To permit this sharing, the 
processor must duplicate the independent state of each thread. For example, each 
thread would have a separate copy of the register fi le and the program counter. 
Th e memory itself can be shared through the virtual memory mechanisms, which 
already support multi-programming. In addition, the hardware must support the 
ability to change to a diff erent thread relatively quickly. In particular, a thread 
switch should be much more effi  cient than a process switch, which typically 
requires hundreds to thousands of processor cycles while a thread switch can be 
instantaneous.

Th ere are two main approaches to hardware multithreading. Fine-grained 
multithreading switches between threads on each instruction, resulting in 
interleaved execution of multiple threads. Th is interleaving is oft en done in a 
round-robin fashion, skipping any threads that are stalled at that clock cycle. To 
make fi ne-grained multithreading practical, the processor must be able to switch 
threads on every clock cycle. One advantage of fi ne-grained multithreading is 
that it can hide the throughput losses that arise from both short and long stalls, 
since instructions from other threads can be executed when one thread stalls. Th e 
primary disadvantage of fi ne-grained multithreading is that it slows down the 
execution of the individual threads, since a thread that is ready to execute without 
stalls will be delayed by instructions from other threads.

Coarse-grained multithreading was invented as an alternative to fi ne-grained 
multithreading. Coarse-grained multithreading switches threads only on costly 
stalls, such as last-level cache misses. Th is change relieves the need to have thread 
switching be extremely fast and is much less likely to slow down the execution of an 
individual thread, since instructions from other threads will only be issued when 
a thread encounters a costly stall. Coarse-grained multithreading suff ers, however, 
from a major drawback: it is limited in its ability to overcome throughput losses, 
especially from shorter stalls. Th is limitation arises from the pipeline start-up 
costs of coarse-grained multithreading. Because a processor with coarse-grained 
multithreading issues instructions from a single thread, when a stall occurs, the 
pipeline must be emptied or frozen. Th e new thread that begins executing aft er 
the stall must fi ll the pipeline before instructions will be able to complete. Due 
to this start-up overhead, coarse-grained multithreading is much more useful for 
reducing the penalty of high-cost stalls, where pipeline refi ll is negligible compared 
to the stall time.

hardware 
multithreading 
Increasing utilization of a 
processor by switching to 
another thread when one 
thread is stalled.

thread A thread includes 
the program counter, the 
register state, and the 
stack. It is a lightweight 
process; whereas threads 
commonly share a single 
address space, processes 
don’t.

process A process 
includes one or more 
threads, the address space, 
and the operating system 
state. Hence, a process 
switch usually invokes the 
operating system, but not 
a thread switch.

fi ne-grained 
multithreading 
A version of hardware 
multithreading that 
implies switching between 
threads aft er every 
instruction.

coarse-grained 
multithreading 
A version of hardware 
multithreading that 
implies switching between 
threads only aft er 
signifi cant events, such as 
a last-level cache miss.



Simultaneous multithreading (SMT) is a variation on hardware multithreading 
that uses the resources of a multiple-issue, dynamically scheduled pipelined 
processor to exploit thread-level parallelism at the same time it exploits instruction-
level parallelism (see Chapter 4). Th e key insight that motivates SMT is that 
multiple-issue processors oft en have more functional unit parallelism available 
than most single threads can eff ectively use. Furthermore, with register renaming 
and dynamic scheduling (see Chapter 4), multiple instructions from independent 
threads can be issued without regard to the dependences among them; the resolution 
of the dependences can be handled by the dynamic scheduling capability.

Since SMT relies on the existing dynamic mechanisms, it does not switch 
resources every cycle. Instead, SMT is always executing instructions from multiple 
threads, leaving it up to the hardware to associate instruction slots and renamed 
registers with their proper threads.

Figure 6.5 conceptually illustrates the diff erences in a processor s ability to exploit 
superscalar resources for the following processor confi gurations. Th e top portion shows 

simultaneous 
multithreading 
(SMT) A version 
of multithreading 
that lowers the cost 
of multithreading by 
utilizing the resources 
needed for multiple issue, 
dynamically scheduled 
microarchitecture.

FIGURE 6.5 How four threads use the issue slots of a superscalar processor in different 
approaches. Th e four threads at the top show how each would execute running alone on a standard 
superscalar processor without multithreading support. Th e three examples at the bottom show how they 
would execute running together in three multithreading options. Th e horizontal dimension represents the 
instruction issue capability in each clock cycle. Th e vertical dimension represents a sequence of clock cycles. 
An empty (white) box indicates that the corresponding issue slot is unused in that clock cycle. Th e shades of 
gray and color correspond to four diff erent threads in the multithreading processors. Th e additional pipeline 
start-up eff ects for coarse multithreading, which are not illustrated in this fi gure, would lead to further loss 
in throughput for coarse multithreading.

Issue slots

Thread C Thread DThread A Thread B

Time

Time

SMTCoarse MT Fine MT
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how four threads would execute independently on a superscalar with no multithreading 
support. Th e bottom portion shows how the four threads could be combined to execute 
on the processor more effi  ciently using three multithreading options:

■ A superscalar with coarse-grained multithreading

■ A superscalar with fi ne-grained multithreading

■ A superscalar with simultaneous multithreading

In the superscalar without hardware multithreading support, the use of issue 
slots is limited by a lack of instruction-level parallelism. In addition, a major stall, 
such as an instruction cache miss, can leave the entire processor idle.

In the coarse-grained multithreaded superscalar, the long stalls are partially 
hidden by switching to another thread that uses the resources of the processor. 
Although this reduces the number of completely idle clock cycles, the pipeline 
start-up overhead still leads to idle cycles, and limitations to ILP means all issue 
slots will not be used. In the fi ne-grained case, the interleaving of threads mostly 
eliminates idle clock cycles. Because only a single thread issues instructions in a 
given clock cycle, however, limitations in instruction-level parallelism still lead to 
idle slots within some clock cycles.
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FIGURE 6.6 The speed-up from using multithreading on one core on an i7 processor 
averages 1.31 for the PARSEC benchmarks (see  Section 6.9) and the energy effi ciency 
improvement is 1.07. Th is data was collected and analyzed by Esmaeilzadeh et. al. [2011].



In the SMT case, thread-level parallelism and instruction-level parallelism are 
both exploited, with multiple threads using the issue slots in a single clock cycle. 
Ideally, the issue slot usage is limited by imbalances in the resource needs and 
resource availability over multiple threads. In practice, other factors can restrict 
how many slots are used. Although Figure 6.5 greatly simplifi es the real operation 
of these processors, it does illustrate the potential performance advantages of 
multithreading in general and SMT in particular. 

Figure 6.6 plots the performance and energy benefi ts of multithreading on a 
single processors of the Intel Core i7 960, which has hardware support for two 
threads. Th e average speed-up is 1.31, which is not bad given the modest extra 
resources for hardware multithreading. Th e average improvement in energy 
effi  ciency is 1.07, which is excellent. In general, you’d be happy with a performance 
speed-up being energy neutral.

Now that we have seen how multiple threads can utilize the resources of a single 
processor more eff ectively, we next show how to use them to exploit multiple 
processors.

1. True or false: Both multithreading and multicore rely on parallelism to get 
more effi  ciency from a chip.

2. True or false: Simultaneous multithreading (SMT) uses threads to improve 
resource utilization of a dynamically scheduled, out-of-order processor.

 6.5 Multicore and Other Shared Memory 
Multiprocessors

While hardware multithreading improved the effi  ciency of processors at modest 
cost, the big challenge of the last decade has been to deliver on the performance 
potential of Moore’s Law by effi  ciently programming the increasing number of 
processors per chip.

Given the diffi  culty of rewriting old programs to run well on parallel hardware, 
a natural question is: what can computer designers do to simplify the task? One 
answer was to provide a single physical address space that all processors can share, 
so that programs need not concern themselves with where their data is, merely that 
programs may be executed in parallel. In this approach, all variables of a program 
can be made available at any time to any processor. Th e alternative is to have a 
separate address space per processor that requires that sharing must be explicit; 
we ll describe this option in the Section 6.7. When the physical address space is 
common then the hardware typically provides cache coherence to give a consistent 
view of the shared memory (see Section 5.8).

As mentioned above, a shared memory multiprocessor (SMP) is one that off ers 
the programmer a single physical address space across all processors which is 

Check 
Yourself
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nearly always the case for multicore chips although a more accurate term would 
have been shared-address multiprocessor. Processors communicate through shared 
variables in memory, with all processors capable of accessing any memory location 
via loads and stores. Figure 6.7 shows the classic organization of an SMP. Note that 
such systems can still run independent jobs in their own virtual address spaces, 
even if they all share a physical address space.

Single address space multiprocessors come in two styles. In the fi rst style, the 
latency to a word in memory does not depend on which processor asks for it. 
Such machines are called uniform memory access (UMA) multiprocessors. In the 
second style, some memory accesses are much faster than others, depending on 
which processor asks for which word, typically because main memory is divided 
and attached to diff erent microprocessors or to diff erent memory controllers on 
the same chip. Such machines are called nonuniform memory access (NUMA) 
multiprocessors. As you might expect, the programming challenges are harder for 
a NUMA multiprocessor than for a UMA multiprocessor, but NUMA machines 
can scale to larger sizes and NUMAs can have lower latency to nearby memory.

As processors operating in parallel will normally share data, they also need to 
coordinate when operating on shared data; otherwise, one processor could start 
working on data before another is fi nished with it. Th is coordination is called 
synchronization, which we saw in Chapter 2. When sharing is supported with a 
single address space, there must be a separate mechanism for synchronization. One 
approach uses a lock for a shared variable. Only one processor at a time can acquire 
the lock, and other processors interested in shared data must wait until the original 
processor unlocks the variable. Section 2.11 of Chapter 2 describes the instructions 
for locking in the MIPS instruction set.

uniform memory access 
(UMA) A multiprocessor 
in which latency to any 
word in main memory is 
about the same no matter 
which processor requests 
the access.

nonuniform memory 
access (NUMA) A type 
of single address space 
multiprocessor in which 
some memory accesses 
are much faster than 
others depending on 
which processor asks for 
which word.

synchronization Th e 
process of coordinating 
the behavior of two or 
more processes, which 
may be running on 
diff erent processors.

lock A synchronization 
device that allows access 
to data to only one 
processor at a time.

FIGURE 6.7 Classic organization of a shared memory multiprocessor.
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A Simple Parallel Processing Program for a Shared Address Space

Suppose we want to sum 64,000 numbers on a shared memory multiprocessor 
computer with uniform memory access time. Let s assume we have 64 
processors.

Th e fi rst step is to ensure a balanced load per processor, so we split the set 
of numbers into subsets of the same size. We do not allocate the subsets to a 
diff erent memory space, since there is a single memory space for this machine; 
we just give diff erent starting addresses to each processor. Pn is the number that 
identifi es the processor, between 0 and 63. All processors start the program by 
running a loop that sums their subset of numbers:

   sum[Pn] = 0;
   for (i = 1000*Pn; i < 1000*(Pn+1); i += 1)
     sum[Pn] += A[i]; /*sum the assigned areas*/

(Note the C code i += 1 is just a shorter way to say i = i + 1.)

Th e next step is to add these 64 partial sums. Th is step is called a reduction, 
where we divide to conquer. Half of the processors add pairs of partial sums, 
and then a quarter add pairs of the new partial sums, and so on until we 
have the single, fi nal sum. Figure 6.8 illustrates the hierarchical nature of this 
reduction.

In this example, the two processors must synchronize before the consumer  
processor tries to read the result from the memory location written by the 
producer  processor; otherwise, the consumer may read the old value of 

EXAMPLE

ANSWER

reduction A function 
that processes a data 
structure and returns a 
single value.

0

0 1

0 1 2 3

0 1 2 3 4 5 6 7

(half = 1)

(half = 2)

(half = 4)

FIGURE 6.8 The last four levels of a reduction that sums results from each processor, 
from bottom to top. For all processors whose number i is less than half, add the sum produced by 
processor number (i + half) to its sum.
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the data. We want each processor to have its own version of the loop counter 
variable  i, so we must indicate that it is a private  variable. Here is the code 
(half is private also):

   half = 64; /*64 processors in multiprocessor*/
   do
       synch(); /*wait for partial sum completion*/
       if (half%2 != 0 && Pn == 0)
           sum[0] += sum[half–1];
           /*Conditional sum needed when half is
           odd; Processor0 gets missing element */
           half = half/2; /*dividing line on who sums */
           if (Pn < half) sum[Pn] += sum[Pn+half];
   while (half > 1); /*exit with final sum in Sum[0] */

Given the long-term interest in parallel programming, there have been hundreds 
of attempts to build parallel programming systems. A limited but popular example 
is OpenMP. It is just an Application Programmer Interface (API) along with a set of 
compiler directives, environment variables, and runtime library routines that can 
extend standard programming languages. It off ers a portable, scalable, and simple 
programming model for shared memory multiprocessors. Its primary goal is to 
parallelize loops and to perform reductions. 

Most C compilers already have support for OpenMP.  Th e command to uses the 
OpenMP API with the UNIX C compiler is just:

cc –fopenmp foo.c

OpenMP extends C using pragmas, which are just commands to the C macro 
preprocessor like #define and #include. To set the number of processors we 
want to use to be 64, as we wanted in the example above, we just use the command

#define P 64 /* define a constant that we’ll use a few times */
#pragma omp parallel num_threads(P)

Th at is, the runtime libraries should use 64 parallel threads. 
To turn the sequential for loop into a parallel for loop that divides the work 

equally between all the threads that we told it to use, we just write (assuming sum 
is initialized to 0)

#pragma omp parallel for
for (Pn = 0; Pn < P; Pn += 1)
  for (i = 0; 1000*Pn; i < 1000*(Pn+1); i += 1)
    sum[Pn] += A[i]; /*sum the assigned areas*/

Hardware/
Software 
Interface

OpenMP An API 
for shared memory 
multiprocessing in C, 
C++, or Fortran that runs 
on UNIX and Microsoft  
platforms. It includes 
compiler directives, a 
library, and runtime 
directives.



To perform the reduction, we can use another command that tells OpenMP 
what the reduction operator is and what variable you need to use to place the result 
of the reduction.

#pragma omp parallel for reduction(+ : FinalSum)
for (i = 0; i < P; i += 1)
     FinalSum += sum[i]; /* Reduce to a single number */

Note that it is now up to the OpenMP library to fi nd effi  cient code to sum 64 
numbers effi  ciently using 64 processors.

While OpenMP makes it easy to write simple parallel code, it is not very helpful 
with debugging, so many parallel programmers use more sophisticated parallel 
programming systems than OpenMP, just as many programmers today use more 
productive languages than C.

Given this tour of classic MIMD hardware and soft ware, our next path is a more 
exotic tour of a type of MIMD architecture with a diff erent heritage and thus a very 
diff erent perspective on the parallel programming challenge. 

True or false: Shared memory multiprocessors cannot take advantage of task-level 
parallelism.

Elaboration: Some writers repurposed the acronym SMP to mean symmetric 
multiprocessor, to indicate that the latency from processor to memory was about the 
same for all processors. This shift was done to contrast them from large-scale NUMA 
multiprocessors, as both classes used a single address space. As clusters proved much 
more popular than large-scale NUMA multiprocessors, in this book we restore SMP to 
its original meaning, and use it to contrast against that use multiple address spaces, 
such as clusters.

Elaboration: An alternative to sharing the physical address space would be to have 
separate physical address spaces but share a common virtual address space, leaving 
it up to the operating system to handle communication. This approach has been tried, 
but it has too high an overhead to offer a practical shared memory abstraction to the 
performance-oriented programmer.
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 6.6 Introduction to Graphics Processing Units

Th e original justifi cation for adding SIMD instructions to existing architectures 
was that many microprocessors were connected to graphics displays in PCs and 
workstations, so an increasing fraction of processing time was used for graphics. 
As Moore’s Law increased the number of transistors available to microprocessors, 
it therefore made sense to improve graphics processing.

A major driving force for improving graphics processing was the computer game 
industry, both on PCs and in dedicated game consoles such as the Sony PlayStation. 
Th e rapidly growing game market encouraged many companies to make increasing 
investments in developing faster graphics hardware, and this positive feedback loop 
led graphics processing to improve at a faster rate than general-purpose processing 
in mainstream microprocessors.

Given that the graphics and game community had diff erent goals than the 
microprocessor development community, it evolved its own style of processing and 
terminology. As the graphics processors increased in power, they earned the name 
Graphics Processing Units or GPUs to distinguish themselves from CPUs. 

For a few hundred dollars, anyone can buy a GPU today with hundreds of 
parallel fl oating-point units, which makes high-performance computing more 
accessible. Th e interest in GPU computing blossomed when this potential was 
combined with a programming language that made GPUs easier to program. 
Hence, many programmers of scientifi c and multimedia applications today are 
pondering whether to use GPUs or CPUs.

(Th is section concentrates on using GPUs for computing. To see how GPU 
computing combines with the traditional role of graphics acceleration, see 

 Appendix C.)
Here are some of the key characteristics as to how GPUs vary from CPUs:

■ GPUs are accelerators that supplement a CPU, so they do not need be able 
to perform all the tasks of a CPU. Th is role allows them to dedicate all their 
resources to graphics. It s fi ne for GPUs to perform some tasks poorly or not 
at all, given that in a system with both a CPU and a GPU, the CPU can do 
them if needed. 

■ Th e GPU problems sizes are typically hundreds of megabytes to gigabytes, 
but not hundreds of gigabytes to terabytes.

Th ese diff erences led to diff erent styles of architecture:

■ Perhaps the biggest diff erence is that GPUs do not rely on multilevel caches 
to overcome the long latency to memory, as do CPUs. Instead, GPUs rely on 
hardware multithreading (Section 6.4) to hide the latency to memory. Th at is, 
between the time of a memory request and the time that data arrives, the GPU 
executes hundreds or thousands of threads that are independent of that request.



■ Th e GPU memory is thus oriented toward bandwidth rather than latency. 
Th ere are even special graphics DRAM chips for GPUs that are wider and 
have higher bandwidth than DRAM chips for CPUs. In addition, GPU 
memories have traditionally had smaller main memories than conventional 
microprocessors. In 2013, GPUs typically have 4 to 6 GiB or less, while 
CPUs have 32 to 256 GiB. Finally, keep in mind that for general-purpose 
computation, you must include the time to transfer the data between CPU 
memory and GPU memory, since the GPU is a coprocessor.

■ Given the reliance on many threads to deliver good memory bandwidth, 
GPUs can accommodate many parallel processors (MIMD) as well as many 
threads. Hence, each GPU processor is more highly multithreaded than a 
typical CPU, plus they have more processors.

Although GPUs were designed for a narrower set of applications, some programmers 
wondered if they could specify their applications in a form that would let them 
tap the high potential performance of GPUs. Aft er tiring of trying to specify their 
problems using the graphics APIs and languages, they developed C-inspired 
programming languages to allow them to write programs directly for the GPUs. 
An example is NVIDIA s CUDA (Compute Unifi ed Device Architecture), which 
enables the programmer to write C programs to execute on GPUs, albeit with some 
restrictions.  Appendix C gives examples of CUDA code. (OpenCL is a multi-
company initiative to develop a portable programming language that provides 
many of the benefi ts of CUDA.) 

NVIDIA decided that the unifying theme of all these forms of parallelism is 
the CUDA Th read. Using this lowest level of parallelism as the programming 
primitive, the compiler and the hardware can gang thousands of CUDA Th reads 
together to utilize the various styles of parallelism within a GPU: multithreading, 
MIMD, SIMD, and instruction-level parallelism. Th ese threads are blocked 
together and executed in groups of 32 at a time. A multithreaded processor inside 
a GPU executes these blocks of threads, and a GPU consists of 8 to 32 of these 
multithreaded processors. 

An Introduction to the NVIDIA GPU Architecture
We use NVIDIA systems as our example as they are representative of GPU 
architectures. Specifi cally, we follow the terminology of the CUDA parallel 
programming language and use the Fermi architecture as the example.

Like vector architectures, GPUs work well only with data-level parallel problems. 
Both styles have gather-scatter data transfers, and GPU processors have even more 
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registers than do vector processors. Unlike most vector architectures, GPUs also 
rely on hardware multithreading within a single multi-threaded SIMD processor 
to hide memory latency (see Section 6.4).

A multithreaded SIMD processor is similar to a Vector Processor, but the former 
has many parallel functional units instead of just a few that are deeply pipelined, 
as does the latter. 

As mentioned above, a GPU contains a collection of multithreaded SIMD 
processors; that is, a GPU is a MIMD composed of multithreaded SIMD processors. 
For example, NVIDIA has four implementations of the Fermi architecture at 
diff erent price points with 7, 11, 14, or 15 multithreaded SIMD processors. To 
provide transparent scalability across models of GPUs with diff ering number of 
multithreaded SIMD processors, the Th read Block Scheduler hardware assigns 
blocks of threads to multithreaded SIMD processors.  Figure 6.9 shows a simplifi ed 
block diagram of a multithreaded SIMD processor.

Dropping down one more level of detail, the machine object that the hardware 
creates, manages, schedules, and executes is a thread of SIMD instructions, which 
we will also call a SIMD thread. It is a traditional thread, but it contains exclusively 
SIMD instructions. Th ese SIMD threads have their own program counters and 
they run on a multithreaded SIMD processor. Th e SIMD Th read Scheduler includes 
a controller that lets it know which threads of SIMD instructions are ready to 
run, and then it sends them off  to a dispatch unit to be run on the multithreaded 

FIGURE 6.9 Simplifi ed block diagram of the datapath of a multithreaded SIMD Processor. 
It has 16 SIMD lanes. Th e SIMD Th read Scheduler has many independent SIMD threads that it chooses from 
to run on this processor.
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SIMD processor. It is identical to a hardware thread scheduler in a traditional 
multithreaded processor (see Section 6.4), except that it is scheduling threads of 
SIMD instructions. Th us, GPU hardware has two levels of hardware schedulers: 

1. Th e Th read Block Scheduler that assigns blocks of threads to multithreaded 
SIMD processors, and 

2. the SIMD Th read Scheduler within a SIMD processor, which schedules 
when SIMD threads should run.

Th e SIMD instructions of these threads are 32 wide, so each thread of SIMD 
instructions would compute 32 of the elements of the computation. Since the 
thread consists of SIMD instructions, the SIMD processor must have parallel 
functional units to perform the operation. We call them SIMD Lanes, and they are 
quite similar to the Vector Lanes in Section 6.3.

Elaboration: The number of lanes per SIMD processor varies across GPU generations. 
With Fermi, each 32-wide thread of SIMD instructions is mapped to 16 SIMD Lanes, 
so each SIMD instruction in a thread of SIMD instructions takes two clock cycles to 
complete. Each thread of SIMD instructions is executed in lock step. Staying with the 
analogy of a SIMD processor as a vector processor, you could say that it has 16 lanes, 
and the vector length would be 32. This wide but shallow nature is why we use the term 
SIMD processor instead of vector processor, as it is more intuitive.

Since by defi nition the threads of SIMD instructions are independent, the SIMD 
Thread Scheduler can pick whatever thread of SIMD instructions is ready, and need not 
stick with the next SIMD instruction in the sequence within a single thread. Thus, using 
the terminology of Section 6.4, it uses fi ne-grained multithreading.

To hold these memory elements, a Fermi SIMD processor has an impressive 32,768 
32-bit registers. Just like a vector processor, these registers are divided logically across 
the vector lanes or, in this case, SIMD Lanes. Each SIMD Thread is limited to no more than 
64 registers, so you might think of a SIMD Thread as having up to 64 vector registers, 
with each vector register having 32 elements and each element being 32 bits wide.

Since Fermi has 16 SIMD Lanes, each contains 2048 registers. Each CUDA Thread 
gets one element of each of the vector registers.  Note that a CUDA thread is just a 
vertical cut of a thread of SIMD instructions, corresponding to one element executed by 
one SIMD Lane. Beware that CUDA Threads are very different from POSIX threads; you 
can t make arbitrary system calls or synchronize arbitrarily in a CUDA Thread.

NVIDIA GPU Memory Structures
Figure 6.10 shows the memory structures of an NVIDIA GPU. We call the on-
chip memory that is local to each multithreaded SIMD processor Local Memory. 
It is shared by the SIMD Lanes within a multithreaded SIMD processor, but this 
memory is not shared between multithreaded SIMD processors. We call the off -
chip DRAM shared by the whole GPU and all thread blocks GPU Memory. 

Rather than rely on large caches to contain the whole working sets of an 
application, GPUs traditionally use smaller streaming caches and rely on extensive 
multithreading of threads of SIMD instructions to hide the long latency to DRAM, 
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since their working sets can be hundreds of megabytes. Th us, they will not fi t 
in the last level cache of a multicore microprocessor. Given the use of hardware 
multithreading to hide DRAM latency, the chip area used for caches in system 
processors is spent instead on computing resources and on the large number of 
registers to hold the state of the many threads of SIMD instructions. 

Elaboration: While hiding memory latency is the underlying philosophy, note that the 
latest GPUs and vector processors have added caches. For example, the recent Fermi 
architecture has added caches, but they are thought of as either bandwidth fi lters to 
reduce demands on GPU Memory or as accelerators for the few variables whose latency 
cannot be hidden by multithreading. Local memory for stack frames, function calls, 
and register spilling is a good match to caches, since latency matters when calling a 
function. Caches can also save energy, since on-chip cache accesses take much less 
energy than accesses to multiple, external DRAM chips.

CUDA Thread

Thread block

Per-Block
Local Memory

Grid 0 

. . . 

Grid 1 

. . . 

GPU Memory

Sequence

Inter-Grid Synchronization

Per-CUDA Thread Private Memory

FIGURE 6.10 GPU Memory structures. GPU Memory is shared by the vectorized loops. All threads 
of SIMD instructions within a thread block share Local Memory.



Putting GPUs into Perspective
At a high level, multicore computers with SIMD instruction extensions do share 

similarities with GPUs. Figure 6.11 summarizes the similarities and diff erences. 
Both are MIMDs whose processors use multiple SIMD lanes, although GPUs 
have more processors and many more lanes. Both use hardware multithreading 
to improve processor utilization, although GPUs have hardware support for many 
more threads. Both use caches, although GPUs use smaller streaming caches and 
multicore computers use large multilevel caches that try to contain whole working 
sets completely. Both use a 64-bit address space, although the physical main 
memory is much smaller in GPUs. While GPUs support memory protection at the 
page level, they do not yet support demand paging.

SIMD processors are also similar to vector processors. Th e multiple SIMD 
processors in GPUs act as independent MIMD cores, just as many vector computers 
have multiple vector processors. Th is view would consider the Fermi GTX 580 as 
a 16-core machine with hardware support for multithreading, where each core has 
16 lanes. Th e biggest diff erence is multithreading, which is fundamental to GPUs 
and missing from most vector processors.

GPUs and CPUs do not go back in computer architecture genealogy to a 
common ancestor; there is no Missing Link that explains both. As a result of this 
uncommon heritage, GPUs have not used  the terms common in the computer 
architecture community, which has led to confusion about what GPUs are and 
how they work. To help resolve the confusion, Figure 6.12 (from left  to right) lists 
the more descriptive term used in this section, the closest term from mainstream 
computing, the offi  cial NVIDIA GPU term in case you are interested, and then 
a short description of the term. Th is “GPU Rosetta Stone” may help relate this 
section and ideas to more conventional GPU descriptions, such as those found in 

 Appendix C.
While GPUs are moving toward mainstream computing, they can t abandon 

their responsibility to continue to excel at graphics. Th us, the design of GPUs may 

Feature Multicore with SIMD GPU

SIMD processors

SIMD lanes/processor

Multithreading hardware support for SIMD threads

Largest cache size

Size of memory address

Size of main memory

Memory protection at level of page

Demand paging

Cache coherent

4 to 8 8 to 16

8 to 16

16 to 32

2 to 4

2 to 4

8 MiB 0.75 MiB

8 GiB to 256 GiB 4 GiB to 6 GiB

64-bit 64-bit

Yes Yes

No

No

Yes

Yes

FIGURE 6.11 Similarities and differences between multicore with Multimedia SIMD 
extensions and recent GPUs.
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make more sense when architects ask, given the hardware invested to do graphics 
well, how can we supplement it to improve the performance of a wider range of 
applications?

Having covered two diff erent styles of MIMD that have a shared address 
space, we next introduce parallel processors where each processor has its 
own private address space, which makes it much easier to build much larger 
systems. Th e Internet services that you use every day depend on these large scale 
systems.

Type
More descriptive
name

Vectorizable
Loop

Body of
Vectorized Loop

Body of a
(Strip-Mined)
Vectorized Loop

Thread Block

Sequence of
SIMD Lane
Operations

One iteration of
a Scalar Loop

CUDA Thread

A Thread of
SIMD
Instructions

Thread of Vector
Instructions

Warp

SIMD
Instruction

Vector Instruction PTX Instruction

Multithreaded
SIMD
Processor

(Multithreaded)
Vector Processor

Streaming
Multiprocessor

Thread Block
Scheduler

Scalar Processor Giga Thread
Engine

SIMD Thread
Scheduler

Thread scheduler
in a Multithreaded
CPU

Warp Scheduler

SIMD Lane Vector lane Thread Processor

GPU Memory Main Memory Global Memory

Local Memory Local Memory Shared Memory

SIMD Lane
Registers

Vector Lane
Registers

Thread Processor
Registers

A vectorized loop executed on a multithreaded
SIMD Processor, made up of one or more threads
of SIMD instructions. They can communicate via
Local Memory.

Pr
og

ra
m

 a
bs

tr
ac

tio
ns

M
ac

hi
ne

 o
bj

ec
t

Pr
oc

es
si

ng
 h

ar
dw

ar
e

M
em

or
y 

ha
rd

w
ar

e

A vertical cut of a thread of SIMD instructions
corresponding to one element executed by one
SIMD Lane. Result is stored depending on mask
and predicate register.

A traditional thread, but it contains just SIMD
instructions that are executed on a multithreaded
SIMD Processor. Results stored depending on a
per-element mask.

A single SIMD instruction executed across SIMD
Lanes.

A multithreaded SIMD Processor executes
threads of SIMD instructions, independent of
other SIMD Processors.

Assigns multiple Thread Blocks (bodies of
vectorized loop) to multithreaded SIMD
Processors.

Hardware unit that schedules and issues threads
of SIMD instructions when they are ready to
execute; includes a scoreboard to track SIMD
Thread execution.

A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

DRAM memory accessible by all multithreaded
SIMD Processors in a GPU.

Fast local SRAM for one multithreaded SIMD
Processor, unavailable to other SIMD Processors.

Registers in a single SIMD Lane allocated across
a full thread block (body of vectorized loop).

Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
up of one or more Thread Blocks (bodies of
vectorized loop) that can execute in parallel.

Closest old term
outside of GPUs

Official CUDA/
NVIDIA GPU term

Book definition

FIGURE 6.12 Quick guide to GPU terms. We use the fi rst column for hardware terms. Four groups 
cluster these 12 terms. From top to bottom: Program Abstractions, Machine Objects, Processing Hardware, 
and Memory Hardware.



Elaboration: While the GPU was introduced as having a separate memory from the 
CPU, both AMD and Intel have announced “fused” products that combine GPUs and 
CPUs to share a single memory. The challenge will be to maintain the high bandwidth 
memory in a fused architecture that has been a foundation of GPUs.

True or false: GPUs rely on graphics DRAM chips to reduce memory latency and 
thereby increase performance on graphics applications.

 
6.7

 Clusters, Warehouse Scale Computers, 
and Other Message-Passing 
Multiprocessors

Th e alternative approach to sharing an address space is for the processors to 
each have their own private physical address space. Figure 6.13 shows the classic 
organization of a multiprocessor with multiple private address spaces. Th is 
alternative multiprocessor must communicate via explicit message passing, 
which traditionally is the name of such style of computers. Provided the system 
has routines to send and receive messages, coordination is built in with message 
passing, since one processor knows when a message is sent, and the receiving 
processor knows when a message arrives. If the sender needs confi rmation that the 
message has arrived, the receiving processor can then send an acknowledgment 
message back to the sender.

Th ere have been several attempts to build large-scale computers based on 
high-performance message-passing networks, and they do off er better absolute 

Check 
Yourself

message passing 
Communicating between 
multiple processors by 
explicitly sending and 
receiving information.

send message routine 
A routine used by a 
processor in machines 
with private memories to 
pass a message to another 
processor.

receive message routine 
A routine used by a 
processor in machines 
with private memories 
to accept a message from 
another processor.

Cache Cache Cache

Memory Memory Memory

Interconnection Network

. . .

. . .

Processor Processor Processor. . .

FIGURE 6.13 Classic organization of a multiprocessor with multiple private address 
spaces, traditionally called a message-passing multiprocessor. Note that unlike the SMP in 
Figure 6.7, the interconnection network is not between the caches and memory but is instead between 
processor-memory nodes.
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communication performance than clusters built using local area networks. Indeed, 
many supercomputers today use custom networks. Th e problem is that they are 
much more expensive than local area networks like Ethernet. Few applications today 
outside of high performance computing can justify the higher communication 
performance, given the much higher costs. 

Computers that rely on message passing for communication rather than cache 
coherent shared memory are much easier for hardware designers to build (see 
Section 5.8). Th ere is an advantage for programmers as well, in that communication 
is explicit, which means there are fewer performance surprises than with the implicit 
communication in cache-coherent shared memory computers. Th e downside 
for programmers is that it s harder to port a sequential program to a message-
passing computer, since every communication must be identifi ed in advance or 
the program doesn t work. Cache-coherent shared memory allows the hardware to 
fi gure out what data needs to be communicated, which makes porting easier. Th ere 
are diff erences of opinion as to which is the shortest path to high performance, 
given the pros and cons of implicit communication, but there is no confusion in the 
marketplace today. Multicore microprocessors use shared physical memory and 
nodes of a cluster communicate with each other using message passing.

Some concurrent applications run well on parallel hardware, independent of 
whether it off ers shared addresses or message passing. In particular, task-level 
parallelism and applications with little communication like Web search, mail 
servers, and fi le servers do not require shared addressing to run well. As a result, 
clusters have become the most widespread example today of the message-passing 
parallel computer. Given the separate memories, each node of a cluster runs a 
distinct copy of the operating system. In contrast, the cores inside a microprocessor 
are connected using a high-speed network inside the chip, and a multichip shared-
memory system uses the memory interconnect for communication. Th e memory 
interconnect has higher bandwidth and lower latency, allowing much better 
communication performance for shared memory multiprocessors. 

Th e weakness of separate memories for user memory from a parallel programming 
perspective turns into a strength in system dependability (see Section 5.5). Since a 
cluster consists of independent computers connected through a local area network, it 
is much easier to replace a computer without bringing down the system in a cluster 
than in an shared memory multiprocessor. Fundamentally, the shared address means 
that it is diffi  cult to isolate a processor and replace it without heroic work by the 
operating system and in the physical design of the server. It is also easy for clusters 
to scale down gracefully when a server fails, thereby improving dependability. Since 
the cluster soft ware is a layer that runs on top of the local operating systems running 
on each computer, it is much easier to disconnect and replace a broken computer.

Hardware/
Software 
Interface

clusters Collections of 
computers connected 
via I/O over standard 
network switches to 
form a message-passing 
multiprocessor.



Given that clusters are constructed from whole computers and independent, 
scalable networks, this isolation also makes it easier to expand the system without 
bringing down the application that runs on top of the cluster.

Th eir lower cost, higher availability, and rapid, incremental expandability make 
clusters attractive to service Internet providers, despite their poorer communication 
performance when compared to large-scale shared memory multiprocessors. Th e 
search engines that hundreds of millions of us use every day depend upon this 
technology. Amazon, Facebook, Google, Microsoft , and others all have multiple 
datacenters each with clusters of tens of thousands of servers. Clearly, the use of 
multiple processors in Internet service companies has been hugely successful.

Warehouse-Scale Computers
Internet services, such as those described above, necessitated the construction 
of new buildings to house, power, and cool 100,000 servers. Although they may 
be classifi ed as just large clusters, their architecture and operation are more 
sophisticated. Th ey act as one giant computer and cost on the order of $150M 
for the building, the electrical and cooling infrastructure, the servers, and the 
networking equipment that connects and houses 50,000 to 100,000 servers. We 
consider them a new class of computer, called Warehouse-Scale Computers (WSC). 

Th e most popular framework for batch processing in a WSC is MapReduce [Dean, 
2008] and its open-source twin Hadoop. Inspired by the Lisp functions of the same 
name, Map fi rst applies a programmer-supplied function to each logical input 
record. Map runs on thousands of servers to produce an intermediate result of key-
value pairs. Reduce collects the output of those distributed tasks and collapses them 
using another programmer-defi ned function. With appropriate soft ware support, 
both are highly parallel yet easy to understand and to use. Within 30 minutes, a 
novice programmer can run a MapReduce task on thousands of servers.

For example, one MapReduce program calculates the number of occurrences of 
every English word in a large collection of documents. Below is a simplifi ed version 
of that program, which shows just the inner loop and assumes just one occurrence 
of all English words found in a document:

Hardware/
Software 
Interface
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Anyone can build a fast 
CPU. Th e trick is to build a 
fast system.
Seymour Cray, considered 
the father of the 
supercomputer.

map(String key, String value): 
     // key: document name
     // value: document contents 
     for each word w in value:

EmitIntermediate(w, “1”); // Produce list of all words reduce(String key, Iterator values):
// key: a word 
// values: a list of counts 
     int result = 0; 
     for each v in values:
     result += ParseInt(v); // get integer from key-value pair
     Emit(AsString(result));
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Th e function EmitIntermediate used in the Map function emits each 
word in the document and the value one. Th en the Reduce function sums all the 
values per word for each document using ParseInt() to get the number of 
occurrences per word in all documents. Th e MapReduce runtime environment 
schedules map tasks and reduce tasks to the servers of a WSC.

At this extreme scale, which requires innovation in power distribution, cooling, 
monitoring, and operations, the WSC is a modern descendant of the 1970s 
supercomputers—making Seymour Cray the godfather of today’s WSC architects. 
His extreme computers handled computations that could be done nowhere else, but 
were so expensive that only a few companies could aff ord them. Th is time the target 
is providing information technology for the world instead of high performance 
computing for scientists and engineers. Hence, WSCs surely play a more important 
societal role today than Cray’s supercomputers did in the past.

While they share some common goals with servers, WSCs have three major 
distinctions:

1. Ample, easy parallelism: A concern for a server architect is whether the 
applications in the targeted marketplace have enough parallelism to justify 
the amount of parallel hardware and whether the cost is too high for suffi  cient 
communication hardware to exploit this parallelism. A WSC architect has 
no such concern. First, batch applications like MapReduce benefi t from the 
large number of independent data sets that need independent processing, 
such as billions of Web pages from a Web crawl. Second, interactive Internet 
service applications, also known as Soft ware as a Service (SaaS), can benefi t 
from millions of independent users of interactive Internet services. Reads 
and writes are rarely dependent in SaaS, so SaaS rarely needs to synchronize. 
For example, search uses a read-only index and email is normally reading 
and writing independent information. We call this type of easy parallelism 
Request-Level Parallelism, as many independent eff orts can proceed in 
parallel naturally with little need for communication or synchronization.

2. Operational Costs Count: Traditionally, server architects design their systems 
for peak performance within a cost budget and worry about energy only to 
make sure they don’t exceed the cooling capacity of their enclosure. Th ey 
usually ignored operational costs of a server, assuming that they pale in 
comparison to purchase costs. WSC have longer lifetimes—the building and 
electrical and cooling infrastructure are oft en amortized over 10 or more 
years—so the operational costs add up: energy, power distribution, and 
cooling represent more than 30% of the costs of a WSC over 10 years.

3. Scale and the Opportunities/Problems Associated with Scale: To construct a 
single WSC, you must purchase 100,000 servers along with the supporting 
infrastructure, which means volume discounts. Hence, WSCs are so massive 

soft ware as a service 
(SaaS) Rather than 
selling soft ware that 
is installed and run 
on customers’ own 
computers, soft ware is run 
at a remote site and made 
available over the Internet 
typically via a Web 
interface to customers. 
SaaS customers are 
charged based on use 
versus on ownership.



internally that you get economy of scale even if there are not many WSCs. 
Th ese economies of scale led to cloud computing, as the lower per unit costs 
of a WSC meant that cloud companies could rent servers at a profi table rate 
and still be below what it costs outsiders to do it themselves. Th e fl ip side 
of the economic opportunity of scale is the need to cope with the failure 
frequency of scale. Even if a server had a Mean Time To Failure of an amazing 
25 years (200,000 hours), the WSC architect would need to design for 5 
server failures every day. Section 5.15 mentioned annualized disk failure rate 
(AFR) was measured at Google at 2% to 4%. If there were 4 disks per server 
and their annual failure rate was 2%, the WSC architect should expect to see 
one disk fail every hour. Th us, fault tolerance is even more important for the 
WSC architect than the server architect.

Th e economies of scale uncovered by WSC have realized the long dreamed of 
goal of computing as a utility. Cloud computing means anyone anywhere with good 
ideas, a business model, and a credit card can tap thousands of servers to deliver 
their vision almost instantly around the world. Of course, there are important 
obstacles that could limit the growth of cloud computing—such as security, 
privacy, standards, and the rate of growth of Internet bandwidth—but we foresee 
them being addressed so that WSCs and cloud computing can fl ourish.

To put the growth rate of cloud computing into perspective, in 2012 Amazon 
Web Services announced that it adds enough new server capacity every day to 
support all of Amazon’s global infrastructure as of 2003, when Amazon was a 
$5.2Bn annual revenue enterprise with 6000 employees.

Now that we understand the importance of message-passing multiprocessors, 
especially for cloud computing, we next cover ways to connect the nodes of a WSC 
together. Th anks to Moore’s Law and the increasing number of cores per chip, we 
now need networks inside a chip as well, so these topologies are important in the 
small as well as in the large.

Elaboration: The MapReduce framework shuffl es and sorts the key-value pairs at the 
end of the  Map phase to produce groups that all share the same key.  These groups are 
then passed to the Reduce phase.

Elaboration: Another form of large scale computing is grid computing, where the 
computers are spread across large areas, and then the programs that run across them 
must communicate via long haul networks. The most popular and unique form of grid 
computing was pioneered by the SETI@home project. As millions of PCs are idle at 
any one time doing nothing useful, they could be harvested and put to good uses if 
someone developed software that could run on those computers and then gave each PC 
an independent piece of the problem to work on. The fi rst example was the Search for 
ExtraTerrestrial Intelligence (SETI), which was launched at UC Berkeley in 1999. Over 5 
million computer users in more than 200 countries have signed up for SETI@home, with 
more than 50% outside the US. By the end of 2011, the average performance of the 
SETI@home grid was 3.5 PetaFLOPS.
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1. True or false: Like SMPs, message-passing computers rely on locks for 
synchronization.

2. True or false: Clusters have separate memories and thus need many copies of 
the operating system.

 6.8 Introduction to Multiprocessor Network 
Topologies

Multicore chips require on-chip networks to connect cores together, and clusters 
require local area networks to connect servers together. Th is section reviews the 
pros and cons of diff erent interconnection network topologies.

Network costs include the number of switches, the number of links on a switch 
to connect to the network, the width (number of bits) per link, and length of the 
links when the network is mapped into silicon. For example, some cores or servers  
may be adjacent and others may be on the other side of the chip or the other side of 
the datacenter. Network performance is multifaceted as well. It includes the latency 
on an unloaded network to send and receive a message, the throughput in terms of 
the maximum number of messages that can be transmitted in a given time period, 
delays caused by contention for a portion of the network, and variable performance 
depending on the pattern of communication. Another obligation of the network 
may be fault tolerance, since systems may be required to operate in the presence 
of broken components. Finally, in this era of energy-limited systems, the energy 
effi  ciency of diff erent organizations may trump other concerns.

Networks are normally drawn as graphs, with each edge of the graph representing 
a link of the communication network. In the fi gures in this section, the processor-
memory node is shown as a black square and the switch is shown as a colored 
circle. We assume here that all links are bidirectional; that is, information can fl ow 
in either direction. All networks consist of switches whose links go to processor-
memory nodes and to other switches. Th e fi rst network connects a sequence of 
nodes together:

Th is topology is called a ring. Since some nodes are not directly connected, some 
messages will have to hop along intermediate nodes until they arrive at the fi nal 
destination.

Unlike a bus—a shared set of wires that allows broadcasting to all connected 
devices—a ring is capable of many simultaneous transfers. 

Check 
Yourself



Because there are numerous topologies to choose from, performance metrics 
are needed to distinguish these designs. Two are popular. Th e fi rst is total network 
bandwidth, which is the bandwidth of each link multiplied by the number of links. 
Th is represents the peak bandwidth. For the ring network above, with P processors, 
the total network bandwidth would be P times the bandwidth of one link; the total 
network bandwidth of a bus is just the bandwidth of that bus.

To balance this best bandwidth case, we include another metric that is closer to 
the worst case: the bisection bandwidth. Th is metric is calculated by dividing the 
machine into two halves. Th en you sum the bandwidth of the links that cross that 
imaginary dividing line. Th e bisection bandwidth of a ring is two times the link 
bandwidth. It is one times the link bandwidth for the bus. If a single link is as fast 
as the bus, the ring is only twice as fast as a bus in the worst case, but it is P times 
faster in the best case.

Since some network topologies are not symmetric, the question arises 
of where to draw the imaginary line when bisecting the machine. Bisection 
bandwidth is a worst-case metric, so the answer is to choose the division that 
yields the most pessimistic network performance. Stated alternatively, calculate 
all possible bisection bandwidths and pick the smallest. We take this pessimistic 
view because parallel programs are oft en limited by the weakest link in the 
communication chain.

At the other extreme from a ring is a fully connected network, where every 
processor has a bidirectional link to every other processor. For fully connected 
networks, the total network bandwidth is P × (P – 1)/2, and the bisection bandwidth 
is (P/2)2.

Th e tremendous improvement in performance of fully connected networks is 
off set by the tremendous increase in cost. Th is consequence inspires engineers 
to invent new topologies that are between the cost of rings and the performance 
of fully connected networks. Th e evaluation of success depends in large part on 
the nature of the communication in the workload of parallel programs run on the 
computer.

Th e number of diff erent topologies that have been discussed in publications 
would be diffi  cult to count, but only a few have been used in commercial parallel 
processors. Figure 6.14 illustrates two of the popular topologies. 

An alternative to placing a processor at every node in a network is to leave only 
the switch at some of these nodes. Th e switches are smaller than processor-memory-
switch nodes, and thus may be packed more densely, thereby lessening distance and 
increasing performance. Such networks are frequently called multistage networks 
to refl ect the multiple steps that a message may travel. Types of multistage networks 
are as numerous as single-stage networks; Figure 6.15 illustrates two of the popular 
multistage organizations. A fully connected or crossbar network allows any 
node to communicate with any other node in one pass through the network. An 
Omega network uses less hardware than the crossbar network (2n log2 n versus n2 
switches), but contention can occur between messages, depending on the pattern 

network 
bandwidth Informally, 
the peak transfer rate of a 
network; can refer to the 
speed of a single link or 
the collective transfer rate 
of all links in the network.

bisection 
bandwidth Th e 
bandwidth between 
two equal parts of 
a multiprocessor. 
Th is measure is for a 
worst case split of the 
multiprocessor.

fully connected 
network A network 
that connects processor-
memory nodes by 
supplying a dedicated 
communication link 
between every node.

multistage network 
A network that supplies a 
small switch at each node.

crossbar network 
A network that allows 
any node to communicate 
with any other node in 
one pass through the 
network.
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of communication. For example, the Omega network in Figure 6.15 cannot send a 
message from P0 to P6 at the same time that it sends a message from P1 to P4.

Implementing Network Topologies
Th is simple analysis of all the networks in this section ignores important practical 
considerations in the construction of a network. Th e distance of each link aff ects 
the cost of communicating at a high clock rate generally, the longer the distance, 
the more expensive it is to run at a high clock rate. Shorter distances also make 
it easier to assign more wires to the link, as the power to drive many wires is less 
if the wires are short. Shorter wires are also cheaper than longer wires. Another 
practical limitation is that the three-dimensional drawings must be mapped onto 
chips that are essentially two-dimensional media. Th e fi nal concern is energy. 
Energy concerns may force multicore chips to rely on simple grid topologies, for 
example. Th e bottom line is that topologies that appear elegant when sketched on 
the blackboard may be impractical when constructed in silicon or in a datacenter.

Now that we understand the importance of clusters and have seen topologies 
that we can follow to connect them together, we next look at the hardware and 
soft ware of the interface of the network to the processor. 

True or false: For a ring with P nodes, the ratio of the total network bandwidth to 
the bisection bandwidth is P/2.

Check 
Yourself

a. 2-D grid or mesh of 16 nodes b. n-cube tree of 8 nodes (8 = 23 so n = 3)

FIGURE 6.14 Network topologies that have appeared in commercial parallel processors. 
Th e colored circles represent switches and the black squares represent processor-memory nodes. Even 
though a switch has many links, generally only one goes to the processor. Th e Boolean n-cube topology is 
an n-dimensional interconnect with 2n nodes, requiring n links per switch (plus one for the processor) and 
thus n nearest-neighbor nodes. Frequently, these basic topologies have been supplemented with extra arcs to 
improve performance and reliability.



 5.96.9  Communicating to the Outside World: 
Cluster Networking

Th is online section describes the networking hardware and soft ware used to 
connect the nodes of a cluster together. Th e example is 10 gigabit/second Ethernet 
connected to the computer  using Peripheral Component Interconnect Express 
(PCIe). It shows both soft ware and hardware optimizations how to improve 
network performance, including zero copy messaging, user space communication, 
using polling instead of I/O interrupts, and hardware calculation of checksums. 
While the example is networking, the techniques in this section apply to storage 
controllers and other I/O devices as well. 

a. Crossbar b. Omega network

c. Omega network switch box
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FIGURE 6.15 Popular multistage network topologies for eight nodes. Th e switches in these 
drawings are simpler than in earlier drawings because the links are unidirectional; data comes in at the left  
and exits out the right link. Th e switch box in c can pass A to C and B to D or B to C and A to D. Th e crossbar 
uses n2 switches, where n is the number of processors, while the Omega network uses 2n log2n of the large 
switch boxes, each of which is logically composed of four of the smaller switches. In this case, the crossbar 
uses 64 switches versus 12 switch boxes, or 48 switches, in the Omega network. Th e crossbar, however, can 
support any combination of messages between processors, while the Omega network cannot.
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Aft er covering the performance of network at a low level of detail in this online 
section, the next section shows how to benchmark multiprocessors of all kinds 
with much higher-level programs.

 6.10 Multiprocessor Benchmarks and 
Performance Models

As we saw in Chapter 1, benchmarking systems is always a sensitive topic, because 
it is a highly visible way to try to determine which system is better. Th e results aff ect 
not only the sales of commercial systems, but also the reputation of the designers 
of those systems. Hence, all participants want to win the competition, but they also 
want to be sure that if someone else wins, they deserve to win because they have 
a genuinely better system. Th is desire leads to rules to ensure that the benchmark 
results are not simply engineering tricks for that benchmark, but are instead 
advances that improve performance of real applications.

To avoid possible tricks, a typical rule is that you can t change the benchmark. 
Th e source code and data sets are fi xed, and there is a single proper answer. Any 
deviation from those rules makes the results invalid.

Many multiprocessor benchmarks follow these traditions. A common exception 
is to be able to increase the size of the problem so that you can run the benchmark 
on systems with a widely diff erent number of processors. Th at is, many benchmarks 
allow weak scaling rather than require strong scaling, even though you must take 
care when comparing results for programs running diff erent problem sizes.

Figure 6.16 gives a summary of several parallel benchmarks, also described below:

■ Linpack is a collection of linear algebra routines, and the routines for 
performing Gaussian elimination constitute what is known as the Linpack 
benchmark. Th e DGEMM routine in the example on page 215 represents a 
small fraction of the source code of the Linpack benchmark, but it accounts 
for most of the execution time for the benchmark. It allows weak scaling, 
letting the user pick any size problem. Moreover, it allows the user to rewrite 
Linpack in almost any form and in any language, as long as it computes the 
proper result and performs the same number of fl oating point operations 
for a given problem size. Twice a year, the 500 computers with the fastest 
Linpack performance are published at www.top500.org. Th e fi rst on this list 
is considered by the press to be the world s fastest computer.

■ SPECrate is a throughput metric based on the SPEC CPU benchmarks, 
such as SPEC CPU 2006 (see Chapter 1). Rather than report performance 
of the individual programs, SPECrate runs many copies of the program 
simultaneously. Th us, it measures task-level parallelism, as there is no 



communication between the tasks. You can run as many copies of the 
programs as you want, so this is again a form of weak scaling.

■ SPLASH and SPLASH 2 (Stanford Parallel Applications for Shared Memory) 
were eff orts by researchers at Stanford University in the 1990s to put together 
a parallel benchmark suite similar in goals to the SPEC CPU benchmark 
suite. It includes both kernels and applications, including many from the 
high-performance computing community. Th is benchmark requires strong 
scaling, although it comes with two data sets.

Benchmark Scaling? Reprogram? Description

Linpack Weak Yes Dense matrix linear algebra [Dongarra, 1979]

SPECrate Weak No Independent job parallelism [Henning, 2007]

Stanford Parallel 
Applications for 
Shared Memory 
SPLASH 2 [Woo 

et al., 1995]

Strong  
(although  

offers  
two problem 

sizes)

No

Complex 1D FFT
Blocked LU Decomposition
Blocked Sparse Cholesky Factorization
Integer Radix Sort
Barnes-Hut
Adaptive Fast Multipole
Ocean Simulation
Hierarchical Radiosity
Ray Tracer
Volume Renderer
Water Simulation with Spatial Data Structure
Water Simulation without Spatial Data Structure

NAS Parallel 
Benchmarks 
[Bailey et al., 

1991]

Weak
Yes  
(C or  

Fortran only)

EP: embarrassingly parallel
MG: simplified multigrid

CG: unstructured grid for a conjugate gradient method

FT: 3-D partial differential equation solution using FFTs  
IS: large integer sort

PARSEC 
Benchmark Suite 

[Bienia et al., 
2008]

Weak No

Blackscholes—Option pricing with Black-Scholes PDE
Bodytrack—Body tracking of a person
Canneal—Simulated cache-aware annealing to optimize routing
Dedup—Next-generation compression with data deduplication
Facesim—Simulates the motions of a human face
Ferret—Content similarity search server
Fluidanimate—Fluid dynamics for animation with SPH method
Freqmine—Frequent itemset mining
Streamcluster—Online clustering of an input stream
Swaptions—Pricing of a portfolio of swaptions
Vips—Image processing
x264—H.264 video encoding

Berkeley  
Design  

Patterns 
[Asanovic et al., 

2006]

Strong or  
Weak

Yes

Finite-State Machine
Combinational Logic
Graph Traversal
Structured Grid
Dense Matrix
Sparse Matrix
Spectral Methods (FFT)
Dynamic Programming
N-Body
MapReduce
Backtrack/Branch and Bound
Graphical Model Inference
Unstructured Grid

FIGURE 6.16 Examples of parallel benchmarks.
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■ Th e NAS (NASA Advanced Supercomputing) parallel benchmarks were 
another attempt from the 1990s to benchmark multiprocessors. Taken from 
computational fl uid dynamics, they consist of fi ve kernels. Th ey allow weak 
scaling by defi ning a few data sets. Like Linpack, these benchmarks can be 
rewritten, but the rules require that the programming language can only be C 
or Fortran.

■ Th e recent PARSEC (Princeton Application Repository for Shared Memory 
Computers) benchmark suite consists of multithreaded programs that use 
Pthreads (POSIX threads) and OpenMP (Open MultiProcessing; see 
Section 6.5). Th ey focus on emerging computational domains and consist of 
nine applications and three kernels. Eight rely on data parallelism, three rely 
on pipelined parallelism, and one on unstructured parallelism.

■ On the cloud front, the goal of the Yahoo! Cloud Serving Benchmark (YCSB) 
is to compare performance of cloud data services. It off ers a framework that 
makes it easy for a client to benchmark new data services, using Cassandra 
and HBase as representative examples. [Cooper, 2010]

Th e downside of such traditional restrictions to benchmarks is that innovation is 
chiefl y limited to the architecture and compiler. Better data structures, algorithms, 
programming languages, and so on oft en cannot be used, since that would give a 
misleading result. Th e system could win because of, say, the algorithm, and not 
because of the hardware or the compiler.

While these guidelines are understandable when the foundations of computing 
are relatively stable as they were in the 1990s and the fi rst half of this decade
they are undesirable during a programming revolution. For this revolution to 
succeed, we need to encourage innovation at all levels.

Researchers at the University of California at Berkeley have advocated one 
approach. Th ey identifi ed 13 design patterns that they claim will be part of 
applications of the future. Frameworks or kernels implement these design 
patterns. Examples are sparse matrices, structured grids, fi nite-state machines, 
map reduce, and graph traversal. By keeping the defi nitions at a high level, they 
hope to encourage innovations at any level of the system. Th us, the system with the 
fastest sparse matrix solver is welcome to use any data structure, algorithm, and 
programming language, in addition to novel architectures and compilers. 

Performance Models
A topic related to benchmarks is performance models. As we have seen with the 

increasing architectural diversity in this chapter—multithreading, SIMD, GPUs—
it would be especially helpful if we had a simple model that off ered insights into the 
performance of diff erent architectures. It need not be perfect, just insightful.

Th e 3Cs for cache performance from Chapter 5 is an example performance 
model. It is not a perfect performance model, since it ignores potentially important 

Pthreads A UNIX 
API for creating and 
manipulating threads. It is 
structured as a library.



factors like block size, block allocation policy, and block replacement policy. 
Moreover, it has quirks. For example, a miss can be ascribed due to capacity in one 
design and to a confl ict miss in another cache of the same size. Yet 3Cs model has 
been popular for 25 years, because it off ers insight into the behavior of programs, 
helping both architects and programmers improve their creations based on insights 
from that model.

To fi nd such a model for parallel computers, let s start with small kernels, 
like those from the 13 Berkeley design patterns in Figure 6.16. While there are 
versions with diff erent data types for these kernels, fl oating point is popular in 
several implementations. Hence, peak fl oating-point performance is a limit on the 
speed of such kernels on a given computer. For multicore chips, peak fl oating-point 
performance is the collective peak performance of all the cores on the chip. If there 
were multiple microprocessors in the system, you would multiply the peak per chip 
by the total number of chips.

Th e demands on the memory system can be estimated by dividing this peak 
fl oating-point performance by the average number of fl oating-point operations per 
byte accessed:

 Floating Point Operations/Sec
Floating Point Operations/By

-
- tte

= Bytes/Sec

Th e ratio of fl oating-point operations per byte of memory accessed is called the 
arithmetic intensity. It can be calculated by taking the total number of fl oating-
point operations for a program divided by the total number of data bytes transferred 
to main memory during program execution. Figure 6.17 shows the arithmetic 
intensity of several of the Berkeley design patterns from Figure 6.16.

arithmetic intensity 
Th e ratio of fl oating-
point operations in a 
program to the number 
of data bytes accessed by 
a program from main 
memory.

A r i t h m e t i c   I n t e n s i t y 

O(N) O(log(N)) O(1) 

Sparse
Matrix
(SpMV)

Structured
Grids
(Stencils,
PDEs)

Structured
Grids
(Lattice
Methods)

Spectral
Methods
(FFTs)

Dense
Matrix
(BLAS3)

N-body
(Particle
Methods)

FIGURE 6.17 Arithmetic intensity, specifi ed as the number of fl oat-point operations to 
run the program divided by the number of bytes accessed in main memory [Williams, 
Waterman, and Patterson 2009]. Some kernels have an arithmetic intensity that scales with problem 
size, such as Dense Matrix, but there are many kernels with arithmetic intensities independent of problem 
size. For kernels in this former case, weak scaling can lead to diff erent results, since it puts much less demand 
on the memory system.
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The Roofl ine Model
Th is simple model ties fl oating-point performance, arithmetic intensity, and memory 
performance together in a two-dimensional graph [Williams, Waterman, and 
Patterson 2009]. Peak fl oating-point performance can be found using the hardware 
specifi cations mentioned above. Th e working sets of the kernels we consider here 
do not fi t in on-chip caches, so peak memory performance may be defi ned by the 
memory system behind the caches. One way to fi nd the peak memory performance 
is the Stream benchmark. (See the Elaboration on page 381 in Chapter 5).

Figure 6.18 shows the model, which is done once for a computer, not for each 
kernel. Th e vertical Y-axis is achievable fl oating-point performance from 0.5 to 
64.0 GFLOPs/second. Th e horizontal X-axis is arithmetic intensity, varying from 
1/8 FLOPs/DRAM byte accessed to 16 FLOPs/DRAM byte accessed. Note that the 
graph is a log-log scale.

For a given kernel, we can fi nd a point on the X-axis based on its arithmetic 
intensity. If we draw a vertical line through that point, the performance of the kernel 
on that computer must lie somewhere along that line. We can plot a horizontal line 
showing peak fl oating-point performance of the computer. Obviously, the actual 
fl oating-point performance can be no higher than the horizontal line, since that is 
a hardware limit.
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FIGURE 6.18 Roofl ine Model [Williams, Waterman, and Patterson 2009]. Th is example has a 
peak fl oating-point performance of 16 GFLOPS/sec and a peak memory bandwidth of 16 GB/sec from the 
Stream benchmark. (Since Stream is actually four measurements, this line is the average of the four.) Th e 
dotted vertical line in color on the left  represents Kernel 1, which has an arithmetic intensity of 0.5 FLOPs/
byte. It is limited by memory bandwidth to no more than 8 GFLOPS/sec on this Opteron X2. Th e dotted 
vertical line to the right represents Kernel 2, which has an arithmetic intensity of 4 FLOPs/byte. It is limited 
only computationally to 16 GFLOPS/s. (Th is data is based on the AMD Opteron X2 (Revision F) using dual 
cores running at 2 GHz in a dual socket system.)



How could we plot the peak memory performance, which is measured in bytes/
second? Since the X-axis is FLOPs/byte and the Y-axis FLOPs/second, bytes/second 
is just a diagonal line at a 45-degree angle in this fi gure. Hence, we can plot a third 
line that gives the maximum fl oating-point performance that the memory system 
of that computer can support for a given arithmetic intensity. We can express the 
limits as a formula to plot the line in the graph in Figure 6.18:

 Attainable GFLOPs/sec = Min (Peak Memory BW Arithmetic Inte× nnsity, Peak
Floating Point Performance)-

Th e horizontal and diagonal lines give this simple model its name and indicate its 
value. Th e roofl ine  sets an upper bound on performance of a kernel depending on 
its arithmetic intensity. Given a roofl ine of a computer, you can apply it repeatedly, 
since it doesn t vary by kernel. 

If we think of arithmetic intensity as a pole that hits the roof, either it hits 
the slanted part of the roof, which means performance is ultimately limited by 
memory bandwidth, or it hits the fl at part of the roof, which means performance is 
computationally limited. In Figure 6.18, kernel 1 is an example of the former, and 
kernel 2 is an example of the latter. 

Note that the ridge point,  where the diagonal and horizontal roofs meet, off ers 
an interesting insight into the computer. If it is far to the right, then only kernels 
with very high arithmetic intensity can achieve the maximum performance of 
that computer. If it is far to the left , then almost any kernel can potentially hit the 
maximum performance. 

Comparing Two Generations of Opterons
Th e AMD Opteron X4 (Barcelona) with four cores is the successor to the Opteron 
X2 with two cores. To simplify board design, they use the same socket. Hence, they 
have the same DRAM channels and thus the same peak memory bandwidth. In 
addition to doubling the number of cores, the Opteron X4 also has twice the peak 
fl oating-point performance per core: Opteron X4 cores can issue two fl oating-point 
SSE2 instructions per clock cycle, while Opteron X2 cores issue at most one. As the 
two systems we re comparing have similar clock rates 2.2 GHz for Opteron X2 
versus 2.3 GHz for Opteron X4 the Opteron X4 has about four times the peak 
fl oating-point performance of the Opteron X2 with the same DRAM bandwidth. 
Th e Opteron X4 also has a 2MiB L3 cache, which is not found in the Opteron X2.

In Figure 6.19 the roofl ine models for both systems are compared. As we would 
expect, the ridge point moves to the right, from 1 in the Opteron X2 to 5 in the 
Opteron X4. Hence, to see a performance gain in the next generation, kernels need 
an arithmetic intensity higher than 1, or their working sets must fi t in the caches 
of the Opteron X4.

Th e roofl ine model gives an upper bound to performance. Suppose your 
program is far below that bound. What optimizations should you perform, and in 
what order?
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To reduce computational bottlenecks, the following two optimizations can help 
almost any kernel:

1. Floating-point operation mix. Peak fl oating-point performance for a computer 
typically requires an equal number of nearly simultaneous additions and 
multiplications. Th at balance is necessary either because the computer 
supports a fused multiply-add instruction (see the Elaboration on page 220 
in Chapter 3) or because the fl oating-point unit has an equal number of 
fl oating-point adders and fl oating-point multipliers. Th e best performance 
also requires that a signifi cant fraction of the instruction mix is fl oating-
point operations and not integer instructions.

2. Improve instruction-level parallelism and apply SIMD. For modern archi-
tectures, the highest performance comes when fetching, executing, and 
committing three to four instructions per clock cycle (see Section 4.10). Th e 
goal for this step is to improve the code from the compiler to increase ILP. One 
way is by unrolling loops, as we saw in Section 4.12. For the x86 architectures, 
a single AVX instruction can operate on four double precision operands, so 
they should be used whenever possible (see Sections 3.7 and 3.8).

To reduce memory bottlenecks, the following two optimizations can help:

1. Soft ware prefetching. Usually the highest performance requires keeping many 
memory operations in fl ight, which is easier to do by performing predicting 
accesses via soft ware prefetch instructions rather than waiting until the data 
is required by the computation.
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FIGURE 6.19 Roofl ine models of two generations of Opterons. Th e Opteron X2 roofl ine, which 
is the same as in Figure 6.18, is in black, and the Opteron X4 roofl ine is in color. Th e bigger ridge point of 
Opteron X4 means that kernels that were computationally bound on the Opteron X2 could be memory-
performance bound on the Opteron X4.



2. Memory affi  nity. Microprocessors today include a memory controller on 
the same chip with the microprocessor, which improves performance of the 
memory hierarchy. If the system has multiple chips, this means that some 
addresses go to the DRAM that is local to one chip, and the rest require 
accesses over the chip interconnect to access the DRAM that is local to 
another chip.  Th is split results in non-uniform memory accesses, which we 
described in Section 6.5. Accessing memory through another chip lowers 
performance. Th is second optimization tries to allocate data and the threads 
tasked to operate on that data to the same memory-processor pair, so that 
the processors rarely have to access the memory of the other chips.

Th e roofl ine model can help decide which of these two optimizations to 
perform and the order in which to perform them. We can think of each of these 
optimizations as a ceiling  below the appropriate roofl ine, meaning that you 
cannot break through a ceiling without performing the associated optimization.

Th e computational roofl ine can be found from the manuals, and the memory 
roofl ine can be found from running the Stream benchmark. Th e computational 
ceilings, such as fl oating-point balance, can also come from the manuals for 
that computer. A memory ceiling, such as memory affi  nity, requires running 
experiments on each computer to determine the gap between them. Th e good 
news is that this process only need be done once per computer, for once someone 
characterizes a computer s ceilings, everyone can use the results to prioritize their 
optimizations for that computer.

Figure 6.20 adds ceilings to the roofl ine model in Figure 6.18, showing the 
computational ceilings in the top graph and the memory bandwidth ceilings on the 
bottom graph. Although the higher ceilings are not labeled with both optimizations, 
they are implied in this fi gure; to break through the highest ceiling, you need to 
have already broken through all the ones below.

Th e width of the gap between the ceiling and the next higher limit is the reward 
for trying that optimization. Th us, Figure 6.20 suggests that optimization 2, which 
improves ILP, has a large benefi t for improving computation on that computer, and 
optimization 4, which improves memory affi  nity, has a large benefi t for improving 
memory bandwidth on that computer.

Figure 6.21 combines the ceilings of Figure 6.20 into a single graph. Th e 
arithmetic intensity of a kernel determines the optimization region, which in turn 
suggests which optimizations to try. Note that the computational optimizations 
and the memory bandwidth optimizations overlap for much of the arithmetic 
intensity. Th ree regions are shaded diff erently in Figure 6.21 to indicate the diff erent 
optimization strategies. For example, Kernel 2 falls in the blue trapezoid on the 
right, which suggests working only on the computational optimizations. Kernel 1 
falls in the blue-gray parallelogram in the middle, which suggests trying both types 
of optimizations. Moreover, it suggests starting with optimizations 2 and 4. Note 
that the Kernel 1 vertical lines fall below the fl oating-point imbalance optimization, 
so optimization 1 may be unnecessary. If a kernel fell in the gray triangle on the 
lower left , it would suggest trying just memory optimizations.
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FIGURE 6.20 Roofl ine model with ceilings. Th e top graph shows the computational “ceilings” of 
8 GFLOPs/sec if the fl oating-point operation mix is imbalanced and 2 GFLOPs/sec if the optimizations to 
increase ILP and SIMD are also missing. Th e bottom graph shows the memory bandwidth ceilings of 11 GB/
sec without soft ware prefetching and 4.8 GB/sec if memory affi  nity optimizations are also missing.



Th us far, we have been assuming that the arithmetic intensity is fi xed, but that is 
not really the case. First, there are kernels where the arithmetic intensity increases 
with problem size, such as for Dense Matrix and N-body problems (see Figure 6.17). 
Indeed, this can be a reason that programmers have more success with weak scaling 
than with strong scaling. Second, the eff ectiveness of the memory hierarchy 
aff ects the number of accesses that go to memory, so optimizations that improve 
cache performance also improve arithmetic intensity. One example is improving 
temporal locality by unrolling loops and then grouping together statements with 
similar addresses. Many computers have special cache instructions that allocate 
data in a cache but do not fi rst fi ll the data from memory at that address, since it 
will soon be over-written. Both these optimizations reduce memory traffi  c, thereby 
moving the arithmetic intensity pole to the right by a factor of, say, 1.5. Th is shift  
right could put the kernel in a diff erent optimization region.

While the examples above show how to help programmers improve performance, 
architects can also use the model to decide where they should optimize hardware to 
improve performance of the kernels that they think will be important.

Th e next section uses the roofl ine model to demonstrate the performance 
diff erence between a multicore microprocessor and a GPU and to see whether 
these diff erences refl ect performance of real programs.
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from Figure 6.18. Kernels whose arithmetic intensity land in the blue trapezoid on the right should focus 
on computation optimizations, and kernels whose arithmetic intensity land in the gray triangle in the lower 
left  should focus on memory bandwidth optimizations. Th ose that land in the blue-gray parallelogram in 
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ILP and SIMD, memory affi  nity, and soft ware prefetching. Kernel 2 falls in the trapezoid on the right, so try 
optimizing ILP and SIMD and the balance of fl oating-point operations.
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Elaboration: The ceilings are ordered so that lower ceilings are easier to optimize. 
Clearly, a programmer can optimize in any order, but following this sequence reduces the 
chances of wasting effort on an optimization that has no benefi t due to other constraints. 
Like the 3Cs model, as long as the roofl ine model delivers on insights, a model can 
have assumptions that may prove optimistic. For example, roofl ine assumes the load is 
balanced between all processors.

Elaboration: An alternative to the Stream benchmark is to use the raw DRAM 
bandwidth as the roofl ine. While the raw bandwidth defi nitely is a hard upper bound, 
actual memory performance is often so far from that boundary that it s not that useful. 
That is, no program can go close to that bound. The downside to using Stream is that 
very careful programming may exceed the Stream results, so the memory roofl ine may 
not be as hard a limit as the computational roofl ine. We stick with Stream because few 
programmers will be able to deliver more memory bandwidth than Stream discovers.

Elaboration: Although the roofl ine model shown is for multicore processors, it clearly 
would work for a uniprocessor as well.

True or false: Th e main drawback with conventional approaches to benchmarks 
for parallel computers is that the rules that ensure fairness also slow soft ware 
innovation.

 
6.11

 Real Stuff: Benchmarking and Roofl ines 
of the Intel Core i7 960 and the NVIDIA 
Tesla GPU

A group of Intel researchers published a paper [Lee et al., 2010] comparing a 
quad-core Intel Core i7 960 with multimedia SIMD extensions to the previous 
generation GPU, the NVIDIA Tesla GTX 280. Figure 6.22 lists the characteristics 
of the two systems. Both products were purchased in Fall 2009. Th e Core i7 is 
in Intel s 45-nanometer semiconductor technology while the GPU is in TSMC s 
65-nanometer technology. Although it might have been fairer to have a comparison 
by a neutral party or by both interested parties, the purpose of this section is not to 
determine how much faster one product is than another, but to try to understand 
the relative value of features of these two contrasting architecture styles. 

Th e roofl ines of the Core i7 960 and GTX 280 in Figure 6.23 illustrate the 
diff erences in the computers. Not only does the GTX 280 have much higher 
memory bandwidth and double-precision fl oating-point performance, but also its 
double-precision ridge point is considerably to the left . Th e double-precision ridge 
point is 0.6 for the GTX 280 versus 3.1 for the Core i7. As mentioned above, it is 
much easier to hit peak computational performance the further the ridge point of 

Check 
Yourself



the roofl ine is to the left . For single-precision performance, the ridge point moves 
far to the right for both computers, so it s much harder to hit the roof of single-
precision performance. Note that the arithmetic intensity of the kernel is based on 
the bytes that go to main memory, not the bytes that go to cache memory. Th us, 
as mentioned above, caching can change the arithmetic intensity of a kernel on a 
particular computer, if most references really go to the cache. Note also that this 
bandwidth is for unit-stride accesses in both architectures. Real gather-scatter 
addresses can be slower on the GTX 280 and on the Core i7, as we shall see.

Th e researchers selected the benchmark programs by analyzing the computational 
and memory characteristics of four recently proposed benchmark suites and then 
formulated the set of throughput computing kernels that capture these characteristics.  

Figure 6.24 shows the performance results, with larger numbers meaning faster. Th e 
Roofl ines help explain the relative performance in this case study.

Given that the raw performance specifi cations of the GTX 280 vary from 2.5 ×  
slower (clock rate) to 7.5 × faster (cores per chip) while the performance varies 
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FIGURE 6.22 Intel Core i7-960, NVIDIA GTX 280, and GTX 480 specifi cations. Th e rightmost columns show the ratios of the 
Tesla GTX 280 and the Fermi GTX 480 to Core i7. Although the case study is between the Tesla 280 and i7, we include the Fermi 480 to show 
its relationship to the Tesla 280 since it is described in this chapter. Note that these memory bandwidths are higher than in Figure 6.23 because 
these are DRAM pin bandwidths and those in Figure 6.23 are at the processors as measured by a benchmark program. (From Table 2 in Lee 
et al. [2010].)
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FIGURE 6.23 Roofl ine model [Williams, Waterman, and Patterson 2009]. Th ese roofl ines show double-precision fl oating-point 
performance in the top row and single-precision performance in the bottom row. (Th e DP FP performance ceiling is also in the bottom row 
to give perspective.) Th e Core i7 960 on the left  has a peak DP FP performance of 51.2 GFLOP/sec, a SP FP peak of 102.4 GFLOP/sec, and a 
peak memory bandwidth of 16.4 GBytes/sec. Th e NVIDIA GTX 280 has a DP FP peak of 78 GFLOP/sec, SP FP peak of 624 GFLOP/sec, and 
127 GBytes/sec of memory bandwidth. Th e dashed vertical line on the left  represents an arithmetic intensity of 0.5 FLOP/byte. It is limited by 
memory bandwidth to no more than 8 DP GFLOP/sec or 8 SP GFLOP/sec on the Core i7. Th e dashed vertical line to the right has an arithmetic 
intensity of 4 FLOP/byte. It is limited only computationally to 51.2 DP GFLOP/sec and 102.4 SP GFLOP/sec on the Core i7 and 78 DP GFLOP/
sec and 512 DP GFLOP/sec on the GTX 280. To hit the highest computation rate on the Core i7 you need to use all 4 cores and SSE instructions 
with an equal number of multiplies and adds. For the GTX 280, you need to use fused multiply-add instructions on all multithreaded SIMD 
processors. 
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from 2.0 × slower (Solv) to 15.2 × faster (GJK), the Intel researchers decided to 
fi nd the reasons for the diff erences:

■ Memory bandwidth. Th e GPU has 4.4 × the memory bandwidth, which helps 
explain why LBM and SAXPY run 5.0 and 5.3 × faster; their working sets are 
hundreds of megabytes and hence don t fi t into the Core i7 cache. (So as to 
access memory intensively, they purposely did not use cache blocking as in 
Chapter 5.) Hence, the slope of the roofl ines explains their performance. SpMV 
also has a large working set, but it only runs 1.9 × faster because the double-
precision fl oating point of the GTX 280 is only 1.5 × as faster as the Core i7. 

■ Compute bandwidth. Five of the remaining kernels are compute bound: 
SGEMM, Conv, FFT, MC, and Bilat. Th e GTX is faster by 3.9, 2.8, 3.0, 1.8, and 
5.7 ×, respectively. Th e fi rst three of these use single-precision fl oating-point 
arithmetic, and GTX 280 single precision is 3 to 6 × faster. MC uses double 
precision, which explains why it s only 1.8 × faster since DP performance 
is only 1.5 × faster. Bilat uses transcendental functions, which the GTX 
280 supports directly. Th e Core i7 spends two-thirds of its time calculating 
transcendental functions for Bilat, so the GTX 280 is 5.7 × faster. Th is 
observation helps point out the value of hardware support for operations that 
occur in your workload: double-precision fl oating point and perhaps even 
transcendentals.

Kernel Units Core i7-960 GTX 280
GTX 280/

i7-960
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SGEMM GFLOP/sec

Billion paths/secMC
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FIGURE 6.24 Raw and relative performance measured for the two platforms. In this study, 
SAXPY is just used as a measure of memory bandwidth, so the right unit is GBytes/sec and not GFLOP/sec. 
(Based on Table 3 in [Lee et al., 2010].)
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■ Cache benefi ts. Ray casting (RC) is only 1.6 × faster on the GTX because 
cache blocking with the Core i7 caches prevents it from becoming memory 
bandwidth bound (see Sections 5.4 and 5.14), as it is on GPUs. Cache 
blocking can help Search, too. If the index trees are small so that they fi t in 
the cache, the Core i7 is twice as fast. Larger index trees make them memory 
bandwidth bound. Overall, the GTX 280 runs search 1.8 × faster. Cache 
blocking also helps Sort. While most programmers wouldn t run Sort on 
a SIMD processor, it can be written with a 1-bit Sort primitive called split. 
However, the split algorithm executes many more instructions than a scalar 
sort does. As a result, the Core i7 runs 1.25 × as fast as the GTX 280. Note 
that caches also help other kernels on the Core i7, since cache blocking allows 
SGEMM, FFT, and SpMV to become compute bound. Th is observation re-
emphasizes the importance of cache blocking optimizations in Chapter 5. 

■ Gather-Scatter. Th e multimedia SIMD extensions are of little help if the data are 
scattered throughout main memory; optimal performance comes only when 
accesses are to data are aligned on 16-byte boundaries. Th us, GJK gets little benefi t 
from SIMD on the Core i7. As mentioned above, GPUs off er gather-scatter 
addressing that is found in a vector architecture but omitted from most SIMD 
extensions. Th e memory controller even batches accesses to the same DRAM 
page together (see Section 5.2). Th is combination means the GTX 280 runs GJK 
a startling 15.2 × as fast as the Core i7, which is larger than any single physical 
parameter in Figure 6.22. Th is observation reinforces the importance of gather-
scatter to vector and GPU architectures that is missing from SIMD extensions.

■ Synchronization. Th e performance of synchronization is limited by atomic 
updates, which are responsible for 28% of the total runtime on the Core i7 
despite its having a hardware fetch-and-increment instruction. Th us, Hist is only 
1.7 × faster on the GTX 280. Solv solves a batch of independent constraints in 
a small amount of computation followed by barrier synchronization. Th e Core 
i7 benefi ts from the atomic instructions and a memory consistency model that 
ensures the right results even if not all previous accesses to memory hierarchy 
have completed. Without the memory consistency model, the GTX 280 
version launches some batches from the system processor, which leads to the 
GTX 280 running 0.5 × as fast as the Core i7. Th is observation points out how 
synchronization performance can be important for some data parallel problems.

It is striking how oft en weaknesses in the Tesla GTX 280 that were uncovered by 
kernels selected by Intel researchers were already being addressed in the successor 
architecture to Tesla: Fermi has faster double-precision fl oating-point performance, 
faster atomic operations, and caches. It was also interesting that the gather-scatter 
support of vector architectures that predate the SIMD instructions by decades was 
so important to the eff ective usefulness of these SIMD extensions, which some had 
predicted before the comparison. Th e Intel researchers noted that 6 of the 14 kernels 
would exploit SIMD better with more effi  cient gather-scatter support on the Core 
i7. Th is study certainly establishes the importance of cache blocking as well. 



Now that we seen a wide range of results of benchmarking diff erent 
multiprocessors, let’s return to our DGEMM example to see in detail how much we 
have to change the C code to exploit multiple processors.

 6.12 Going Faster:  Multiple Processors and 
Matrix Multiply

Th is section is the fi nal and largest step in our incremental performance journey of 
adapting DGEMM to the underlying hardware of the Intel Core i7 (Sandy Bridge).  
Each Core i7 has 8 cores, and the computer we have been using has 2 Core i7s. 
Th us, we have 16 cores on which to run DGEMM. 

Figure 6.25 shows the OpenMP version of DGEMM that utilizes those cores. 
Note that line 30 is the single line added to Figure 5.48 to make this code run on 
multiple processors: an OpenMP pragma that tells the compiler to use multiple 
threads in the outermost for loop. It tells the computer to spread the work of the 
outermost loop across all the threads. 

Figure 6.26 plots a classic multiprocessor speedup graph, showing the 
performance improvement versus a single thread as the number of threads increase. 
Th is graph makes it easy to see the challenges of strong scaling versus weak scaling.  
When everything fi ts in the fi rst level data cache, as is the case for 32 × 32 matrices, 
adding threads actually hurts performance. Th e 16-threaded version of DGEMM 
is almost half as fast as the single-threaded version in this case. In contrast, the two 
largest matrices get a 14 × speedup from 16 threads, and hence the classic two “up 
and to the right” lines in Figure 6.26. 

Figure 6.27 shows the absolute performance increase as we increase the number 
of threads from 1 to 16.  DGEMM operates now operates at 174 GLOPS for 960 × 960 
matrices. As our unoptimized C version of DGEMM in Figure 3.21 ran this code at 
just 0.8 GFOPS, the optimizations in Chapters 3 to 6 that tailor the code to the 
underlying hardware result in a speedup of over 200 times!

Next up is our warnings of the fallacies and pitfalls of multiprocessing. Th e 
computer architecture graveyard is fi lled with parallel processing projects that have 
ignored them.

Elaboration: These results are with Turbo mode turned off. We are using a dual chip 
system in this system, so not surprisingly, we can get the full Turbo speedup (3.3/2.6 
= 1.27) with either 1 thread (only 1 core on one of the chips) or 2 threads (1 core per 
chip). As we increase the number of threads and hence the number of active cores, the 
benefi t of Turbo mode decreases, as there is less of the power budget to spend on the 
active cores. For 4 threads the average Turbo speedup is 1.23, for 8 it is 1.13, and for 
16 it is 1.11.
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#include <x86intrin.h>
#define UNROLL (4)
#define BLOCKSIZE 32
void do_block (int n, int si, int sj, int sk, 
               double *A, double *B, double *C)
{
  for ( int i = si; i < si+BLOCKSIZE; i+=UNROLL*4 )
    for ( int j = sj; j < sj+BLOCKSIZE; j++ ) {
      __m256d c[4];
      for ( int x = 0; x < UNROLL; x++ ) 
        c[x] = _mm256_load_pd(C+i+x*4+j*n);
     /* c[x] = C[i][j] */
      for( int k = sk; k < sk+BLOCKSIZE; k++ )
      {
        __m256d b = _mm256_broadcast_sd(B+k+j*n);
     /* b = B[k][j] */
        for (int x = 0; x < UNROLL; x++)
          c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */
                 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
      }

      for ( int x = 0; x < UNROLL; x++ ) 
        _mm256_store_pd(C+i+x*4+j*n, c[x]);
        /* C[i][j] = c[x] */
    }
}

void dgemm (int n, double* A, double* B, double* C)
{
#pragma omp parallel for
  for ( int sj = 0; sj < n; sj += BLOCKSIZE ) 
    for ( int si = 0; si < n; si += BLOCKSIZE )
      for ( int sk = 0; sk < n; sk += BLOCKSIZE )
        do_block(n, si, sj, sk, A, B, C);
}
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FIGURE 6.25 OpenMP version of DGEMM from Figure 5.48. Line 30 is the only OpenMP code, making 
the outermost for loop operate in parallel. Th is line is the only diff erence from Figure 5.48.

Elaboration: Although the Sandy Bridge supports two hardware threads per core, we 
do not get more performance from 32 threads. The reason is that a single AVX hardware 
is shared between the two threads multiplexed onto one core, so assigning two threads 
per core actually hurts performance due to the multiplexing overhead.
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 6.13 Fallacies and Pitfalls

Th e many assaults on parallel processing have uncovered numerous fallacies and 
pitfalls. We cover four here.

Fallacy: Amdahl’s Law doesn’t apply to parallel computers.
In 1987, the head of a research organization claimed that a multiprocessor machine 
had broken Amdahl’s Law. To try to understand the basis of the media reports, let s 
see the quote that gave us Amdahl s Law [1967, p. 483]:

A fairly obvious conclusion which can be drawn at this point is that the eff ort 
expended on achieving high parallel processing rates is wasted unless it is 
accompanied by achievements in sequential processing rates of very nearly the 
same magnitude.

Th is statement must still be true; the neglected portion of the program must limit 
performance. One interpretation of the law leads to the following lemma: portions 
of every program must be sequential, so there must be an economic upper bound 
to the number of processors say, 100. By showing linear speed-up with 1000 
processors, this lemma is disproved; hence the claim that Amdahl s Law was broken.

Th e approach of the researchers was just to use weak scaling: rather than going 
1000 times faster on the same data set, they computed 1000 times more work in 
comparable time. For their algorithm, the sequential portion of the program was 
constant, independent of the size of the input, and the rest was fully parallel
hence, linear speed-up with 1000 processors.

Amdahl s Law obviously applies to parallel processors. What this research does 
point out is that one of the main uses of faster computers is to run larger problems. 
Just be sure that users really care about those problems versus being a justifi cation 
to buying an expensive computer by fi nding a problem that just keeps lots of 
processors busy.

Fallacy: Peak performance tracks observed performance.
Th e supercomputer industry once used this metric in marketing, and the fallacy 
is exacerbated with parallel machines. Not only are marketers using the nearly 
unattainable peak performance of a uniprocessor node, but also they are then 
multiplying it by the total number of processors, assuming perfect speed-up! 
Amdahl s Law suggests how diffi  cult it is to reach either peak; multiplying the two 
together multiplies the sins. Th e roofl ine model helps put peak performance in 
perspective.

Pitfall: Not developing the soft ware to take advantage of, or optimize for, a 
multiprocessor architecture.

Th ere is a long history of parallel soft ware lagging behind on parallel hardware, 
possibly because the soft ware problems are much harder. We give one example to 
show the subtlety of the issues, but there are many examples we could choose!

For over a decade 
prophets have voiced 
the contention that the 
organization of a single 
computer has reached 
its limits and that truly 
signifi cant advances 
can be made only 
by interconnection 
of a multiplicity of 
computers in such a 
manner as to permit 
cooperative solution. 
…Demonstration is 
made of the continued 
validity of the single 
processor approach …
Gene Amdahl, “Validity 
of the single processor 
approach to achieving 
large scale computing 
capabilities,” Spring Joint 
Computer Conference, 
1967



One frequently encountered problem occurs when soft ware designed for a 
uniprocessor is adapted to a multiprocessor environment. For example, the Silicon 
Graphics operating system originally protected the page table with a single lock, 
assuming that page allocation is infrequent. In a uniprocessor, this does not 
represent a performance problem. In a multiprocessor, it can become a major 
performance bottleneck for some programs. Consider a program that uses a large 
number of pages that are initialized at start-up, which UNIX does for statically 
allocated pages. Suppose the program is parallelized so that multiple processes 
allocate the pages. Because page allocation requires the use of the page table, which 
is locked whenever it is in use, even an OS kernel that allows multiple threads in the 
OS will be serialized if the processes all try to allocate their pages at once (which is 
exactly what we might expect at initialization time!).

Th is page table serialization eliminates parallelism in initialization and has 
signifi cant impact on overall parallel performance. Th is performance bottleneck 
persists even for task-level parallelism. For example, suppose we split the parallel 
processing program apart into separate jobs and run them, one job per processor, 
so that there is no sharing between the jobs. (Th is is exactly what one user did, 
since he reasonably believed that the performance problem was due to unintended 
sharing or interference in his application.) Unfortunately, the lock still serializes all 
the jobs so even the independent job performance is poor.

Th is pitfall indicates the kind of subtle but signifi cant performance bugs 
that can arise when soft ware runs on multiprocessors. Like many other key 
soft ware components, the OS algorithms and data structures must be rethought 
in a multiprocessor context. Placing locks on smaller portions of the page table 
eff ectively eliminated the problem.

Fallacy: You can get good vector performance without providing memory 
bandwidth.

As we saw with the Roofl ine model, memory bandwidth is quite important to 
all architectures. DAXPY requires 1.5 memory references per fl oating-point 
operation, and this ratio is typical of many scientifi c codes. Even if the fl oating-point 
operations took no time, a Cray-1 could not increase the DAXPY performance of 
the vector sequence used, since it was memory limited. Th e Cray-1 performance on 
Linpack jumped when the compiler used blocking to change the computation so 
that values could be kept in the vector registers. Th is approach lowered the number 
of memory references per FLOP and improved the performance by nearly a factor 
of two! Th us, the memory bandwidth on the Cray-1 became suffi  cient for a loop 
that formerly required more bandwidth, which is just what the Roofl ine model 
would predict.
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 6.14 Concluding Remarks

Th e dream of building computers by simply aggregating processors has been 
around since the earliest days of computing. Progress in building and using eff ective 
and effi  cient parallel processors, however, has been slow. Th is rate of progress has 
been limited by diffi  cult soft ware problems as well as by a long process of evolving 
the architecture of multiprocessors to enhance usability and improve effi  ciency. 
We have discussed many of the soft ware challenges in this chapter, including the 
diffi  culty of writing programs that obtain good speed-up due to Amdahl s Law. Th e 
wide variety of diff erent architectural approaches and the limited success and short 
life of many of the parallel architectures of the past have compounded the soft ware 
diffi  culties. We discuss the history of the development of these multiprocessors 
in online  Section 6.15. To go into even greater depth on topics in this chapter, 
see Chapter 4 of Computer Architecture: A Quantitative Approach, Fift h Edition for 
more on GPUs and comparisons between GPUs and CPUs and Chapter 6 for more 
on WSCs. 

As we said in Chapter 1, despite this long and checkered past, the information 
technology industry has now tied its future to parallel computing. Although it is 
easy to make the case that this eff ort will fail like many in the past, there are reasons 
to be hopeful:

■ Clearly, soft ware as a service (SaaS) is growing in importance, and clusters 
have proven to be a very successful way to deliver such services. By providing 
redundancy at a higher-level, including geographically distributed datacenters, 
such services have delivered 24 × 7 × 365 availability for customers around 
the world. 

■ We believe that Warehouse-Scale Computers are changing the goals and 
principles of server design, just as the needs of mobile clients are changing the 
goals and principles of microprocessor design. Both are revolutionizing the 
soft ware industry as well. Performance per dollar and performance per joule 
drive both mobile client hardware and the WSC hardware, and parallelism is 
the key to delivering on those sets of goals.

■ SIMD and vector operations are a good match to multimedia applications, 
which are playing a larger role in the PostPC Era. Th ey share the advantage of 
being easier for the programmer than classic parallel MIMD programming 
and being more energy effi  cient than MIMD. To put into perspective the 
importance of SIMD versus MIMD, Figure 6.28 plots the number of cores 
for MIMD versus the number of 32-bit and 64-bit operations per clock cycle 
in SIMD mode for x86 computers over time. For x86 computers, we expect 
to see two additional cores per chip about every two years and the SIMD 
width to double about every four years. Given these assumptions, over the 
next decade the potential speed-up from SIMD parallelism is twice that of 

We are dedicating 
all of our future 
product development 
to multicore designs. 
We believe this is a 
key infl ection point 
for the industry. …
Th is is not a race. 
Th is is a sea change in 
computing…”
Paul Otellini, Intel 
President, Intel 
Developers Forum, 2004



MIMD parallelism. Given the eff ectiveness of SIMD for multimedia and its 
increasing importance in the PostPC Era, that emphasis may be appropriate. 
Hence, it’s as least as important to understand SIMD parallelism as MIMD 
parallelism, even though the latter has received much more attention. 

■ Th e use of parallel processing in domains such as scientifi c and engineering 
computation is popular. Th is application domain has an almost limitless 
thirst for more computation. It also has many applications that have lots of 
natural concurrency. Once again, clusters dominate this application area. For 
example, using the 2012 Top 500 report, clusters are responsible for more 
than 80% of the 500 fastest Linpack results. 

■ All desktop and server microprocessor manufacturers are building 
multiprocessors to achieve higher performance, so, unlike in the past, there 
is no easy path to higher performance for sequential applications. As we said 
earlier, sequential programs are now slow programs. Hence, programmers 
who need higher performance must parallelize their codes or write new 
parallel processing programs.

2003
1

10

100

P
ot

en
tia

l p
ar

al
le

l s
pe

ed
up

1000

2007 2011 2015 2019 2023

MIMD*SIMD (32 b)

SIMD (32 b)

MIMD*SIMD (64 b)

MIMD

SIMD (64 b)

FIGURE 6.28 Potential speed-up via parallelism from MIMD, SIMD, and both MIMD and 
SIMD over time for x86 computers. Th is fi gure assumes that two cores per chip for MIMD will be 
added every two years and the number of operations for SIMD will double every four years.
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■ In the past, microprocessors and multiprocessors were subject to 
diff erent defi nitions of success. When scaling uniprocessor performance, 
microprocessor architects were happy if single thread performance went up 
by the square root of the increased silicon area. Th us, they were happy with 
sublinear performance in terms of resources. Multiprocessor success used 
to be defi ned as linear speed-up as a function of the number of processors, 
assuming that the cost of purchase or cost of administration of n processors 
was n times as much as one processor. Now that parallelism is happening on-
chip via multicore, we can use the traditional microprocessor metric of being 
successful with sublinear performance improvement.

■ Th e success of just-in-time runtime compilation and autotuning makes it 
feasible to think of soft ware adapting itself to take advantage of the increasing 
number of cores per chip, which provides fl exibility that is not available when 
limited to static compilers.

■ Unlike in the past, the open source movement has become a critical portion 
of the soft ware industry. Th is movement is a meritocracy, where better 
engineering solutions can win the mind share of the developers over legacy 
concerns. It also embraces innovation, inviting change to old soft ware and 
welcoming new languages and soft ware products. Such an open culture could 
be extremely helpful in this time of rapid change.

To motivate readers to embrace this revolution, we demonstrated the potential 
of parallelism concretely for matrix multiply on the Intel Core i7 (Sandy Bridge) in 
the Going Faster sections of Chapters 3 to 6:

■ Data-level parallelism in Chapter 3 improved performance by a factor of 3.85 
by executing four 64-bit fl oating-point operations in parallel using the 256-
bit operands of the AVX instructions, demonstrating the value of SIMD.

■ Instruction-level parallelism in Chapter 4 pushed performance up by another 
factor of 2.3 by unrolling loops 4 times to give the out-of-order execution 
hardware more instructions to schedule.

■ Cache optimizations in Chapter 5 improved performance of matrices that 
didn’t fi t into the L1 data cache by another factor of 2.0 to 2.5 by using cache 
blocking to reduce cache misses.

■ Th read-level parallelism in this chapter improved performance of matrices 
that don’t fi t into a single L1 data cache by another factor of 4 to 14 by utilizing 
all 16 cores of our multicore chips, demonstrating the value of MIMD. We 
did this by adding a single line using an OpenMP pragma.

Using the ideas in this book and tailoring the soft ware to this computer added 
24 lines of code to DGEMM. For the matrix sizes of 32x32, 160x160, 480x480, and 
960x960, the overall performance speedup from these ideas realized in those two-
dozen lines of code is factors of 8, 39, 129, and 212!



Th is parallel revolution in the hardware/soft ware interface is perhaps the 
greatest challenge facing the fi eld in the last 60 years. You can also think of it as 
the greatest opportunity, as our Going Faster sections demonstrate. Th is revolution 
will provide many new research and business prospects inside and outside the IT 
fi eld, and the companies that dominate the multicore era may not be the same 
ones that dominated the uniprocessor era. Aft er understanding the underlying 
hardware trends and learning to adapt soft ware to them, perhaps you will be one 
of the innovators who will seize the opportunities that are certain to appear in the 
uncertain times ahead. We look forward to benefi ting from your inventions!

 5.96.15  Historical Perspective and Further 
Reading

Th is section online gives the rich and oft en disastrous history of multiprocessors 
over the last 50 years.
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 6.16 Exercises

6.1 First, write down a list of your daily activities that you typically do on a 
weekday. For instance, you might get out of bed, take a shower, get dressed, eat 
breakfast, dry your hair, brush your teeth. Make sure to break down your list so you 
have a minimum of 10 activities.

6.1.1 [5] <§6.2> Now consider which of these activities is already exploiting some 
form of parallelism (e.g., brushing multiple teeth at the same time, versus one at 
a time, carrying one book at a time to school, versus loading them all into your 
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backpack and then carry them “in parallel”). For each of your activities, discuss if 
they are already working in parallel, but if not, why they are not.

6.1.2 [5] <§6.2> Next, consider which of the activities could be carried out 
concurrently (e.g., eating breakfast and listening to the news). For each of your 
activities, describe which other activity could be paired with this activity.

6.1.3 [5] <§6.2> For 6.1.2, what could we change about current systems (e.g., 
showers, clothes, TVs, cars) so that we could perform more tasks in parallel?

6.1.4 [5] <§6.2> Estimate how much shorter time it would take to carry out these 
activities if you tried to carry out as many tasks in parallel as possible.

6.2 You are trying to bake 3 blueberry pound cakes. Cake ingredients are as 
follows:

1 cup butter, soft ened
1 cup sugar
4 large eggs
1 teaspoon vanilla extract
1/2 teaspoon salt
1/4 teaspoon nutmeg
1 1/2 cups fl our
1 cup blueberries

Th e recipe for a single cake is as follows:

Step 1: Preheat oven to 325°F (160°C). Grease and fl our your cake pan.

Step 2: In large bowl, beat together with a mixer butter and sugar at medium 
speed until light and fl uff y. Add eggs, vanilla, salt and nutmeg. Beat until 
thoroughly blended. Reduce mixer speed to low and add fl our, 1/2 cup at a time, 
beating just until blended.

Step 3: Gently fold in blueberries. Spread evenly in prepared baking pan. Bake 
for 60 minutes.

6.2.1 [5] <§6.2> Your job is to cook 3 cakes as effi  ciently as possible. Assuming 
that you only have one oven large enough to hold one cake, one large bowl, one 
cake pan, and one mixer, come up with a schedule to make three cakes as quickly 
as possible. Identify the bottlenecks in completing this task.

6.2.2 [5] <§6.2> Assume now that you have three bowls, 3 cake pans and 3 mixers. 
How much faster is the process now that you have additional resources?



6.2.3 [5] <§6.2> Assume now that you have two friends that will help you cook, 
and that you have a large oven that can accommodate all three cakes. How will this 
change the schedule you arrived at in Exercise 6.2.1 above?

6.2.4 [5] <§6.2> Compare the cake-making task to computing 3 iterations 
of a loop on a parallel computer. Identify data-level parallelism and task-level 
parallelism in the cake-making loop.

6.3 Many computer applications involve searching through a set of data and 
sorting the data. A number of effi  cient searching and sorting algorithms have been 
devised in order to reduce the runtime of these tedious tasks. In this problem we 
will consider how best to parallelize these tasks.

6.3.1 [10] <§6.2> Consider the following binary search algorithm (a classic divide 
and conquer algorithm) that searches for a value X in a sorted N-element array A 
and returns the index of matched entry:

BinarySearch(A[0..N−1], X) {
low = 0
high = N −1
while (low <= high) {

mid = (low + high) / 2
if (A[mid] >X)

 high = mid −1
else if (A[mid] <X)

 low = mid + 1
else

 return mid // found
}
return −1 // not found

}

Assume that you have Y cores on a multi-core processor to run BinarySearch. 
Assuming that Y is much smaller than N, express the speedup factor you might 
expect to obtain for values of Y and N. Plot these on a graph.

6.3.2 [5] <§6.2> Next, assume that Y is equal to N. How would this aff ect your 
conclusions in your previous answer? If you were tasked with obtaining the best 
speedup factor possible (i.e., strong scaling), explain how you might change this 
code to obtain it.

6.4 Consider the following piece of C code:

for (j=2;j<1000;j++)
   D[j] = D[j−1]+D[j−2];
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Th e MIPS code corresponding to the above fragment is:

          addiu   $s2,$zero,7992
          addiu   $s1,$zero,16
   loop:  l.d     $f0, �16($s1)
          l.d     $f2, �8($s1)
          add.d   $f4, $f0, $f2
          s.d     $f4, 0($s1)
          addiu   $s1, $s1, 8
          bne     $s1, $s2, loop

Instructions have the following associated latencies (in cycles):

add.d l.d s.d addiu

4 6 1 2

6.4.1 [10] <§6.2> How many cycles does it take for all instructions in a single 
iteration of the above loop to execute?

6.4.2 [10] <§6.2> When an instruction in a later iteration of a loop depends upon 
a data value produced in an earlier iteration of the same loop, we say that there is 
a loop carried dependence between iterations of the loop. Identify the loop-carried 
dependences in the above code. Identify the dependent program variable and 
assembly-level registers. You can ignore the loop induction variable j.

6.4.3 [10] <§6.2> Loop unrolling was described in Chapter 4. Apply loop 
unrolling to this loop and then consider running this code on a 2-node distributed 
memory message passing system. Assume that we are going to use message passing 
as described in Section 6.7, where we introduce a new operation send (x, y) that 
sends to node x the value y, and an operation receive( ) that waits for the value being 
sent to it. Assume that send operations take a cycle to issue (i.e., later instructions 
on the same node can proceed on the next cycle), but take 10 cycles be received 
on the receiving node. Receive instructions stall execution on the node where they 
are executed until they receive a message. Produce a schedule for the two nodes 
assuming an unroll factor of 4 for the loop body (i.e., the loop body will appear 
4 times). Compute the number of cycles it will take for the loop to run on the 
message passing system.

6.4.4 [10] <§6.2> Th e latency of the interconnect network plays a large role in 
the effi  ciency of message passing systems. How fast does the interconnect need to 
be in order to obtain any speedup from using the distributed system described in 
Exercise 6.4.3?

6.5 Consider the following recursive mergesort algorithm (another classic divide 
and conquer algorithm). Mergesort was fi rst described by John Von Neumann in 
1945. Th e basic idea is to divide an unsorted list x of m elements into two sublists 
of about half the size of the original list. Repeat this operation on each sublist, and 



continue until we have lists of size 1 in length. Th en starting with sublists of length 
1, “merge” the two sublists into a single sorted list.

Mergesort(m)
var list left, right, result
if length(m) ≤ 1

return m
else

var middle = length(m) / 2
for each x in m up to middle

add x to left
for each x in m after middle

add x to right
left = Mergesort(left)
right = Mergesort(right)
result = Merge(left, right)
return result

Th e merge step is carried out by the following code:

Merge(left,right)
var list result
while length(left) >0 and length(right) > 0

if first(left) ≤ first(right)
append first(left) to result
left = rest(left)

else
append first(right) to result
right = rest(right)

if length(left) >0
append rest(left) to result

if length(right) >0
append rest(right) to result

return result

6.5.1 [10] <§6.2> Assume that you have Y cores on a multicore processor to run 
MergeSort. Assuming that Y is much smaller than length(m), express the speedup 
factor you might expect to obtain for values of Y and length(m). Plot these on a 
graph.

6.5.2 [10] <§6.2> Next, assume that Y is equal to length (m). How would this 
aff ect your conclusions your previous answer? If you were tasked with obtaining 
the best speedup factor possible (i.e., strong scaling), explain how you might 
change this code to obtain it.
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6.6 Matrix multiplication plays an important role in a number of applications. 
Two matrices can only be multiplied if the number of columns of the fi rst matrix is 
equal to the number of rows in the second.

Let’s assume we have an m × n matrix A and we want to multiply it by an n × p 
matrix B. We can express their product as an m × p matrix denoted by AB (or A ⋅ B). 
If we assign C = AB, and ci,j denotes the entry in C at position (i, j), then for each 
element i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ p. Now we want to see if we can parallelize 
the computation of C. Assume that matrices are laid out in memory sequentially as 
follows: a1,1, a2,1, a3,1, a4,1, …, etc.

6.6.1 [10] <§6.5> Assume that we are going to compute C on both a single core 
shared memory machine and a 4-core shared-memory machine. Compute the 
speedup we would expect to obtain on the 4-core machine, ignoring any memory 
issues.

6.6.2 [10] <§6.5> Repeat Exercise 6.6.1, assuming that updates to C incur a cache 
miss due to false sharing when consecutive elements are in a row (i.e., index i) are 
updated.

6.6.3 [10] <§6.5> How would you fi x the false sharing issue that can occur?

6.7 Consider the following portions of two diff erent programs running at the 
same time on four processors in a symmetric multicore processor (SMP). Assume 
that before this code is run, both x and y are 0.

Core 1: x = 2;

Core 2: y = 2;

Core 3: w = x + y + 1;

Core 4: z = x + y;

6.7.1 [10] <§6.5> What are all the possible resulting values of w, x, y, and z? For 
each possible outcome, explain how we might arrive at those values. You will need 
to examine all possible interleavings of instructions.

6.7.2 [5] <§6.5> How could you make the execution more deterministic so that 
only one set of values is possible?

6.8 Th e dining philosopher’s problem is a classic problem of synchronization and 
concurrency. Th e general problem is stated as philosophers sitting at a round table 
doing one of two things: eating or thinking. When they are eating, they are not 
thinking, and when they are thinking, they are not eating. Th ere is a bowl of pasta 
in the center. A fork is placed in between each philosopher. Th e result is that each 
philosopher has one fork to her left  and one fork to her right. Given the nature of 
eating pasta, the philosopher needs two forks to eat, and can only use the forks on 
her immediate left  and right. Th e philosophers do not speak to one another.



6.8.1 [10] <§6.7> Describe the scenario where none of philosophers ever eats (i.e., 
starvation). What is the sequence of events that happen that lead up to this problem?

6.8.2 [10] <§6.7> Describe how we can solve this problem by introducing the 
concept of a priority? But can we guarantee that we will treat all the philosophers 
fairly? Explain.

Now assume we hire a waiter who is in charge of assigning forks to philosophers. 
Nobody can pick up a fork until the waiter says they can. Th e waiter has global 
knowledge of all forks. Further, if we impose the policy that philosophers will 
always request to pick up their left  fork before requesting to pick up their right 
fork, then we can guarantee to avoid deadlock.

6.8.3 [10] <§6.7> We can implement requests to the waiter as either a queue of 
requests or as a periodic retry of a request. With a queue, requests are handled in 
the order they are received. Th e problem with using the queue is that we may not 
always be able to service the philosopher whose request is at the head of the queue 
(due to the unavailability of resources). Describe a scenario with 5 philosophers 
where a queue is provided, but service is not granted even though there are forks 
available for another philosopher (whose request is deeper in the queue) to eat.

6.8.4 [10] <§6.7> If we implement requests to the waiter by periodically repeating 
our request until the resources become available, will this solve the problem 
described in Exercise 6.8.3? Explain.

6.9 Consider the following three CPU organizations:

CPU SS: A 2-core superscalar microprocessor that provides out-of-order issue 
capabilities on 2 function units (FUs). Only a single thread can run on each core 
at a time.

CPU MT: A fi ne-grained multithreaded processor that allows instructions from 2 
threads to be run concurrently (i.e., there are two functional units), though only 
instructions from a single thread can be issued on any cycle.

CPU SMT: An SMT processor that allows instructions from 2 threads to be run 
concurrently (i.e., there are two functional units), and instructions from either or 
both threads can be issued to run on any cycle.

Assume we have two threads X and Y to run on these CPUs that include the 
following operations:

Thread X Thread Y

A1 – takes 3 cycles to execute B1 – take 2 cycles to execute

A2 – no dependences B2 – confl icts for a functional unit with B1

A3 – confl icts for a functional unit with A1 B3 – depends on the result of B2

A4 – depends on the result of A3 B4 – no dependences and takes 2 cycles to execute
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Assume all instructions take a single cycle to execute unless noted otherwise or 
they encounter a hazard.

6.9.1 [10] <§6.4> Assume that you have 1 SS CPU. How many cycles will it take to 
execute these two threads? How many issue slots are wasted due to hazards?

6.9.2 [10] <§6.4> Now assume you have 2 SS CPUs. How many cycles will it take 
to execute these two threads? How many issue slots are wasted due to hazards?

6.9.3 [10] <§6.4> Assume that you have 1 MT CPU. How many cycles will it take 
to execute these two threads? How many issue slots are wasted due to hazards?

6.10 Virtualization soft ware is being aggressively deployed to reduce the costs of 
managing today’s high performance servers. Companies like VMWare, Microsoft  
and IBM have all developed a range of virtualization products. Th e general concept, 
described in Chapter 5, is that a hypervisor layer can be introduced between the 
hardware and the operating system to allow multiple operating systems to share 
the same physical hardware. Th e hypervisor layer is then responsible for allocating 
CPU and memory resources, as well as handling services typically handled by the 
operating system (e.g., I/O).

Virtualization provides an abstract view of the underlying hardware to the hosted 
operating system and application soft ware. Th is will require us to rethink how 
multi-core and multiprocessor systems will be designed in the future to support 
the sharing of CPUs and memories by a number of operating systems concurrently.

6.10.1 [30] <§6.4> Select two hypervisors on the market today, and compare 
and contrast how they virtualize and manage the underlying hardware (CPUs and 
memory).

6.10.2 [15] <§6.4> Discuss what changes may be necessary in future multi-core 
CPU platforms in order to better match the resource demands placed on these 
systems. For instance, can multithreading play an eff ective role in alleviating the 
competition for computing resources?

6.11 We would like to execute the loop below as effi  ciently as possible. We have 
two diff erent machines, a MIMD machine and a SIMD machine.

for (i=0; i < 2000; i++)
for (j=0; j<3000; j++)

X_array[i][j] = Y_array[j][i] + 200;

6.11.1 [10] <§6.3> For a 4 CPU MIMD machine, show the sequence of MIPS 
instructions that you would execute on each CPU. What is the speedup for this 
MIMD machine?

6.11.2 [20] <§6.3> For an 8-wide SIMD machine (i.e., 8 parallel SIMD functional 
units), write an assembly program in using your own SIMD extensions to MIPS 
to execute the loop. Compare the number of instructions executed on the SIMD 
machine to the MIMD machine.



6.12 A systolic array is an example of an MISD machine. A systolic array is a 
pipeline network or “wavefront” of data processing elements. Each of these elements 
does not need a program counter since execution is triggered by the arrival of data. 
Clocked systolic arrays compute in “lock-step” with each processor undertaking 
alternate compute and communication phases.

6.12.1 [10] <§6.3> Consider proposed implementations of a systolic array (you 
can fi nd these in on the Internet or in technical publications). Th en attempt to 
program the loop provided in Exercise 6.11 using this MISD model. Discuss any 
diffi  culties you encounter.

6.12.2 [10] <§6.3> Discuss the similarities and diff erences between an MISD and 
SIMD machine. Answer this question in terms of data-level parallelism.

6.13 Assume we want to execute the DAXPY loop show on page 511 in MIPS 
assembly on the NVIDIA 8800 GTX GPU described in this chapter. In this problem, 
we will assume that all math operations are performed on single-precision fl oating-
point numbers (we will rename the loop SAXPY). Assume that instructions take 
the following number of cycles to execute.

Loads Stores Add.S Mult.S

5 2 3 4

6.13.1 [20] <§6.6> Describe how you will constructs warps for the SAXPY loop 
to exploit the 8 cores provided in a single multiprocessor.

6.14 Download the CUDA Toolkit and SDK from http://www.nvidia.com/object/
cuda_get.html. Make sure to use the “emurelease” (Emulation Mode) version of the 
code (you will not need actual NVIDIA hardware for this assignment). Build the 
example programs provided in the SDK, and confi rm that they run on the emulator.

6.14.1 [90] <§6.6> Using the “template” SDK sample as a starting point, write a 
CUDA program to perform the following vector operations:

1) a − b (vector-vector subtraction)

2) a ⋅ b (vector dot product)

Th e dot product of two vectors a = [a1, a2, … , an] and b = [b1, b2, … , bn] is defi ned as:

a b  1 1 2 2⋅ ∑a b a b a b a b
i

n

i n ni
1

…

Submit code for each program that demonstrates each operation and verifi es the 
correctness of the results.

6.14.2 [90] <§6.6> If you have GPU hardware available, complete a performance 
analysis your program, examining the computation time for the GPU and a CPU 
version of your program for a range of vector sizes. Explain any results you see.

 6.16 Exercises 571

http://www.nvidia.com/object/cuda_get.html
http://www.nvidia.com/object/cuda_get.html


572 Chapter 6 Parallel Processors from Client to Cloud

6.15 AMD has recently announced that they will be integrating a graphics 
processing unit with their x86 cores in a single package, though with diff erent 
clocks for each of the cores. Th is is an example of a heterogeneous multiprocessor 
system which we expect to see produced commericially in the near future. One 
of the key design points will be to allow for fast data communication between 
the CPU and the GPU. Presently communications must be performed between 
discrete CPU and GPU chips. But this is changing in AMDs Fusion architecture. 
Presently the plan is to use multiple (at least 16) PCI express channels for facilitate 
intercommunication. Intel is also jumping into this arena with their Larrabee chip. 
Intel is considering to use their QuickPath interconnect technology.

6.15.1 [25] <§6.6> Compare the bandwidth and latency associated with these 
two interconnect technologies.

6.16 Refer to Figure 6.14b, which shows an n-cube interconnect topology of order 
3 that interconnects 8 nodes. One attractive feature of an n-cube interconnection 
network topology is its ability to sustain broken links and still provide connectivity.

6.16.1 [10] <§6.8> Develop an equation that computes how many links in the 
n-cube (where n is the order of the cube) can fail and we can still guarantee an 
unbroken link will exist to connect any node in the n-cube.

6.16.2 [10] <§6.8> Compare the resiliency to failure of n-cube to a fully-
connected interconnection network. Plot a comparison of reliability as a function 
of the added number of links for the two topologies.

6.17 Benchmarking is fi eld of study that involves identifying representative 
workloads to run on specifi c computing platforms in order to be able to objectively 
compare performance of one system to another. In this exercise we will compare 
two classes of benchmarks: the Whetstone CPU benchmark and the PARSEC 
Benchmark suite. Select one program from PARSEC. All programs should be freely 
available on the Internet. Consider running multiple copies of Whetstone versus 
running the PARSEC Benchmark on any of systems described in Section 6.11.

6.17.1 [60] <§6.10> What is inherently diff erent between these two classes of 
workload when run on these multi-core systems?

6.17.2 [60] <§6.10> In terms of the Roofl ine Model, how dependent will the 
results you obtain when running these benchmarks be on the amount of sharing 
and synchronization present in the workload used?

6.18 When performing computations on sparse matrices, latency in the memory 
hierarchy becomes much more of a factor. Sparse matrices lack the spatial locality 
in the data stream typically found in matrix operations. As a result, new matrix 
representations have been proposed.

One the earliest sparse matrix representations is the Yale Sparse Matrix Format. It 
stores an initial sparse m × n matrix, M in row form using three one-dimensional 



arrays. Let R be the number of nonzero entries in M. We construct an array A 
of length R that contains all nonzero entries of M (in left -to-right top-to-bottom 
order). We also construct a second array IA of length m + 1 (i.e., one entry per row, 
plus one). IA(i) contains the index in A of the fi rst nonzero element of row i. Row 
i of the original matrix extends from A(IA(i)) to A(IA(i+1)−1). Th e third array, JA, 
contains the column index of each element of A, so it also is of length R.

6.18.1 [15] <§6.10> Consider the sparse matrix X below and write C code that 
would store this code in Yale Sparse Matrix Format.

   Row 1 [1, 2, 0, 0, 0, 0]
   Row 2 [0, 0, 1, 1, 0, 0]
   Row 3 [0, 0, 0, 0, 9, 0]
   Row 4 [2, 0, 0, 0, 0, 2]
   Row 5 [0, 0, 3, 3, 0, 7]
   Row 6 [1, 3, 0, 0, 0, 1]

6.18.2 [10] <§6.10> In terms of storage space, assuming that each element in 
matrix X is single precision fl oating point, compute the amount of storage used to 
store the Matrix above in Yale Sparse Matrix Format.

6.18.3 [15] <§6.10> Perform matrix multiplication of Matrix X by Matrix Y 
shown below.

   [2, 4, 1, 99, 7, 2]

Put this computation in a loop, and time its execution. Make sure to increase 
the number of times this loop is executed to get good resolution in your timing 
measurement. Compare the runtime of using a naïve representation of the matrix, 
and the Yale Sparse Matrix Format.

6.18.4 [15] <§6.10> Can you fi nd a more effi  cient sparse matrix representation 
(in terms of space and computational overhead)?

6.19 In future systems, we expect to see heterogeneous computing platforms 
constructed out of heterogeneous CPUs. We have begun to see some appear in the 
embedded processing market in systems that contain both fl oating point DSPs and 
a microcontroller CPUs in a multichip module package.

Assume that you have three classes of CPU:

CPU A—A moderate speed multi-core CPU (with a fl oating point unit) that can 
execute multiple instructions per cycle.

CPU B—A fast single-core integer CPU (i.e., no fl oating point unit) that can 
execute a single instruction per cycle.

CPU C—A slow vector CPU (with fl oating point capability) that can execute 
multiple copies of the same instruction per cycle.
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Assume that our processors run at the following frequencies:

CPU A CPU B CPU C

1 GHz 3 GHz 250 MHz

CPU A can execute 2 instructions per cycle, CPU B can execute 1 instruction per 
cycle, and CPU C can execute 8 instructions (though the same instruction) per 
cycle. Assume all operations can complete execution in a single cycle of latency 
without any hazards.

All three CPUs have the ability to perform integer arithmetic, though CPU B cannot 
perform fl oating point arithmetic. CPU A and B have an instruction set similar 
to a MIPS processor. CPU C can only perform fl oating point add and subtract 
operations, as well as memory loads and stores. Assume all CPUs have access to 
shared memory and that synchronization has zero cost.

Th e task at hand is to compare two matrices X and Y that each contain 1024 × 1024 
fl oating point elements. Th e output should be a count of the number indices where 
the value in X was larger or equal to the value in Y.

6.19.1 [10] <§6.11> Describe how you would partition the problem on the 3 
diff erent CPUs to obtain the best performance.

6.19.2 [10] <§6.11> What kind of instruction would you add to the vector CPU 
C to obtain better performance?

6.20 Assume a quad-core computer system can process database queries at a 
steady state rate of requests per second. Also assume that each transaction takes, 
on average, a fi xed amount of time to process. Th e following table shows pairs of 
transaction latency and processing rate.

Average Transaction Latency Maximum transaction processing rate

1 ms 5000/sec

2 ms 5000/sec

1 ms 10,000/sec

2 ms 10,000/sec

For each of the pairs in the table, answer the following questions:

6.20.1 [10] <§6.11> On average, how many requests are being processed at any 
given instant?

6.20.2 [10] <§6.11> If move to an 8-core system, ideally, what will happen to the 
system throughput (i.e., how many queries/second will the computer process)?

6.20.3 [10] <§6.11> Discuss why we rarely obtain this kind of speedup by simply 
increasing the number of cores.



§6.1, page 504: False. Task-level parallelism can help sequential applications and 
sequential applications can be made to run on parallel hardware, although it is 
more challenging.
§6.2, page 509: False. Weak scaling can compensate for a serial portion of the 
program that would otherwise limit scalability, but not so for strong scaling.
§6.3, page 514: True, but they are missing useful vector features like gather-scatter 
and vector length registers that improve the effi  ciency of vector architectures. 
(As an elaboration in this section mentions, the AVX2 SIMD extensions off ers 
indexed loads via a gather operation but not scatter for indexed stores. Th e Haswell 
generation x86 microprocessor is the fi rst to support AVX2.)
§6.4, page 519: 1. True. 2. True.
§6.5, page 523: False. Since the shared address is a physical address, multiple 
tasks each in their own virtual address spaces can run well on a shared memory 
multiprocessor.
§6.6, page 531: False. Graphics DRAM chips are prized for their higher bandwidth.
§6.7, page 536: 1. False. Sending and receiving a message is an implicit 
synchronization, as well as a way to share data. 2. True.
§6.8, page 538: True.
§6.10, page 550: True. We likely need innovation at all levels of the hardware and 
soft ware stack for parallel computing to succeed.

Answers to 
Check Yourself
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 A.1 Introduction

Encoding instructions as binary numbers is natural and effi  cient for computers. 
Humans, however, have a great deal of diffi  culty understanding and manipulating 
these numbers. People read and write symbols (words) much better than long 
sequences of digits. Chapter 2 showed that we need not choose between numbers 
and words, because computer instructions can be represented in many ways. 
Humans can write and read symbols, and computers can execute the equivalent 
binary numbers. Th is appendix describes the process by which a human-readable 
program is translated into a form that a computer can execute, provides a few hints 
about writing assembly programs, and explains how to run these programs on 
SPIM, a simulator that executes MIPS programs. UNIX, Windows, and Mac OS X 
versions of the SPIM simulator are available on the CD.

Assembly language is the symbolic representation of a computer’s binary 
encoding—the machine language. Assembly language is more readable than 
machine language, because it uses symbols instead of bits. Th e symbols in assembly 
language name commonly occurr in bit patterns, such as opcodes and register 
specifi ers, so people can read and remember them. In addition, assembly language 

machine language 
Binary representation 
used for communication 
within a computer 
system.
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FIGURE A.1.1 The process that produces an executable fi le. An assembler translates a fi le of 
assembly language into an object fi le, which is linked with other fi les and libraries into an executable fi le. 
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permits programmers to use labels to identify and name particular memory words 
that hold instructions or data. 

A tool called an assembler translates assembly language into binary instructions. 
Assemblers provide a friendlier representation than a computer’s 0s and 1s, which 
sim plifi es writing and reading programs. Symbolic names for operations and loca-
tions are one facet of this representation. Another facet is programming facilities 
that increase a program’s clarity. For example, macros, discussed in  Section A.2, 
enable a programmer to extend the assembly language by defi ning new operations.

An assembler reads a single assembly language source fi le and produces an 
object fi le containing machine instructions and bookkeeping information that 
helps combine several object fi les into a program. Figure A.1.1 illustrates how a 
program is built. Most programs consist of several fi les—also called modules—
that are written, compiled, and assembled independently. A program may also use 
prewritten routines supplied in a program library. A module typically contains ref-
erences to subroutines and data defi ned in other modules and in libraries. Th e code 
in a module cannot be executed when it contains unresolved references to labels 
in other object fi les or libraries. Another tool, called a linker, combines a collection 
of object and library fi les into an executable fi le, which a computer can run.

To see the advantage of assembly language, consider the following sequence of 
fi gures, all of which contain a short subroutine that computes and prints the sum of 
the squares of integers from 0 to 100. Figure A.1.2 shows the machine language that 
a MIPS computer executes. With considerable eff ort, you could use the opcode and 
instruction format tables in Chapter 2 to translate the instructions into a symbolic 
program similar to that shown in Figure A.1.3. Th is form of the routine is much 
easier to read, because operations and operands are written with symbols rather 

assembler A program 
that translates a symbolic 
version of instruction into 
the binary ver sion.

macro A pattern-
matching and replacement 
facility that pro vides a 
simple mechanism to name 
a frequently used sequence 
of instructions.

unresolved reference 
A  reference that requires 
more  information from 
an outside source to be 
complete.

linker Also called 
link editor. A systems 
program that combines 
independently assembled 
machine  language 
programs and resolves all 
undefi ned labels into an 
executable fi le.
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than with bit patterns. However, this assembly language is still diffi  cult to follow, 
because memory locations are named by their address rather than by a symbolic 
label.

Figure A.1.4 shows assembly language that labels memory addresses with mne-
monic names. Most programmers prefer to read and write this form. Names that 
begin with a period, for example .data and .globl, are assembler directives 
that tell the assembler how to translate a program but do not produce machine 
instructions. Names followed by a colon, such as str: or main:, are labels that 
name the next memory location. Th is program is as readable as most assembly 
language programs (except for a glaring lack of comments), but it is still diffi  cult 
to follow, because many simple operations are required to accomplish simple tasks 
and because assembly language’s lack of control fl ow constructs provides few hints 
about the program’s operation.

By contrast, the C routine in Figure A.1.5 is both shorter and clearer, since vari-
ables have mnemonic names and the loop is explicit rather than constructed with 
branches. In fact, the C routine is the only one that we wrote. Th e other forms of 
the program were produced by a C compiler and assembler.

In general, assembly language plays two roles (see Figure A.1.6). Th e fi rst role 
is the output language of compilers. A compiler translates a program written in a 
high-level language (such as C or Pascal) into an equivalent program in machine or 

assembler directive 
An operation that tells the 
assembler how to translate 
a program but does not 
produce machine instruc-
tions; always begins with 
a period.

00100111101111011111111111100000
10101111101111110000000000010100
10101111101001000000000000100000
10101111101001010000000000100100
10101111101000000000000000011000
10101111101000000000000000011100
10001111101011100000000000011100
10001111101110000000000000011000
00000001110011100000000000011001
00100101110010000000000000000001
00101001000000010000000001100101
10101111101010000000000000011100
00000000000000000111100000010010
00000011000011111100100000100001
00010100001000001111111111110111
10101111101110010000000000011000
00111100000001000001000000000000
10001111101001010000000000011000
00001100000100000000000011101100
00100100100001000000010000110000
10001111101111110000000000010100
00100111101111010000000000100000
00000011111000000000000000001000
00000000000000000001000000100001

FIGURE A.1.2 MIPS machine language code for a routine to compute and print the sum 
of the squares of integers between 0 and 100. 
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assembly language. Th e high-level language is called the source  language, and the 
compiler’s output is its target language.

Assembly language’s other role is as a language in which to write programs. Th is 
role used to be the dominant one. Today, however, because of larger main memo-
ries and better compilers, most programmers write in a high-level language and 
rarely, if ever, see the instructions that a computer executes. Nevertheless, assembly 
language is still important to write programs in which speed or size is critical or to 
exploit hardware features that have no analogues in high-level  languages.

Although this appendix focuses on MIPS assembly language, assembly pro-
gramming on most other machines is very similar. Th e additional instructions and 
address modes in CISC machines, such as the VAX, can make assembly pro grams 
shorter but do not change the process of assembling a program or provide assembly 
language with the advantages of high-level languages, such as type-checking and 
structured control fl ow.

source language Th e 
high-level language 
in which a pro gram is 
originally written.

addiu $29, $29, -32
sw $31, 20($29)
sw $4, 32($29)
sw $5, 36($29)
sw $0, 24($29)
sw $0, 28($29)
lw $14, 28($29)
lw $24, 24($29)
multu $14, $14
addiu $8, $14, 1
slti $1, $8, 101
sw $8, 28($29)
mflo $15
addu $25, $24, $15
bne $1, $0, -9
sw $25, 24($29)
lui $4, 4096
lw $5, 24($29)
jal 1048812
addiu $4, $4, 1072
lw $31, 20($29)
addiu $29, $29, 32
jr $31
move $2, $0

FIGURE A.1.3 The same routine as in Figure A.1.2 written in assembly language. However, 
the code for the routine does not label registers or memory locations or include comments. 
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When to Use Assembly Language
Th e primary reason to program in assembly language, as opposed to an available 
high-level language, is that the speed or size of a program is critically important. 
For example, consider a computer that controls a piece of machinery, such as a 
car’s brakes. A computer that is incorporated in another device, such as a car, is 
called an embedded computer. Th is type of computer needs to respond rapidly 
and predictably to events in the outside world. Because a compiler introduces 

FIGURE A.1.4 The same routine as in Figure A.1.2 written in assembly language with 
labels, but no com ments. Th e commands that start with periods are assembler directives (see pages 
A-47–49). .text indicates that succeeding lines contain instructions. .data indicates that they contain 
data. .align n indicates that the items on the succeeding lines should be aligned on a 2n byte boundary. 
Hence, .align 2 means the next item should be on a word boundary. .globl main declares that main is 
a global symbol that should be visible to code stored in other fi les. Finally, .asciiz stores a null-terminated 
string in memory. 
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uncertainty about the time cost of operations, programmers may fi nd it diffi  cult 
to ensure that a high-level language program responds within a defi nite time 
interval—say, 1 millisecond aft er a sensor detects that a tire is skidding. An 
assembly language programmer, on the other hand, has tight control over which 
instruc tions execute. In addition, in embedded applications, reducing a program’s 
size, so that it fi ts in fewer memory chips, reduces the cost of the embedded 
computer.

A hybrid approach, in which most of a program is written in a high-level lan-
guage and time-critical sections are written in assembly language, builds on the 
strengths of both languages. Programs typically spend most of their time execut ing 
a small fraction of the program’s source code. Th is observation is just the prin ciple 
of locality that underlies caches (see Section 5.1 in Chapter 5).

Program profi ling measures where a program spends its time and can fi nd the 
time-critical parts of a program. In many cases, this portion of the program can 
be made faster with better data structures or algorithms. Sometimes, however, sig-
nifi cant performance improvements only come from recoding a critical portion of 
a program in assembly language.

#include <stdio.h>

int
main (int argc, char *argv[])
{
  int i;
  int sum = 0;

  for (i = 0; i <= 100; i = i + 1) sum = sum + i * i;
  printf (“The sum from 0 .. 100 is %d\n”, sum);
}

FIGURE A.1.5 The routine in Figure A.1.2 written in the C programming language. 

FIGURE A.1.6 Assembly language either is written by a programmer or is the output of 
a compiler. 

LinkerCompiler Assembler Computer

High-level language program

Assembly language program

Program
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Th is improvement is not necessarily an indication that the high-level  language’s 
compiler has failed. Compilers typically are better than programmers at produc-
ing uniformly high-quality machine code across an entire program. Pro grammers, 
however, understand a program’s algorithms and behavior at a deeper level than 
a compiler and can expend considerable eff ort and ingenuity improving small 
sections of the program. In particular, programmers oft en consider several proce-
dures simultaneously while writing their code. Compilers typically compile each 
procedure in isolation and must follow strict conventions governing the use of 
registers at procedure boundaries. By retaining commonly used values in regis-
ters, even across procedure boundaries, programmers can make a program run 
faster.

Another major advantage of assembly language is the ability to exploit special-
ized instructions—for example, string copy or pattern-matching instructions. 
Compilers, in most cases, cannot determine that a program loop can be replaced 
by a single instruction. However, the programmer who wrote the loop can replace 
it easily with a single instruction.

Currently, a programmer’s advantage over a compiler has become diffi  cult to 
maintain as compilation techniques improve and  machines’ pipelines increase in 
complexity (Chapter 4).

Th e fi nal reason to use assembly language is that no high-level language is 
available on a particular computer. Many older or specialized computers do not 
have a compiler, so a programmer’s only alternative is assembly language.

Drawbacks of Assembly Language
Assembly language has many disadvantages that strongly argue against its wide-
spread use. Perhaps its major disadvantage is that programs written in assembly 
language are inherently machine-specifi c and must be totally rewritten to run on 
another computer architecture. Th e rapid evolution of computers discussed in 
Chapter 1 means that architectures become obsolete. An assembly language pro-
gram remains tightly bound to its original archi tecture, even aft er the computer is 
eclipsed by new, faster, and more cost-eff ective machines.

Another disadvantage is that assembly language programs are longer than the 
equivalent programs written in a high-level language. For example, the C program 
in Figure A.1.5 is 11 lines long, while the assembly program in Figure A.1.4 is 
31 lines long. In more complex programs, the ratio of assembly to high-level lan-
guage (its expansion factor) can be much larger than the factor of three in this 
exam ple. Unfortunately, empirical studies have shown that programmers write 
roughly the same number of lines of code per day in assembly as in high-level 
languages. Th is means that programmers are roughly x times more productive in a 
high-level language, where x is the assembly language expansion factor.
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To compound the problem, longer programs are more diffi  cult to read and 
understand, and they contain more bugs. Assembly language exacerbates the prob-
lem because of its complete lack of structure. Common programming idioms, 
such as if-then statements and loops, must be built from branches and jumps. Th e 
resulting programs are hard to read, because the reader must reconstruct every 
higher-level construct from its pieces and each instance of a statement may be 
slightly diff erent. For example, look at Figure A.1.4 and answer these questions: 
What type of loop is used? What are its lower and upper bounds?

Elaboration: Compilers can produce machine language directly instead of relying on 
an assembler. These compilers typically execute much faster than those that invoke 
an assembler as part of compilation. However, a compiler that generates machine lan-
guage must perform many tasks that an assembler normally handles, such as resolv-
ing addresses and encoding instructions as binary numbers. The tradeoff is between 
compilation speed and compiler simplicity. 

Elaboration: Despite these considerations, some embedded applications are writ-
ten in a high-level language. Many of these applications are large and complex pro-
grams that must be extremely reliable. Assembly language programs are longer and 
more diffi cult to write and read than high-level language programs. This greatly increases 
the cost of writing an assembly language program and makes it extremely dif fi cult to 
verify the correctness of this type of program. In fact, these considerations led the US 
Department of Defense, which pays for many complex embedded systems, to develop 
Ada, a new high-level language for writing embedded systems.

 A.2 Assemblers

An assembler translates a fi le of assembly language statements into a fi le of binary 
machine instructions and binary data. Th e translation process has two major 
parts. Th e fi rst step is to fi nd memory locations with labels so that the relationship 
between symbolic names and addresses is known when instructions are trans lated. 
Th e second step is to translate each assembly statement by combining the numeric 
equivalents of opcodes, register specifi ers, and labels into a legal instruc tion. As 
shown in Figure A.1.1, the assembler produces an output fi le, called an object fi le, 
which contains the machine instructions, data, and bookkeeping infor mation.

An object fi le typically cannot be executed, because it references procedures or 
data in other fi les. A label is external (also called global) if the labeled object can 

external label Also called
global label. A label 
referring to an object that 
can be referenced from 
fi les other than the one in 
which it is defi ned.



be referenced from fi les other than the one in which it is defi ned. A label is local 
if the object can be used only within the fi le in which it is defi ned. In most assem-
blers, labels are local by default and must be explicitly declared global. Subrou tines 
and global variables require external labels since they are referenced from many 
fi les in a program. Local labels hide names that should not be visible to other 
modules—for example, static functions in C, which can only be called by other 
functions in the same fi le. In addition, compiler-generated names—for example, a 
name for the instruction at the beginning of a loop—are local so that the compiler 
need not produce unique names in every fi le.

Local and Global Labels

Consider the program in Figure A.1.4. Th e subroutine has an external (global) 
label main. It also contains two local labels—loop and str—that are only 
visible with this assembly language fi le. Finally, the routine also contains an 
unresolved reference to an external label printf, which is the library routine 
that prints values. Which labels in Figure A.1.4 could be referenced from 
another fi le?

Only global labels are visible outside a fi le, so the only label that could be 
referenced from another fi le is main.

Since the assembler processes each fi le in a program individually and in isola tion, 
it only knows the addresses of local labels. Th e assembler depends on another tool, 
the linker, to combine a collection of object fi les and libraries into an executable 
fi le by resolving external labels. Th e assembler assists the linker by pro viding lists 
of labels and unresolved references.

However, even local labels present an interesting challenge to an assembler. 
Unlike names in most high-level languages, assembly labels may be used before 
they are defi ned. In the example in Figure A.1.4, the label str is used by the la 
instruction before it is defi ned. Th e possibility of a forward reference, like this one, 
forces an assembler to translate a program in two steps: fi rst fi nd all labels and then 
produce instructions. In the example, when the assembler sees the la instruction, 
it does not know where the word labeled str is located or even whether str labels 
an instruction or datum.

local label A label 
referring to an object that 
can be used only within 
the fi le in which it is 
defi ned.

EXAMPLE

ANSWER

forward reference 
A label that is used 
before it is  defi ned.
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An assembler’s fi rst pass reads each line of an assembly fi le and breaks it into its 
component pieces. Th ese pieces, which are called lexemes, are individual words, 
numbers, and punctuation characters. For example, the line 

 ble $t0, 100, loop

contains six lexemes: the opcode ble, the register specifi er $t0, a comma, the 
number 100, a comma, and the symbol loop.

If a line begins with a label, the assembler records in its symbol table the name 
of the label and the address of the memory word that the instruction occupies. 
Th e assembler then calculates how many words of memory the instruction on the 
current line will occupy. By keeping track of the instructions’ sizes, the assembler 
can determine where the next instruction goes. To compute the size of a variable-
length instruction, like those on the VAX, an assembler has to examine it in detail. 
However, fi xed-length instructions, like those on MIPS, require only a cursory 
examination. Th e assembler performs a similar calculation to compute the space 
required for data statements. When the assembler reaches the end of an assembly 
fi le, the symbol table records the location of each label defi ned in the fi le.

Th e assembler uses the information in the symbol table during a second pass 
over the fi le, which actually produces machine code. Th e assembler again exam-
ines each line in the fi le. If the line contains an instruction, the assembler com-
bines the binary representations of its opcode and operands (register specifi ers or 
memory address) into a legal instruction. Th e process is similar to the one used in 
Section 2.5 in Chapter 2. Instructions and data words that reference an external 
symbol defi ned in another fi le cannot be completely assembled (they are unre-
solved), since the symbol’s address is not in the symbol table. An assembler does 
not complain about unresolved references, since the corresponding label is likely 
to be defi ned in another fi le.

Assembly language is a programming language. Its principal diff erence 
from high-level languages such as BASIC, Java, and C is that assembly lan-
guage provides only a few, simple types of data and control fl ow. Assembly 
language programs do not specify the type of value held in a variable. 
Instead, a programmer must apply the appropriate operations (e.g., integer 
or fl oating-point addition) to a value. In addition, in assem bly language, 
programs must implement all control fl ow with go tos. Both factors make 
assembly language programming for any machine—MIPS or x86—more 
diffi  cult and error-prone than writing in a high-level  language.

symbol table A table 
that matches names of 
labels to the addresses of 
the memory words that 
instructions  occupy.

The BIG
Picture



Elaboration: If an assembler’s speed is important, this two-step process can be done 
in one pass over the assembly fi le with a technique known as backpatching. In its 
pass over the fi le, the assembler builds a (possibly incomplete) binary representation 
of every instruction. If the instruction references a label that has not yet been defi ned, 
the assembler records the label and instruction in a table. When a label is defi ned, the 
assembler consults this table to fi nd all instructions that contain a forward reference to 
the label. The assembler goes back and corrects their binary representation to incorpo-
rate the address of the label. Backpatching speeds assembly because the assembler 
only reads its input once. However, it requires an assembler to hold the entire binary rep-
resentation of a program in memory so instructions can be backpatched. This require-
ment can limit the size of programs that can be assembled. The process is com plicated 
by machines with several types of branches that span different ranges of instructions. 
When the assembler fi rst sees an unresolved label in a branch instruction, it must either 
use the largest possible branch or risk having to go back and readjust many instructions 
to make room for a larger branch.

Object File Format
Assemblers produce object fi les. An object fi le on UNIX contains six distinct 
sections (see Figure A.2.1): 

 ■ Th e object fi le header describes the size and position of the other pieces of 
the fi le.

 ■ Th e text segment contains the machine language code for routines in the 
source fi le. Th ese routines may be unexecutable because of unresolved 
references.

 ■ Th e data segment contains a binary representation of the data in the source 
fi le. Th e data also may be incomplete because of unresolved references to 
labels in other fi les.

 ■ Th e relocation information identifi es instructions and data words that 
depend on absolute addresses. Th ese references must change if portions of 
the program are moved in memory.

 ■ Th e symbol table associates addresses with external labels in the source fi le 
and lists unresolved references. 

 ■ Th e debugging information contains a concise description of the way the 
program was compiled, so a debugger can fi nd which instruction addresses 
correspond to lines in a source fi le and print the data structures in readable 
form.

Th e assembler produces an object fi le that contains a binary representation of 
the program and data and additional information to help link pieces of a  program. 

backpatching 
A method for translating 
from assembly lan guage 
to machine instructions 
in which the  assembler 
builds a (possibly 
incomplete) binary 
 representation of every 
instruc tion in one pass 
over a program and then 
returns to fi ll in previ-
ously  undefi ned labels.

text segment Th e 
segment of a UNIX 
object fi le that  contains 
the machine language 
code for rou tines in the 
source fi le.

data segment Th e 
segment of a UNIX 
object or executable fi le 
that contains a binary 
represen tation of the 
 initialized data used by 
the program.

relocation information 
Th e segment of a UNIX 
object fi le that identifi es 
instructions and data 
words that  depend on 
absolute addresses.

absolute address 
A variable’s or routine’s 
actual  address in memory.
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Th is relocation information is necessary because the assembler does not know 
which memory locations a procedure or piece of data will occupy aft er it is linked 
with the rest of the program. Procedures and data from a fi le are stored in a con-
tiguous piece of memory, but the assembler does not know where this mem ory will 
be located. Th e assembler also passes some symbol table entries to the linker. In 
particular, the assembler must record which external symbols are defi ned in a fi le 
and what unresolved references occur in a fi le.

Elaboration: For convenience, assemblers assume each fi le starts at the same 
address (for example, location 0) with the expectation that the linker will relocate the code 
and data when they are assigned locations in memory. The assembler produces relocation 
information, which contains an entry describing each instruction or data word in the fi le 
that references an absolute address. On MIPS, only the subroutine call, load, and store 
instructions reference absolute addresses. Instructions that use PC- relative addressing, 
such as branches, need not be relocated.

Additional Facilities
Assemblers provide a variety of convenience features that help make assembler 
programs shorter and easier to write, but do not fundamentally change assembly 
language. For example, data layout directives allow a programmer to describe data 
in a more concise and natural manner than its binary representation.

In Figure A.1.4, the directive 

 .asciiz “The sum from 0 .. 100 is %d\n”

stores characters from the string in memory. Contrast this line with the alternative 
of writing each character as its ASCII value (Figure 2.15 in Chapter 2 describes the 
ASCII encoding for characters):

.byte 84, 104, 101, 32, 115, 117, 109, 32

.byte 102, 114, 111, 109, 32, 48, 32, 46

.byte 46, 32, 49, 48, 48, 32, 105, 115

.byte 32, 37, 100, 10, 0

Th e .asciiz directive is easier to read because it represents characters as letters, 
not binary numbers. An assembler can translate characters to their binary repre-
sentation much faster and more accurately than a human can. Data layout directives 

FIGURE A.2.1 Object fi le. A UNIX assembler produces an object fi le with six distinct sections. 
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specify data in a human-readable form that the assembler translates to binary. Other 
layout directives are described in Section A.10.

String Directive

Defi ne the sequence of bytes produced by this directive: 

.asciiz “The quick brown fox jumps over the lazy dog”

.byte 84,  104, 101, 32,    113, 117, 105, 99

.byte 107, 32,  98,  114,  111, 119, 110, 32

.byte 102, 111, 120, 32,  106, 117, 109, 112

.byte 115, 32,  111, 118, 101, 114,   32,  116

.byte 104, 101, 32,  108,   97, 122, 121, 32

.byte 100, 111, 103, 0

Macro is a pattern-matching and replacement facility that provides a simple 
mechanism to name a frequently used sequence of instructions. Instead of repeat-
edly typing the same instructions every time they are used, a programmer invokes 
the macro and the assembler replaces the macro call with the corresponding 
sequence of instructions. Macros, like subroutines, permit a programmer to create 
and name a new abstraction for a common operation. Unlike subroutines, how-
ever, macros do not cause a subroutine call and return when the program runs, 
since a macro call is replaced by the macro’s body when the program is assembled. 
Aft er this replacement, the resulting assembly is indistinguishable from the equiv-
alent program written without macros.

Macros

As an example, suppose that a programmer needs to print many numbers. Th e 
library routine printf accepts a format string and one or more values to print 
as its arguments. A programmer could print the integer in register $7 with the 
following instructions: 

 .data
int_str: .asciiz“%d”
 .text
 la $a0, int_str # Load string address
 # into first arg

EXAMPLE

ANSWER

EXAMPLE
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 mov $a1, $7 # Load value into
   # second arg
 jal printf # Call the printf routine

Th e .data directive tells the assembler to store the string in the program’s data 
segment, and the .text directive tells the assembler to store the instruc tions 
in its text segment.

However, printing many numbers in this fashion is tedious and produces a 
verbose program that is diffi  cult to understand. An alternative is to introduce 
a macro, print_int, to print an integer: 

 .data
int_str:.asciiz “%d”
 .text
 .macro print_int($arg)
 la  $a0, int_str # Load string address into
               # first arg
 mov $a1, $arg     # Load macro’s parameter 
               # ($arg) into second arg
 jal printf        # Call the printf routine
 .end_macro
print_int($7)

Th e macro has a formal parameter, $arg, that names the argument to the 
macro. When the macro is expanded, the argument from a call is substituted 
for the formal parameter throughout the macro’s body. Th en the assembler 
replaces the call with the macro’s newly expanded body. In the fi rst call on 
print_int, the argument is $7, so the macro expands to the code

la  $a0, int_str
mov $a1, $7
jal printf

In a second call on print_int, say, print_int($t0), the argument is $t0, 
so the macro expands to

la  $a0, int_str 
mov $a1, $t0 
jal printf

What does the call print_int($a0) expand to?

formal parameter 
A variable that is the 
argument to a proce dure 
or macro; it is replaced by 
that argument once the 
macro is expanded.



la  $a0, int_str 
mov $a1, $a0 
jal printf

Th is example illustrates a drawback of macros. A programmer who uses 
this macro must be aware that print_int uses register $a0 and so cannot 
correctly print the value in that register.

Some assemblers also implement pseudoinstructions, which are instructions pro-
vided by an assembler but not implemented in hardware. Chapter 2 contains 
many examples of how the MIPS assembler synthesizes pseudoinstructions 
and addressing modes from the spartan MIPS hardware instruction set. For 
example, Section 2.7 in Chapter 2 describes how the assembler synthesizes the 
blt instruc tion from two other instructions: slt and bne. By extending the 
instruction set, the MIPS assembler makes assembly language programming 
easier without complicating the hardware. Many pseudoinstructions could also 
be simulated with macros, but the MIPS assembler can generate better code for 
these instructions because it can use a dedicated register ($at) and is able to 
optimize the generated code.

Elaboration: Assemblers conditionally assemble pieces of code, which permits a 
programmer to include or exclude groups of instructions when a program is assembled. 
This feature is particularly useful when several versions of a program differ by a small 
amount. Rather than keep these programs in separate fi les—which greatly complicates 
fi xing bugs in the common code—programmers typically merge the versions into a sin-
gle fi le. Code particular to one version is conditionally assembled, so it can be excluded 
when other versions of the program are assembled.

If macros and conditional assembly are useful, why do assemblers for UNIX systems 
rarely, if ever, provide them? One reason is that most programmers on these systems 
write programs in higher-level languages like C. Most of the assembly code is produced 
by compilers, which fi nd it more convenient to repeat code rather than defi ne macros. 
Another reason is that other tools on UNIX—such as cpp, the C preprocessor, or m4, a 
general macro processor—can provide macros and conditional assembly for assembly 
language programs.

ANSWER

Hardware/
Software
Interface

 A.2 Assemblers A-17



A-18 Appendix A Assemblers, Linkers, and the SPIM Simulator

 A.3 Linkers

Separate compilation permits a program to be split into pieces that are stored in 
diff erent fi les. Each fi le contains a logically related collection of subroutines and 
data structures that form a module in a larger program. A fi le can be compiled 
and assembled independently of other fi les, so changes to one module do not 
require recompiling the entire program. As we discussed above, separate compila-
tion necessitates the additional step of linking to combine object fi les from separate 
modules and fi xing their unresolved references.

Th e tool that merges these fi les is the linker (see Figure A.3.1). It performs three 
tasks: 

 ■ Searches the program libraries to fi nd library routines used by the program

 ■ Determines the memory locations that code from each module will occupy 
and relocates its instructions by adjusting absolute references

 ■ Resolves references among fi les

A linker’s fi rst task is to ensure that a program contains no undefi ned labels. Th e 
linker matches the external symbols and unresolved references from a pro gram’s 
fi les. An external symbol in one fi le resolves a reference from another fi le if both 
refer to a label with the same name. Unmatched references mean a symbol was 
used but not defi ned anywhere in the program.

Unresolved references at this stage in the linking process do not necessarily 
mean a programmer made a mistake. Th e program could have referenced a library 
routine whose code was not in the object fi les passed to the linker. Aft er matching 
symbols in the program, the linker searches the system’s program librar ies to 
fi nd predefi ned subroutines and data structures that the program references. Th e 
basic libraries contain routines that read and write data, allocate and deallo cate 
memory, and perform numeric operations. Other libraries contain routines to 
access a database or manipulate terminal windows. A program that references an 
unresolved symbol that is not in any library is erroneous and cannot be linked. 
When the program uses a library routine, the linker extracts the routine’s code 
from the library and incorporates it into the program text segment. Th is new rou-
tine, in turn, may depend on other library routines, so the linker continues to 
fetch other library routines until no external references are unresolved or a rou tine 
cannot be found.

If all external references are resolved, the linker next determines the memory 
locations that each module will occupy. Since the fi les were assembled in isolation, 

separate compilation  
Split ting a program across 
many fi les, each of which 
can be com piled without 
knowledge of what is in 
the other fi les.



the assembler could not know where a module’s instructions or data would be 
placed relative to other modules. When the linker places a module in memory, all 
abso lute references must be relocated to refl ect its true location. Since the linker 
has relocation information that identifi es all relocatable references, it can effi  ciently 
fi nd and backpatch these references.

Th e linker produces an executable fi le that can run on a computer. Typically, 
this fi le has the same format as an object fi le, except that it contains no unresolved 
references or relocation information.

 A.4 Loading

A program that links without an error can be run. Before being run, the program 
resides in a fi le on secondary storage, such as a disk. On UNIX systems, the  operating 

FIGURE A.3.1 The linker searches a collection of object fi les and program libraries to 
fi nd nonlocal routines used in a program, combines them into a single executable fi le, and 
resolves references between routines in different fi les. 
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system kernel brings a program into memory and starts it running. To start a program, 
the operating system performs the following steps: 

1. It reads the executable fi le’s header to determine the size of the text and data 
segments.

2. It creates a new address space for the program. Th is address space is large 
enough to hold the text and data segments, along with a stack segment (see 
Section A.5).

3. It copies instructions and data from the executable fi le into the new address 
space.

4. It copies arguments passed to the program onto the stack.

5. It initializes the machine registers. In general, most registers are cleared, but 
the stack pointer must be assigned the address of the fi rst free stack location 
(see Section A.5).

6. It jumps to a start-up routine that copies the program’s arguments from the 
stack to registers and calls the program’s main routine. If the main routine 
returns, the start-up routine terminates the program with the exit system call. 

 A.5 Memory Usage

Th e next few sections elaborate the description of the MIPS architecture presented 
earlier in the book. Earlier chapters focused primarily on hardware and its relationship 
with low-level soft ware. Th ese sections focus primarily on how assembly language 
programmers use MIPS hardware. Th ese sections describe a set of conventions 
followed on many MIPS systems. For the most part, the hardware does not impose 
these conventions. Instead, they represent an agreement among programmers to 
follow the same set of rules so that soft ware written by diff erent people can work 
together and make eff ective use of MIPS hardware.

Systems based on MIPS processors typically divide memory into three parts 
(see Figure A.5.1). Th e fi rst part, near the bottom of the address space (starting 
at address 400000hex), is the text segment, which holds the program’s instructions.

Th e second part, above the text segment, is the data segment, which is further 
divided into two parts. Static data (starting at address 10000000hex) contains 
objects whose size is known to the compiler and whose lifetime—the interval 
dur ing which a program can access them—is the program’s entire execution. For 
example, in C, global variables are statically allocated, since they can be referenced 

static data Th e portion 
of memory that contains 
data whose size is known 
to the com piler and whose 
lifetime is the program’s 
entire execution.



FIGURE A.5.1 Layout of memory. 
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Because the data segment begins far above the program at address 10000000hex, 
load and store instructions cannot directly reference data objects with their 16-bit 
off set fi elds (see Section 2.5 in Chapter 2). For example, to load the word in the 
data segment at address 10010020hex into register $v0 requires two instructions:

lui $s0, 0x1001 # 0x1001 means 1001 base 16 
lw $v0, 0x0020($s0) # 0x10010000 + 0x0020 = 0x10010020

(Th e 0x before a number means that it is a hexadecimal value. For example, 0x8000 
is 8000hex or 32,768ten.)

To avoid repeating the lui instruction at every load and store, MIPS systems 
typically dedicate a register ($gp) as a global pointer to the static data segment. Th is 
register contains address 10008000hex, so load and store instructions can use their 
signed 16-bit off set fi elds to access the fi rst 64 KB of the static data segment. With 
this global pointer, we can rewrite the example as a single instruction: 

lw $v0, 0x8020($gp)

Of course, a global pointer register makes addressing locations 10000000hex–
10010000hex faster than other heap locations. Th e MIPS compiler usually stores 
global variables in this area, because these variables have fi xed locations and fi t bet-
ter than other global data, such as arrays.
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anytime during a program’s execution. Th e linker both assigns static objects to 
locations in the data segment and resolves references to these objects.

Immediately above static data is dynamic data. Th is data, as its name implies, is 
allocated by the program as it executes. In C programs, the malloc library rou tine 
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fi nds and returns a new block of memory. Since a compiler cannot predict how 
much memory a program will allocate, the operating system expands the dynamic 
data area to meet demand. As the upward arrow in the fi gure indicates, malloc 
expands the dynamic area with the sbrk system call, which causes the operating 
system to add more pages to the program’s virtual address space (see Section 5.7 in 
Chapter 5) immediately above the dynamic data segment.

Th e third part, the program stack segment, resides at the top of the virtual 
address space (starting at address 7ff ff ff fhex). Like dynamic data, the maximum size 
of a program’s stack is not known in advance. As the program pushes values on to 
the stack, the operating system expands the stack segment down toward the data 
segment.

Th is three-part division of memory is not the only possible one. However, it has 
two important characteristics: the two dynamically expandable segments are as far 
apart as possible, and they can grow to use a program’s entire address space.

 A.6 Procedure Call Convention

Conventions governing the use of registers are necessary when procedures in a 
program are compiled separately. To compile a particular procedure, a compiler 
must know which registers it may use and which registers are reserved for other 
procedures. Rules for using registers are called register use or procedure call 
conventions. As the name implies, these rules are, for the most part, conventions 
fol lowed by soft ware rather than rules enforced by hardware. However, most com-
pilers and programmers try very hard to follow these conventions because violat-
ing them causes insidious bugs.

Th e calling convention described in this section is the one used by the gcc com-
piler. Th e native MIPS compiler uses a more complex convention that is slightly 
faster.

Th e MIPS CPU contains 32 general-purpose registers that are numbered  0–31. 
Register $0 always contains the hardwired value 0. 

 ■ Registers $at (1), $k0 (26), and $k1 (27) are reserved for the assembler and 
operating system and should not be used by user programs or compilers.

 ■ Registers $a0–$a3 (4–7) are used to pass the fi rst four arguments to rou tines 
(remaining arguments are passed on the stack). Registers $v0 and $v1 (2, 3) 
are used to return values from functions.

stack segment Th e 
portion of memory used 
by a  program to hold 
procedure call frames.

register use convention 
Also called procedure 
call  convention. 
A soft ware proto col 
governing the use of 
registers by procedures.



 ■ Registers $t0–$t9 (8–15, 24, 25) are caller-saved registers that are used 
to hold temporary quantities that need not be preserved across calls (see 
Section 2.8 in Chapter 2).

 ■ Registers $s0–$s7 (16–23) are callee-saved registers that hold long-lived 
values that should be preserved across calls.

 ■ Register $gp (28) is a global pointer that points to the middle of a 64K block 
of memory in the static data segment.

 ■ Register $sp (29) is the stack pointer, which points to the last location on 
the stack. Register $fp (30) is the frame pointer. Th e jal instruction writes 
register $ra (31), the return address from a procedure call. Th ese two regis-
ters are explained in the next section.

Th e two-letter abbreviations and names for these registers—for example $sp 
for the stack pointer—refl ect the registers’ intended uses in the procedure call 
convention. In describing this convention, we will use the names instead of regis ter 
numbers. Figure A.6.1 lists the registers and describes their intended uses.

Procedure Calls
Th is section describes the steps that occur when one procedure (the caller) invokes 
another procedure (the callee). Programmers who write in a high-level language 
(like C or Pascal) never see the details of how one procedure calls another, because 
the compiler takes care of this low-level bookkeeping. However, assembly language 
programmers must explicitly implement every procedure call and return.

Most of the bookkeeping associated with a call is centered around a block 
of memory called a procedure call frame. Th is memory is used for a variety of 
purposes: 

 ■ To hold values passed to a procedure as arguments

 ■ To save registers that a procedure may modify, but which the procedure’s 
caller does not want changed

 ■ To provide space for variables local to a procedure

In most programming languages, procedure calls and returns follow a strict 
last-in, fi rst-out (LIFO) order, so this memory can be allocated and deallocated on 
a stack, which is why these blocks of memory are sometimes called stack frames.

Figure A.6.2 shows a typical stack frame. Th e frame consists of the memory 
between the frame pointer ($fp), which points to the fi rst word of the frame, 
and the stack pointer ($sp), which points to the last word of the frame. Th e stack 
grows down from higher memory addresses, so the frame pointer points above the 

caller-saved register 
A regis ter saved by the 
routine  being called.

callee-saved register 
A regis ter saved by 
the routine making a 
procedure call.

procedure call frame 
A block of memory that 
is used to hold values 
passed to a procedure 
as arguments, to save 
registers that a procedure 
may modify but that the 
procedure’s caller does not 
want changed, and to pro-
vide space for variables 
local to a procedure.
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stack pointer. Th e executing procedure uses the frame pointer to quickly access 
values in its stack frame. For example, an argument in the stack frame can be 
loaded into register $v0 with the instruction

lw $v0, 0($fp)

 Register name Number Usage

$zero 0 constant 0

$at 1 reserved for assembler 

$v0 2 expression evaluation and results of a function

$v1 3 expression evaluation and results of a function

$a0 4 argument 1 

$a1 5 argument 2 

$a2 6 argument 3 

$a3 7 argument 4 

$t0 8 temporary (not preserved across call) 

$t1 9 temporary (not preserved across call) 

$t2 10 temporary (not preserved across call) 

$t3 11 temporary (not preserved across call) 

$t4 12 temporary (not preserved across call) 

$t5 13 temporary (not preserved across call) 

$t6 14 temporary (not preserved across call) 

$t7 15 temporary (not preserved across call) 

$s0 16 saved temporary (preserved across call) 

$s1 17 saved temporary (preserved across call) 

$s2 18 saved temporary (preserved across call) 

$s3 19 saved temporary (preserved across call) 

$s4 20 saved temporary (preserved across call) 

$s5 21 saved temporary (preserved across call) 

$s6 22 saved temporary (preserved across call) 

$s7 23 saved temporary (preserved across call) 

$t8 24 temporary (not preserved across call) 

$t9 25 temporary (not preserved across call) 

$k0 26 reserved for OS kernel 

$k1 27 reserved for OS kernel 

$gp 28 pointer to global area 

$sp 29 stack pointer 

$fp 30 frame pointer 

$ra 31 return address (used by function call) 

FIGURE A.6.1 MIPS registers and usage convention. 



A stack frame may be built in many diff erent ways; however, the caller and 
callee must agree on the sequence of steps. Th e steps below describe the calling 
convention used on most MIPS machines. Th is convention comes into play at three 
points during a procedure call: immediately before the caller invokes the callee, 
just as the callee starts executing, and immediately before the callee returns to the 
caller. In the fi rst part, the caller puts the procedure call arguments in stan dard 
places and invokes the callee to do the following:

1. Pass arguments. By convention, the fi rst four arguments are passed in regis-
ters $a0–$a3. Any remaining arguments are pushed on the stack and appear 
at the beginning of the called procedure’s stack frame.

2. Save caller-saved registers. Th e called procedure can use these registers 
($a0–$a3 and $t0–$t9) without fi rst saving their value. If the caller expects 
to use one of these registers aft er a call, it must save its value before the call.

3. Execute a jal instruction (see Section 2.8 of Chapter 2), which jumps to the 
callee’s fi rst instruction and saves the return address in register $ra.

FIGURE A.6.2 Layout of a stack frame. Th e frame pointer ($fp) points to the fi rst word in the 
currently executing procedure’s stack frame. Th e stack pointer ($sp) points to the last word of the frame. Th e 
fi rst four arguments are passed in registers, so the fi ft h argument is the fi rst one stored on the stack. 
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Before a called routine starts running, it must take the following steps to set up 
its stack frame: 

1. Allocate memory for the frame by subtracting the frame’s size from the stack 
pointer.

2. Save callee-saved registers in the frame. A callee must save the values in 
these registers ($s0–$s7, $fp, and $ra) before altering them, since the 
caller expects to fi nd these registers unchanged aft er the call. Register $fp is 
saved by every procedure that allocates a new stack frame. However, register 
$ra only needs to be saved if the callee itself makes a call. Th e other callee-
saved registers that are used also must be saved.

3. Establish the frame pointer by adding the stack frame’s size minus 4 to $sp 
and storing the sum in register $fp.

Th e MIPS register use convention provides callee- and caller-saved registers, 
because both types of registers are advantageous in diff erent circumstances. Callee-
saved registers are better used to hold long-lived values, such as variables from a 
user’s program. Th ese registers are only saved during a procedure call if the callee 
expects to use the register. On the other hand, caller-saved registers are bet ter used 
to hold short-lived quantities that do not persist across a call, such as immediate 
values in an address calculation. During a call, the callee can also use these registers 
for short-lived temporaries.

Finally, the callee returns to the caller by executing the following steps: 

1. If the callee is a function that returns a value, place the returned value in 
register $v0.

2. Restore all callee-saved registers that were saved upon procedure entry.

3. Pop the stack frame by adding the frame size to $sp.

4. Return by jumping to the address in register $ra.

Elaboration: A programming language that does not permit recursive procedures—
procedures that call themselves either directly or indirectly through a chain of calls—need 
not allocate frames on a stack. In a nonrecursive language, each procedure’s frame 
may be statically allocated, since only one invocation of a procedure can be active at a 
time. Older versions of Fortran prohibited recursion, because statically allocated frames 
produced faster code on some older machines. However, on load store architec tures like 
MIPS, stack frames may be just as fast, because a frame pointer register points directly 
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Procedures that call 
themselves  either directly 
or indirectly through a 
chain of calls.



to the active stack frame, which permits a single load or store instruc tion to access 
values in the frame. In addition, recursion is a valuable programming technique.

Procedure Call Example
As an example, consider the C routine

main ()
{
 printf (“The factorial of 10 is %d\n”, fact (10));
}

int fact (int n)
{
 if (n < 1)
  return (1);
 else
  return (n * fact (n - 1));
}

which computes and prints 10! (the factorial of 10, 10! = 10 × 9 × . . . × 1). fact is 
a recursive routine that computes n! by multiplying n times (n - 1)!. Th e assembly 
code for this routine illustrates how programs manipulate stack frames.

Upon entry, the routine main creates its stack frame and saves the two callee-
saved registers it will modify: $fp and $ra. Th e frame is larger than required for 
these two register because the calling convention requires the minimum size of a 
stack frame to be 24 bytes. Th is minimum frame can hold four argument registers 
($a0–$a3) and the return address $ra, padded to a double-word boundary 
(24 bytes). Since main also needs to save $fp, its stack frame must be two words 
larger (remember: the stack pointer is kept doubleword aligned).

 .text
 .globl main
main:
 subu $sp,$sp,32 # Stack frame is 32 bytes long
 sw $ra,20($sp) # Save return address
 sw $fp,16($sp) # Save old frame pointer
 addiu $fp,$sp,28 # Set up frame pointer

Th e routine main then calls the factorial routine and passes it the single argument 
10. Aft er fact returns, main calls the library routine printf and passes it both 
a format string and the result returned from fact:

 A.6 Procedure Call Convention A-27
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 li $a0,10 # Put argument (10) in $a0
 jal fact # Call factorial function

 la $a0,$LC # Put format string in $a0
 move $a1,$v0 # Move fact result to $a1
 jal printf # Call the print function

Finally, aft er printing the factorial, main returns. But fi rst, it must restore the 
registers it saved and pop its stack frame:

 lw $ra,20($sp) # Restore return address
 lw $fp,16($sp) # Restore frame pointer
 addiu $sp,$sp,32 # Pop stack frame
 jr $ra # Return to caller

 .rdata
$LC:
 .ascii “The factorial of 10 is %d\n\000”

Th e factorial routine is similar in structure to main. First, it creates a stack frame 
and saves the callee-saved registers it will use. In addition to saving $ra and $fp, 
fact also saves its argument ($a0), which it will use for the recursive call:

    .text 
 fact:
  subu $sp,$sp,32 # Stack frame is 32 bytes long
  sw $ra,20($sp) # Save return address
  sw $fp,16($sp) # Save frame pointer
  addiu $fp,$sp,28 # Set up frame pointer
  sw $a0,0($fp) # Save argument (n)

Th e heart of the fact routine performs the computation from the C program. 
It tests whether the argument is greater than 0. If not, the routine returns the 
value 1. If the argument is greater than 0, the routine recursively calls itself to 
compute fact(n–1) and multiplies that value times n:

 lw $v0,0($fp) # Load n
 bgtz $v0,$L2 # Branch if n > 0
 li $v0,1 # Return 1
 jr $L1 # Jump to code to return

$L2:
 lw $v1,0($fp) # Load n
 subu $v0,$v1,1 # Compute n - 1
 move $a0,$v0 # Move value to $a0



 jal fact # Call factorial function

 lw $v1,0($fp) # Load n
 mul $v0,$v0,$v1 # Compute fact(n-1) * n

Finally, the factorial routine restores the callee-saved registers and returns the 
value in register $v0: 

$L1:  # Result is in $v0
 lw $ra, 20($sp) # Restore $ra
 lw $fp, 16($sp) # Restore $fp
 addiu $sp, $sp, 32 # Pop stack
 jr $ra # Return to caller

Stack in Recursive Procedure

Figure A.6.3 shows the stack at the call fact(7). main runs fi rst, so its frame 
is deepest on the stack. main calls fact(10), whose stack frame is next on the 
stack. Each invocation recursively invokes fact to compute the next-lowest 
factorial. Th e stack frames parallel the LIFO order of these calls. What does the 
stack look like when the call to fact(10) returns?

EXAMPLE
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FIGURE A.6.3 Stack frames during the call of fact(7). 
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ANSWER

Elaboration: The difference between the MIPS compiler and the gcc compiler is that 
the MIPS compiler usually does not use a frame pointer, so this register is available as 
another callee-saved register, $s8. This change saves a couple of instructions in the 
procedure call and return sequence. However, it complicates code generation, because 
a procedure must access its stack frame with $sp, whose value can change during a 
procedure’s execution if values are pushed on the stack.

Another Procedure Call Example
As another example, consider the following routine that computes the tak func-
tion, which is a widely used benchmark created by Ikuo Takeuchi. Th is function 
does not compute anything useful, but is a heavily recursive program that illustrates 
the MIPS calling convention.

int tak (int x, int y, int z)
{
 if (y < x)
  return 1+ tak (tak (x - 1, y, z),
   tak (y - 1, z, x), 
   tak (z - 1, x, y));
 else
 return z;
}

int main ()
{
 tak(18, 12, 6);
}

Th e assembly code for this program is shown below. Th e tak function fi rst saves 
its return address in its stack frame and its arguments in callee-saved regis ters, 
since the routine may make calls that need to use registers $a0–$a2 and $ra. Th e 
function uses callee-saved registers, since they hold values that persist over the 

main

Stack

Stack grows
Old $ra
Old $fp



lifetime of the function, which includes several calls that could potentially modify 
registers.

 .text
 .globl tak

tak:
 subu $sp, $sp, 40
 sw $ra, 32($sp)

 sw $s0, 16($sp) # x
 move $s0, $a0
 sw $s1, 20($sp) # y
 move $s1, $a1
 sw $s2, 24($sp) # z
 move $s2, $a2
 sw $s3, 28($sp) # temporary

Th e routine then begins execution by testing if y < x. If not, it branches to label 
L1, which is shown below.

 bge $s1, $s0, L1 # if (y < x)

If y < x, then it executes the body of the routine, which contains four recursive 
calls. Th e fi rst call uses almost the same arguments as its parent:

 addiu $a0, $s0, -1
 move $a1, $s1
 move $a2, $s2
 jal tak # tak (x - 1, y, z)
 move $s3, $v0

Note that the result from the fi rst recursive call is saved in register $s3, so that it 
can be used later.

Th e function now prepares arguments for the second recursive call.

 addiu $a0, $s1, -1
 move $a1, $s2
 move $a2, $s0
 jal tak # tak (y - 1, z, x)

In the instructions below, the result from this recursive call is saved in register 
$s0. But fi rst we need to read, for the last time, the saved value of the fi rst argu-
ment from this register.
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 addiu $a0, $s2, -1
 move $a1, $s0
 move $a2, $s1
 move $s0, $v0
 jal tak # tak (z - 1, x, y)

Aft er the three inner recursive calls, we are ready for the fi nal recursive call. Aft er 
the call, the function’s result is in $v0 and control jumps to the function’s epilogue.

move $a0, $s3
move $a1, $s0
move $a2, $v0
jal tak # tak (tak(...), tak(...), tak(...))
addiu $v0, $v0, 1
j L2

Th is code at label L1 is the consequent of the if-then-else statement. It just moves 
the value of argument z into the return register and falls into the function epilogue.

L1:
 move $v0, $s2

Th e code below is the function epilogue, which restores the saved registers and 
returns the function’s result to its caller.

L2:
 lw $ra, 32($sp)
 lw $s0, 16($sp)
 lw $s1, 20($sp)
 lw $s2, 24($sp)
 lw $s3, 28($sp)
 addiu $sp, $sp, 40
 jr $ra

Th e main routine calls the tak function with its initial arguments, then takes the 
computed result (7) and prints it using SPIM’s system call for printing integers.

 .globl main
main:
 subu $sp, $sp, 24
 sw $ra, 16($sp)

 li $a0, 18
 li $a1, 12



 li $a2, 6
 jal tak # tak(18, 12, 6)

 move $a0, $v0
 li $v0, 1 # print_int syscall
 syscall

 lw $ra, 16($sp)
 addiu $sp, $sp, 24
 jr $ra

 A.7 Exceptions and Interrupts

Section 4.9 of Chapter 4 describes the MIPS exception facility, which responds both 
to exceptions caused by errors during an instruction’s execution and to external 
interrupts caused by I/O devices. Th is section describes exception and interrupt 
handling in more detail.1 In MIPS processors, a part of the CPU called coprocessor 0 
records the information the soft ware needs to handle excep tions and interrupts. 
Th e MIPS simulator SPIM does not implement all of copro cessor 0’s registers, since 
many are not useful in a simulator or are part of the memory system, which SPIM 
does not implement. However, SPIM does provide the following coprocessor 0 
registers:

Register
name

Register
number Usage

BadVAddr 8 memory address at which an offending memory reference occurred 

Count 9 timer 

Compare 11 value compared against timer that causes interrupt when they match

Status 12 interrupt mask and enable bits

Cause 13 exception type and pending interrupt bits 

EPC 14 address of instruction that caused exception

Confi g 16 confi guration of machine

1. Th is section discusses exceptions in the MIPS-32 architecture, which is what SPIM imple ments 
in Version 7.0 and later. Earlier versions of SPIM implemented the MIPS-1 architecture, which 
handled exceptions slightly diff erently. Converting programs from these versions to run on 
MIPS-32 should not be diffi  cult, as the changes are limited to the Status and Cause register fi elds 
and the  replacement of the rfe instruction by the eret instruction.

interrupt handler 
A piece of code that is run 
as a result of an exception 
or an interrupt.
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Th ese seven registers are part of coprocessor 0’s register set. Th ey are accessed 
by the mfc0 and mtc0 instructions. Aft er an exception, register EPC contains the 
address of the instruction that was executing when the exception occurred. If the 
exception was caused by an external interrupt, then the instruction will not have 
started executing. All other exceptions are caused by the execution of the instruc-
tion at EPC, except when the off ending instruction is in the delay slot of a branch 
or jump. In that case, EPC points to the branch or jump instruction and the BD bit 
is set in the Cause register. When that bit is set, the exception handler must look 
at EPC + 4 for the off ending instruction. However, in either case, an excep tion 
handler properly resumes the program by returning to the instruction at EPC.

If the instruction that caused the exception made a memory access, register 
BadVAddr contains the referenced memory location’s address.

Th e Count register is a timer that increments at a fi xed rate (by default, every 
10 milliseconds) while SPIM is running. When the value in the Count register 
equals the value in the Compare register, a hardware interrupt at priority level 5 
occurs.

Figure A.7.1 shows the subset of the Status register fi elds implemented by the 
MIPS simulator SPIM. Th e interrupt mask fi eld contains a bit for each of the 
six hardware and two soft ware interrupt levels. A mask bit that is 1 allows inter-
rupts at that level to interrupt the processor. A mask bit that is 0 disables inter-
rupts at that level. When an interrupt arrives, it sets its interrupt pending bit in the 
Cause register, even if the mask bit is disabled. When an interrupt is pending, it will 
interrupt the processor when its mask bit is subsequently enabled.

Th e user mode bit is 0 if the processor is running in kernel mode and 1 if it is 
running in user mode. On SPIM, this bit is fi xed at 1, since the SPIM processor 
does not implement kernel mode. Th e exception level bit is normally 0, but is set to 
1 aft er an exception occurs. When this bit is 1, interrupts are disabled and the EPC 
is not updated if another exception occurs. Th is bit prevents an exception handler 
from being disturbed by an interrupt or exception, but it should be reset when the 
handler fi nishes. If the interrupt enable bit is 1, interrupts are allowed. If it is 
0, they are disabled.

Figure A.7.2 shows the subset of Cause register fi elds that SPIM implements. 
Th e branch delay bit is 1 if the last exception occurred in an instruction executed in 
the delay slot of a branch. Th e interrupt pending bits become 1 when an inter rupt 



is raised at a given hardware or soft ware level. Th e exception code register describes 
the cause of an exception through the following codes:

Number Name Cause of exception

0 Int interrupt (hardware)

4 AdEL address error exception (load or instruction fetch) 

5 AdES address error exception (store) 

6 IBE bus error on instruction fetch 

7 DBE bus error on data load or store 

8 Sys syscall exception 

9 Bp breakpoint exception 

10 RI reserved instruction exception

11 CpU coprocessor unimplemented

12 Ov arithmetic overfl ow exception

13 Tr trap

15 FPE fl oating point

Exceptions and interrupts cause a MIPS processor to jump to a piece of code, 
at address 80000180hex (in the kernel, not user address space), called an exception 
handler. Th is code examines the exception’s cause and jumps to an appropriate point 
in the operating system. Th e operating system responds to an exception either by 
terminating the process that caused the exception or by performing some action. 
A process that causes an error, such as executing an unimplemented instruction, is 
killed by the operating system. On the other hand, other exceptions such as page 

FIGURE A.7.1 The Status register. 
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faults are requests from a process to the operating system to perform a service, 
such as bringing in a page from disk. Th e operating system processes these requests 
and resumes the process. Th e fi nal type of exceptions are interrupts from external 
devices. Th ese generally cause the operating system to move data to or from an I/O 
device and resume the interrupted process. 

Th e code in the example below is a simple exception handler, which invokes 
a routine to print a message at each exception (but not interrupts). Th is code is 
similar to the exception handler (exceptions.s) used by the SPIM simulator.

Exception Handler

Th e exception handler fi rst saves register $at, which is used in pseudo-
instructions in the handler code, then saves $a0 and $a1, which it later uses to 
pass arguments. Th e exception handler cannot store the old values from these 
registers on the stack, as would an ordinary routine, because the cause of the 
exception might have been a memory reference that used a bad value (such 
as 0) in the stack pointer. Instead, the exception handler stores these registers 
in an exception handler register ($k1, since it can’t access memory without 
using $at) and two memory locations (save0 and save1). If the exception 
routine itself could be interrupted, two locations would not be enough since 
the second exception would overwrite values saved during the fi rst exception. 
However, this simple exception handler fi nishes running before it enables 
interrupts, so the problem does not arise.

.ktext 0x80000180
mov $k1, $at    # Save $at register
sw  $a0, save0  # Handler is not re-entrant and can’t use
sw  $a1, save1  # stack to save $a0, $a1
                # Don’t need to save $k0/$k1

Th e exception handler then moves the Cause and EPC registers into CPU 
registers. Th e Cause and EPC registers are not part of the CPU register set. 
In stead, they are registers in coprocessor 0, which is the part of the CPU that 
han dles exceptions. Th e instruction mfc0 $k0, $13 moves coprocessor 0’s 
register 13 (the Cause register) into CPU register $k0. Note that the exception 
handler need not save registers $k0 and $k1, because user programs are not 
supposed to use these registers. Th e exception handler uses the value from the 
Cause reg ister to test whether the exception was caused by an interrupt (see 
the preceding ta ble). If so, the exception is ignored. If the exception was not an 
interrupt, the handler calls print_excp to print a message.

EXAMPLE



mfc0  $k0, $13        # Move Cause into $k0

srl  $a0, $k0, 2     # Extract ExcCode field
andi  $a0, $a0, Oxf

bgtz  $a0, done       # Branch if ExcCode is Int (0)

mov  $a0, $k0        # Move Cause into $a0
mfco  $a1, $14        # Move EPC into $a1
jal  print_excp      # Print exception error message

Before returning, the exception handler clears the Cause register; resets 
the Status register to enable interrupts and clear the EXL bit, which allows 
subse quent exceptions to change the EPC register; and restores registers $a0, 
$a1, and $at. It then executes the eret (exception return) instruction, which 
returns to the instruction pointed to by EPC. Th is exception handler returns 
to the instruction following the one that caused the exception, so as to not 
re-execute the faulting instruction and cause the same exception again.

done:    mfc0    $k0, $14       # Bump EPC
         addiu   $k0, $k0, 4    # Do not re-execute
                                # faulting instruction
         mtc0    $k0, $14       # EPC

         mtc0    $0, $13        # Clear Cause register

         mfc0    $k0, $12       # Fix Status register
         andi    $k0, Oxfffd    # Clear EXL bit
         ori     $k0, Ox1       # Enable interrupts
         mtc0    $k0, $12

         lw      $a0, save0     # Restore registers
         lw      $a1, save1
         mov     $at, $k1

         eret                   # Return to EPC

         .kdata
save0:   .word 0
save1:   .word 0
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Elaboration: On real MIPS processors, the return from an exception handler is more 
complex. The exception handler cannot always jump to the instruction following EPC. For 
example, if the instruction that caused the exception was in a branch instruction’s delay 
slot (see Chapter 4), the next instruction to execute may not be the following instruction 
in memory.

 A.8 Input and Output

SPIM simulates one I/O device: a memory-mapped console on which a program 
can read and write characters. When a program is running, SPIM connects its 
own terminal (or a separate console window in the X-window version xspim or 
the Windows version PCSpim) to the processor. A MIPS program running on 
SPIM can read the characters that you type. In addition, if the MIPS program 
writes characters to the terminal, they appear on SPIM’s terminal or console win-
dow. One exception to this rule is control-C: this character is not passed to the 
program, but instead causes SPIM to stop and return to command mode. When 
the program stops running (for example, because you typed control-C or because 
the program hit a breakpoint), the terminal is reconnected to SPIM so you can type 
SPIM commands. 

To use memory-mapped I/O (see below), spim or xspim must be started 
with the -mapped_io fl ag. PCSpim can enable memory-mapped I/O through a 
command line fl ag or the “Settings” dialog.

Th e terminal device consists of two independent units: a receiver and a trans-
mitter. Th e receiver reads characters from the keyboard. Th e transmitter displays 
characters on the console. Th e two units are completely independent. Th is means, 
for example, that characters typed at the keyboard are not automatically echoed on 
the display. Instead, a program echoes a character by reading it from the receiver 
and writing it to the transmitter.

A program controls the terminal with four memory-mapped device registers, 
as shown in Figure A.8.1. “Memory-mapped’’ means that each register  appears as 
a special memory location. Th e Receiver Control register is at location ff ff 0000hex. 
Only two of its bits are actually used. Bit 0 is called “ready’’: if it is 1, it means 
that a character has arrived from the keyboard but has not yet been read from the 
Receiver Data register. Th e ready bit is read-only: writes to it are ignored. Th e ready 
bit changes from 0 to 1 when a character is typed at the keyboard, and it changes 
from 1 to 0 when the character is read from the Receiver Data register.



Bit 1 of the Receiver Control register is the keyboard “interrupt enable.” Th is 
bit may be both read and written by a program. Th e interrupt enable is initially 0. 
If it is set to 1 by a program, the terminal requests an interrupt at hardware level 1 
whenever a character is typed, and the ready bit becomes 1. However, for the inter-
rupt to aff ect the processor, interrupts must also be enabled in the Status register 
(see Section A.7). All other bits of the Receiver Control register are unused.

Th e second terminal device register is the Receiver Data register (at address 
ff ff 0004hex). Th e low-order eight bits of this register contain the last character typed 
at the keyboard. All other bits contain 0s. Th is register is read-only and changes 
only when a new character is typed at the keyboard. Reading the Receiver Data 
register resets the ready bit in the Receiver Control register to 0. Th e value in this 
register is undefi ned if the Receiver Control register is 0.

Th e third terminal device register is the Transmitter Control register (at address 
ff ff 0008hex). Only the low-order two bits of this register are used. Th ey behave much 
like the corresponding bits of the Receiver Control register. Bit 0 is called “ready’’ 

FIGURE A.8.1 The terminal is controlled by four device registers, each of which appears 
as a memory location at the given address. Only a few bits of these registers are actually used. Th e 
others always read as 0s and are ignored on writes. 
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and is read-only. If this bit is 1, the transmitter is ready to accept a new character 
for output. If it is 0, the transmitter is still busy writing the previous character. 
Bit 1 is “interrupt enable’’ and is readable and writable. If this bit is set to 1, then 
the terminal requests an interrupt at hardware level 0 whenever the transmitter is 
ready for a new character, and the ready bit becomes 1.

Th e fi nal device register is the Transmitter Data register (at address ff ff 000chex). 
When a value is written into this location, its low-order eight bits (i.e., an ASCII 
character as in Figure 2.15 in Chapter 2) are sent to the console. When the Trans-
mitter Data register is written, the ready bit in the Transmitter Control register is 
reset to 0. Th is bit stays 0 until enough time has elapsed to transmit the character 
to the terminal; then the ready bit becomes 1 again. Th e Trans mitter Data register 
should only be written when the ready bit of the Transmitter Control register is 1. 
If the transmitter is not ready, writes to the Transmitter Data register are ignored 
(the write appears to succeed but the character is not output).

Real computers require time to send characters to a console or terminal. Th ese 
time lags are simulated by SPIM. For example, aft er the transmitter starts to write a 
character, the transmitter’s ready bit becomes 0 for a while. SPIM measures time in 
instructions executed, not in real clock time. Th is means that the transmitter does 
not become ready again until the processor executes a fi xed number of instructions. 
If you stop the machine and look at the ready bit, it will not change. However, if you 
let the machine run, the bit eventually changes back to 1. 

 A.9 SPIM

SPIM is a soft ware simulator that runs assembly language programs written for 
processors that implement the MIPS-32 architecture, specifi cally Release 1 of this 
architecture with a fi xed memory mapping, no caches, and only coprocessors 0 
and 1.2 SPIM’s name is just MIPS spelled backwards. SPIM can read and immedi-
ately execute assembly language fi les. SPIM is a self-contained system for running 

2. Earlier versions of SPIM (before 7.0) implemented the MIPS-1 architecture used in the origi nal 
MIPS R2000 processors. Th is architecture is almost a proper subset of the MIPS-32 architec ture, 
with the diff erence being the manner in which exceptions are handled. MIPS-32 also introduced 
approximately 60 new instructions, which are supported by SPIM. Programs that ran on the 
 earlier versions of SPIM and did not use exceptions should run unmodifi ed on newer ver sions of 
SPIM. Programs that used exceptions will require minor changes.



MIPS programs. It contains a debugger and provides a few operating system-like 
services. SPIM is much slower than a real computer (100 or more times). How ever, 
its low cost and wide availability cannot be matched by real hardware!

An obvious question is, “Why use a simulator when most people have PCs that 
contain processors that run signifi cantly faster than SPIM?” One reason is that 
the processors in PCs are Intel 80×86s, whose architecture is far less regular and 
far more complex to understand and program than MIPS processors. Th e MIPS 
architecture may be the epitome of a simple, clean RISC machine.

In addition, simulators can provide a better environment for assembly pro-
gramming than an actual machine because they can detect more errors and  provide 
a better interface than can an actual computer. 

Finally, simulators are useful tools in studying computers and the programs that 
run on them. Because they are implemented in soft ware, not silicon, simulators can 
be examined and easily modifi ed to add new instructions, build new systems such 
as multiprocessors, or simply collect data.

Simulation of a Virtual Machine
Th e basic MIPS architecture is diffi  cult to program directly because of delayed 
branches, delayed loads, and restricted address modes. Th is diffi  culty is tolerable 
since these computers were designed to be programmed in high-level languages 
and present an interface designed for compilers rather than assembly language 
programmers. A good part of the programming complexity results from delayed 
instructions. A delayed branch requires two cycles to execute (see the Elabora tions 
on pages 284 and 322 of Chapter 4). In the second cycle, the instruction imme-
diately following the branch executes. Th is instruction can perform useful work 
that normally would have been done before the branch. It can also be a nop (no 
operation) that does nothing. Similarly, delayed loads require two cycles to bring 
a value from memory, so the instruction immediately  following a load cannot use 
the value (see Section 4.2 of Chapter 4).

MIPS wisely chose to hide this complexity by having its assembler implement 
a virtual machine. Th is virtual computer appears to have nondelayed branches 
and loads and a richer instruction set than the actual hardware. Th e assembler 
reorga nizes (rearranges) instructions to fi ll the delay slots. Th e virtual computer 
also provides pseudoinstructions, which appear as real instructions in assembly 
lan guage programs. Th e hardware, however, knows nothing about pseudoinstruc-
tions, so the assembler must translate them into equivalent sequences of actual 
machine instructions. For example, the MIPS hardware only provides instructions 
to branch when a register is equal to or not equal to 0. Other conditional branches, 
such as one that branches when one register is greater than another, are synthesized 
by comparing the two registers and branching when the result of the comparison 
is true (nonzero).

virtual machine 
A virtual computer 
that appears to have 
nondelayed branches 
and loads and a richer 
 instruction set than the 
actual hardware.
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By default, SPIM simulates the richer virtual machine, since this is the machine 
that most programmers will fi nd useful. However, SPIM can also simulate the 
delayed branches and loads in the actual hardware. Below, we describe the virtual 
machine and only mention in passing features that do not belong to the actual 
hardware. In doing so, we follow the convention of MIPS assembly language pro-
grammers (and compilers), who routinely use the extended machine as if it was 
implemented in silicon.

Getting Started with SPIM
Th e rest of this appendix introduces SPIM and the MIPS R2000 Assembly lan-
guage. Many details should never concern you; however, the sheer volume of 
information can sometimes obscure the fact that SPIM is a simple, easy-to-use 
program. Th is section starts with a quick tutorial on using SPIM, which should 
enable you to load, debug, and run simple MIPS programs.

SPIM comes in diff erent versions for diff erent types of computer systems. Th e 
one constant is the simplest version, called spim, which is a command-line-driven 
pro gram that runs in a console window. It operates like most programs of this type: 
you type a line of text, hit the return key, and spim executes your command. 
Despite its lack of a fancy interface, spim can do everything that its fancy cousins 
can do.

Th ere are two fancy cousins to spim. Th e version that runs in the X-windows 
environment of a UNIX or Linux system is called xspim. xspim is an easier pro-
gram to learn and use than spim, because its commands are always visible on the 
screen and because it continually displays the machine’s registers and memory. 
Th e other fancy version is called PCspim and runs on Microsoft  Windows. Th e 
UNIX and Windows versions of SPIM  are available online at the publisher’s 
companion Web site for this book. Tutorials on xspim, pcSpim, spim, and SPIM 
command-line options  are also online.

If you are going to run SPIM on a PC running Microsoft  Windows, you should 
fi rst look at the tutorial on PCSpim  on the companion Web site. If you are going 
to run SPIM on a computer running UNIX or Linux, you should read the tutorial 
on xspim .

Surprising Features
Although SPIM faithfully simulates the MIPS computer, SPIM is a simulator, and 
certain things are not identical to an actual computer. Th e most obvious diff er-
ences are that instruction timing and the memory systems are not identical. 
SPIM does not simulate caches or memory latency, nor does it accurately refl ect 
 fl oating-point operation or multiply and divide instruction delays. In addition, 
the fl oating-point instructions do not detect many error conditions, which would 
cause exceptions on a real machine.



Another surprise (which occurs on the real machine as well) is that a pseudo-
instruction expands to several machine instructions. When you single-step or 
exam ine memory, the instructions that you see are diff erent from the source 
program. Th e correspondence between the two sets of instructions is fairly simple, 
since SPIM does not reorganize instructions to fi ll slots.

Byte Order
Processors can number bytes within a word so the byte with the lowest number is 
either the left most or rightmost one. Th e convention used by a machine is called 
its byte order. MIPS processors can operate with either big-endian or  little-endian 
byte order. For example, in a big-endian machine, the directive .byte 0, 1, 2, 3 
would result in a memory word containing

Byte #

0 1 2 3

while in a little-endian machine, the word would contain

Byte #

3 2 1 0

SPIM operates with both byte orders. SPIM’s byte order is the same as the byte 
order of the underlying machine that runs the simulator. For example, on an Intel 
80x86, SPIM is little-endian, while on a Macintosh or Sun SPARC, SPIM is big-
endian.

System Calls
SPIM provides a small set of operating system–like services through the system 
call (syscall) instruction. To request a service, a program loads the system call 
code (see Figure A.9.1) into register $v0 and arguments into registers $a0–$a3 
(or $f12 for fl oating-point values). System calls that return values put their results 
in register $v0 (or $f0 for fl oating-point results). For example, the follow ing code 
prints "the answer = 5":

  .data
str:
  .asciiz “the answer = ”
  .text
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 li  $v0, 4    # system call code for print_str
 la $a0, str  # address of string to print 
 syscall  # print the string

 li $v0, 1    # system call code for print_int
 li $a0, 5    # integer to print
 syscall  # print it

Th e print_int system call is passed an integer and prints it on the console. 
print_float prints a single fl oating-point number; print_double prints 
a double precision number; and print_string is passed a pointer to a null- 
terminated string, which it writes to the console.

Th e system calls read_int, read_float, and read_double to read an entire 
line of input up to and including the newline. Characters following the number 
are ignored. read_string has the same semantics as the UNIX library routine 
fgets. It reads up to n − 1 characters into a buff er and terminates the string with 
a null byte. If fewer than n − 1 characters are on the current line, read_string 
reads up to and including the newline and again null-terminates the string. 

Service System call code Arguments Result

print_int 1 $a0 = integer

print_float 2 $f12 = fl oat

print_double 3 $f12 = double

print_string 4 $a0 = string

read_int 5 integer (in $v0) 

read_float 6 fl oat (in $f0) 

read_double 7 double (in $f0) 

read_string 8 $a0 = buffer, $a1 = length

sbrk 9 $a0 = amount address (in $v0) 

exit 10

print_char 11 $a0 = char

read_char 12 char (in $v0)

open
13

$a0 = fi lename (string), 
$a1 = fl ags, $a2 = mode

fi le descriptor (in $a0)

read
14

$a0 = fi le descriptor, 
$a1 = buffer, $a2 = length

num chars read (in 
$a0)

write
15

$a0 = fi le descriptor, 
$a1 = buffer, $a2 = length

num chars written (in 
$a0)

close 16 $a0 = fi le descriptor

exit2 17 $a0 = result

FIGURE A.9.1 System services. 



Warning: Programs that use these syscalls to read from the terminal should not use 
memory-mapped I/O (see Section A.8).

sbrk returns a pointer to a block of memory containing n additional bytes. 
exit stops the program SPIM is running. exit2 terminates the SPIM pro gram, 
and the argument to exit2 becomes the value returned when the SPIM simulator 
itself terminates.

print_char and read_char write and read a single character. open, read, 
write, and close are the standard UNIX library calls.

  A.10 MIPS R2000 Assembly Language

A MIPS processor consists of an integer processing unit (the CPU) and a collec-
tion of coprocessors that perform ancillary tasks or operate on other types of data, 
such as fl oating-point numbers (see Figure A.10.1). SPIM simulates two coproces-
sors. Coprocessor 0 handles exceptions and interrupts. Coprocessor 1 is the 
fl oating-point unit. SPIM simulates most aspects of this unit.

Addressing Modes
MIPS is a load store architecture, which means that only load and store instruc tions 
access memory. Computation instructions operate only on values in regis ters. Th e 
bare machine provides only one memory-addressing mode: c(rx), which uses 
the sum of the immediate c and register rx as the address. Th e virtual machine 
provides the following addressing modes for load and store instructions:

Format Address computation

(register) contents of register 

imm immediate 

imm (register) immediate + contents of register 

label address of label 

label ± imm address of label + or – immediate 

label ± imm (register) address of label + or – (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity is 
aligned if its memory address is a multiple of its size in bytes. Th erefore, a half word 
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object must be stored at even addresses, and a full word object must be stored at 
addresses that are a multiple of four. However, MIPS provides some instructions to 
manipulate unaligned data (lwl, lwr, swl, and swr).

Elaboration: The MIPS assembler (and SPIM) synthesizes the more complex address-
ing modes by producing one or more instructions before the load or store to compute a 
complex address. For example, suppose that the label table referred to memory loca-
tion 0x10000004 and a program contained the instruction

ld $a0, table + 4($a1)

The assembler would translate this instruction into the instructions

FIGURE A.10.1 MIPS R2000 CPU and FPU. 
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lui $at, 4096
addu $at, $at, $a1
lw $a0, 8($at)

The fi rst instruction loads the upper bits of the label’s address into register $at, which 
is the register that the assembler reserves for its own use. The second instruction adds 
the contents of register $a1 to the label’s partial address. Finally, the load instruction 
uses the hardware address mode to add the sum of the lower bits of the label’s address 
and the offset from the original instruction to the value in register $at.

Assembler Syntax
Comments in assembler fi les begin with a sharp sign (#). Everything from the 
sharp sign to the end of the line is ignored.

Identifi ers are a sequence of alphanumeric characters, underbars (_), and dots 
(.) that do not begin with a number. Instruction opcodes are reserved words that 
cannot be used as identifi ers. Labels are declared by putting them at the beginning 
of a line followed by a colon, for example: 

 .data
item: .word 1
 .text
 .globl main # Must be global
main: lw $t0, item

Numbers are base 10 by default. If they are preceded by 0x, they are interpreted 
as hexadecimal. Hence, 256 and 0x100 denote the same value.

Strings are enclosed in double quotes (”). Special characters in strings follow the 
C convention: 

 ■ newline \n

 ■ tab \t

 ■ quote \”

SPIM supports a subset of the MIPS assembler directives:

.align n Align the next datum on a 2n byte boundary. For 
 example, .align 2 aligns the next value on a word 
boundary. .align 0 turns off  automatic alignment 
of .half, .word, .float, and .double  directives 
until the next .data or .kdata directive.

.ascii str Store the string str in memory, but do not null-
terminate it.
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.asciiz str  Store the string str in memory and null- terminate it.

.byte b1,..., bn  Store the n values in successive bytes of memory.

.data <addr> Subsequent items are stored in the data segment. 
If the optional argument addr is present, subse-
quent items are stored starting at address addr.

.double d1,..., dn  Store the n fl oating-point double preci-
sion  num-bers in successive memory locations.

.extern sym size  Declare that the datum stored at sym is size bytes 
large and is a global label. Th is directive enables 
the assembler to store the datum in a portion of 
the data segment that is effi  ciently accessed via 
register $gp.

.float f1,..., fn  Store the n fl oating-point single precision num-
bers in successive memory locations.

.globl sym Declare that label sym is global and can be refer-
enced from other fi les.

.half h1,..., hn Store the n 16-bit quantities in successive mem ory 
halfwords.

.kdata <addr> Subsequent data items are stored in the kernel 
data segment. If the optional argument addr is 
present, subsequent items are stored starting at 
address addr.

.ktext <addr> Subsequent items are put in the kernel text seg-
ment. In SPIM, these items may only be instruc-
tions or words (see the .word directive below). If 
the optional argument addr is present, subse quent 
items are stored starting at address addr.

.set noat and .set at  Th e fi rst directive prevents SPIM from complain-
ing about subsequent instructions that use regis ter 
$at. Th e second directive re-enables the warning. 
Since pseudoinstructions expand into code that 
uses register $at, programmers must be very care-
ful about leaving values in this register.

.space n Allocates n bytes of space in the current segment 
(which must be the data segment in SPIM).



.text <addr> Subsequent items are put in the user text seg ment. 
In SPIM, these items may only be instruc tions 
or words (see the .word directive below). If the 
 optional argument addr is present, subse quent 
items are stored starting at address addr.

.word w1,..., wn  Store the n 32-bit quantities in successive mem ory 
words. 

SPIM does not distinguish various parts of the data segment (.data, .rdata, and 
.sdata).

Encoding MIPS Instructions
Figure A.10.2 explains how a MIPS instruction is encoded in a binary number. 
Each column contains instruction encodings for a fi eld (a contiguous group of 
bits) from an instruction. Th e numbers at the left  margin are values for a fi eld. 
For example, the j opcode has a value of 2 in the opcode fi eld. Th e text at the top 
of a column names a fi eld and specifi es which bits it occupies in an instruction. 
For example, the op fi eld is contained in bits 26–31 of an instruction. Th is fi eld 
encodes most instructions. However, some groups of instructions use additional 
fi elds to distinguish related instructions. For example, the diff erent fl oating-point 
instructions are specifi ed by bits 0–5. Th e arrows from the fi rst column show which 
opcodes use these additional fi elds.

Instruction Format
Th e rest of this appendix describes both the instructions implemented by actual 
MIPS hardware and the pseudoinstructions provided by the MIPS assembler. Th e 
two types of instructions are easily distinguished. Actual instructions depict the 
fi elds in their binary representation. For example, in 

Addition (with overfl ow)

add rd, rs, rt
0 rs rt rd 0 0x20

6 5 5 5 5 6

the add instruction consists of six fi elds. Each fi eld’s size in bits is the small num ber 
below the fi eld. Th is instruction begins with six bits of 0s. Register specifi ers begin 
with an r, so the next fi eld is a 5-bit register specifi er called rs. Th is is the same 
register that is the second argument in the symbolic assembly at the left  of this 
line. Another common fi eld is imm16, which is a 16-bit immediate number.
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FIGURE A.10.2 MIPS opcode map. Th e values of each fi eld are shown to its left . Th e fi rst column shows the values in base 10, and the 
second shows base 16 for the op fi eld (bits 31 to 26) in the third column. Th is op fi eld completely specifi es the MIPS operation except for six 
op values: 0, 1, 16, 17, 18, and 19. Th ese operations are determined by other fi elds, identifi ed by pointers. Th e last fi eld (funct) uses “f ” to 
mean “s” if rs = 16 and op = 17 or “d” if rs = 17 and op = 17. Th e second fi eld (rs) uses “z” to mean “0”, “1”, “2”, or “3” if op = 16, 17, 18, or 19, 
respectively. If rs = 16, the operation is specifi ed elsewhere: if z = 0, the operations are specifi ed in the fourth fi eld (bits 4 to 0); if z = 1, then the 
operations are in the last fi eld with f = s. If rs = 17 and z = 1, then the operations are in the last fi eld with f = d. 
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

16
00
01
02
03
04
05
06
07
08
09
0a
0b
0c
0d
0e
0 f
10
11
12
13
14
15
16
17
18
19
1a
1b
1c
1d
1e
1 f
20
21
22
23
24
25
26
27
28
29
2a
2b
2c
2d
2e
2 f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3 f

    rs
(25:21)
mfcz

cfcz

mtcz

ctcz

copz
copz

(17:16)
bczf
bczt
bczfl
bcztl

tlbr
tlbwi

tlbwr

tlbp

eret

deret

rt
(20:16)
bltz
bgez
bltzl
bgezl

tgei
tgeiu
tlti
tltiu
tegi

tnei

bltzal
bgezal
bltzall
bgczall

cvt.s.f
cvt.d.f

cvt.w.f

c.f.f
c.un.f
c.eq.f
c.ueq.f
c.olt.f
c.ult.f
c.ole.f
c.ule.f
c.sf.f
c.ngle.f
c.seq.f
c.ngl.f
c.lt.f
c.nge.f
c.le.f
c.ngt.f

funct(5:0)funct(5:0)
sll

srl
sra
sllv

srlv
srav
jr
jalr
movz
movn
syscall
break

sync
mfhi
mthi
mflo
mtlo

mult
multu
div
divu

add
addu
sub
subu
and
or
xor
nor

slt
sltu

tge
tgeu
tlt
tltu
teq

tne

if z = 1,
f = d

if z = 1,
f = s

if z = 0

if z = 1 or z = 2

0
1
2
3

funct
(4:0)

sub.f
add.f

mul.f
div.f
sqrt.f
abs.f
mov.f
neg.f

round.w.f
trunc.w.f
cell.w.f
floor.w.f

movz.f
movn.f

clz
clo

funct(5:0)
madd
maddu
mul

msub
msubu

(16:16)
movf
movt

0
1

(16:16)
movf.f
movt.f

0
1

op(31:26)

j
jal
beq
bne
blez
bgtz
addi
addiu
slti
sltiu
andi
ori
xori
lui
z = 0
z = 1
z = 2

beql
bnel
blezl
bgtzl

lb
lh
lwl
lw
lbu
lhu
lwr

sb
sh
swl
sw

swr
cache
ll
lwc1
lwc2
pref

ldc1
ldc2

sc
swc1
swc2

sdc1
sdc2



Pseudoinstructions follow roughly the same conventions, but omit instruction 
encoding information. For example:

Multiply (without overfl ow)

mul rdest, rsrc1, src2 pseudoinstruction

In pseudoinstructions, rdest and rsrc1 are registers and src2 is either a regis-
ter or an immediate value. In general, the assembler and SPIM translate a more 
general form of an instruction (e.g., add $v1, $a0, 0x55) to a specialized form 
(e.g., addi $v1, $a0, 0x55).

Arithmetic and Logical Instructions

Absolute value

abs rdest, rsrc pseudoinstruction

Put the absolute value of register rsrc in register rdest.

Addition (with overfl ow)

add rd, rs, rt
0 rs rt rd 0 0x20

6 5 5 5 5 6

Addition (without overfl ow)

addu rd, rs, rt
0 rs rt rd 0 0x21

6 5 5 5 5 6

Put the sum of registers rs and rt into register rd.

Addition immediate (with overfl ow)

addi rt, rs, imm
8 rs rt imm

6 5 5 16

Addition immediate (without overfl ow)

addiu rt, rs, imm
9 rs rt imm

6 5 5 16

Put the sum of register rs and the sign-extended immediate into register rt.
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AND

and rd, rs, rt
0 rs rt rd 0 0x24
6 5 5 5 5 6

Put the logical AND of registers rs and rt into register rd.

AND immediate

andi rt, rs, imm
0xc rs rt imm
6 5 5 16

Put the logical AND of register rs and the zero-extended immediate into reg-
ister rt.

Count leading ones

clo rd, rs
0x1c rs 0 rd 0 0x21
6 5 5 5 5 6

Count leading zeros

clz rd, rs
0x1c rs 0 rd 0 0x20
6 5 5 5 5 6

Count the number of leading ones (zeros) in the word in register rs and put 
the result into register rd. If a word is all ones (zeros), the result is 32.

Divide (with overfl ow)

div rs, rt
0 rs rt 0 0x1a
6 5 5 10 6

Divide (without overfl ow)

divu rs, rt
0 rs rt 0 0x1b
6 5 5 10 6

Divide register rs by register rt. Leave the quotient in register lo and the remain-
der in register hi. Note that if an operand is negative, the remainder is unspecifi ed 
by the MIPS architecture and depends on the convention of the machine on which 
SPIM is run.



Divide (with overfl ow)

div rdest, rsrc1, src2 pseudoinstruction

Divide (without overfl ow)

divu rdest, rsrc1, src2 pseudoinstruction

Put the quotient of register rsrc1 and src2 into register rdest.

Multiply

mult rs, rt
0 rs rt 0 0x18
6 5 5 10 6

Unsigned multiply

multu rs, rt
0 rs rt 0 0x19
6 5 5 10 6

Multiply registers rs and rt. Leave the low-order word of the product in register 
lo and the high-order word in register hi.

Multiply (without overfl ow)

mul rd, rs, rt
0x1c rs rt rd 0 2
6 5 5 5 5 6

Put the low-order 32 bits of the product of rs and rt into register rd.

Multiply (with overfl ow)

mulo rdest, rsrc1, src2 pseudoinstruction

Unsigned multiply (with overfl ow)

mulou rdest, rsrc1, src2 pseudoinstruction

Put the low-order 32 bits of the product of register rsrc1 and src2 into register 
rdest.
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Multiply add

madd rs, rt
0x1c rs rt 0 0
6 5 5 10 6

Unsigned multiply add

maddu rs, rt
0x1c rs rt 0 1
6 5 5 10 6

Multiply registers rs and rt and add the resulting 64-bit product to the 64-bit 
value in the concatenated registers lo and hi.

Multiply subtract

msub rs, rt
0x1c rs rt 0 4
6 5 5 10 6

Unsigned multiply subtract

msub rs, rt
0x1c rs rt 0 5
6 5 5 10 6

Multiply registers rs and rt and subtract the resulting 64-bit product from the 64-
bit value in the concatenated registers lo and hi.

Negate value (with overfl ow)

neg rdest, rsrc pseudoinstruction

Negate value (without overfl ow)

negu rdest, rsrc pseudoinstruction

Put the negative of register rsrc into register rdest.

NOR

nor rd, rs, rt
0 rs rt rd 0 0x27
6 5 5 5 5 6

Put the logical NOR of registers rs and rt into register rd.



NOT

not rdest, rsrc pseudoinstruction

Put the bitwise logical negation of register rsrc into register rdest.

OR

or rd, rs, rt
0 rs rt rd 0 0x25
6 5 5 5 5 6

Put the logical OR of registers rs and rt into register rd.

OR immediate

ori rt, rs, imm
0xd rs rt imm
6 5 5 16

Put the logical OR of register rs and the zero-extended immediate into register rt.

Remainder

rem rdest, rsrc1, rsrc2 pseudoinstruction

Unsigned remainder

remu rdest, rsrc1, rsrc2 pseudoinstruction

Put the remainder of register rsrc1 divided by register rsrc2 into register  rdest. 
Note that if an operand is negative, the remainder is unspecifi ed by the MIPS 
architecture and depends on the convention of the machine on which SPIM is run.

Shift left logical

sll rd, rt, shamt
0 rs rt rd shamt 0
6 5 5 5 5 6

Shift left logical variable

sllv rd, rt, rs
0 rs rt rd 0 4
6 5 5 5 5 6
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Shift right arithmetic

sra rd, rt, shamt
0 rs rt rd shamt 3
6 5 5 5 5 6

Shift right arithmetic variable

srav rd, rt, rs
0 rs rt rd 0 7
6 5 5 5 5 6

Shift right logical

srl rd, rt, shamt
0 rs rt rd shamt 2
6 5 5 5 5 6

Shift right logical variable

srlv rd, rt, rs
0 rs rt rd 0 6
6 5 5 5 5 6

Shift  register rt left  (right) by the distance indicated by immediate shamt or the 
register rs and put the result in register rd. Note that argument rs is ignored for 
sll, sra, and srl.

Rotate left

rol rdest, rsrc1, rsrc2 pseudoinstruction

Rotate right

ror rdest, rsrc1, rsrc2 pseudoinstruction

Rotate register rsrc1 left  (right) by the distance indicated by rsrc2 and put the 
result in register rdest.

Subtract (with overfl ow)

sub rd, rs, rt
0 rs rt rd 0 0x22
6 5 5 5 5 6



Subtract (without overfl ow)

subu rd, rs, rt
0 rs rt rd 0 0x23
6 5 5 5 5 6

Put the diff erence of registers rs and rt into register rd.

Exclusive OR

xor rd, rs, rt
0 rs rt rd 0 0x26
6 5 5 5 5 6

Put the logical XOR of registers rs and rt into register rd.

XOR immediate

xori rt, rs, imm
0xe rs rt Imm
6 5 5 16

Put the logical XOR of register rs and the zero-extended immediate into reg-
ister rt.

Constant-Manipulating Instructions

Load upper immediate

lui rt, imm
0xf O rt imm
6 5 5 16

Load the lower halfword of the immediate imm into the upper halfword of reg-
ister rt. Th e lower bits of the register are set to 0.

Load immediate

li rdest, imm pseudoinstruction

Move the immediate imm into register rdest.

Comparison Instructions

Set less than

slt rd, rs, rt
0 rs rt rd 0 0x2a
6 5 5 5 5 6
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Set less than unsigned

sltu rd, rs, rt
0 rs rt rd 0 0x2b
6 5 5 5 5 6

Set register rd to 1 if register rs is less than rt, and to 0 otherwise.

Set less than immediate

slti rt, rs, imm
0xa rs rt imm
6 5 5 16

Set less than unsigned immediate

sltiu rt, rs, imm
0xb rs rt imm
6 5 5 16

Set register rt to 1 if register rs is less than the sign-extended immediate, and to 
0 otherwise.

Set equal

seq rdest, rsrc1, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 equals rsrc2, and to 0 otherwise.

Set greater than equal

sge rdest, rsrc1, rsrc2 pseudoinstruction

Set greater than equal unsigned

sgeu rdest, rsrc1, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is greater than or equal to rsrc2, and to 
0 otherwise.

Set greater than

sgt rdest, rsrc1, rsrc2 pseudoinstruction



Set greater than unsigned

sgtu rdest, rsrc1, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is greater than rsrc2, and to 0 otherwise.

Set less than equal

sle rdest, rsrc1, rsrc2 pseudoinstruction

Set less than equal unsigned

sleu rdest, rsrc1, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is less than or equal to rsrc2, and to 0 
otherwise.

Set not equal

sne rdest, rsrc1, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is not equal to rsrc2, and to 0 otherwise.

Branch Instructions
Branch instructions use a signed 16-bit instruction off set fi eld; hence, they can 
jump 215 − 1 instructions (not bytes) forward or 215 instructions backward. Th e 
jump instruction contains a 26-bit address fi eld. In actual MIPS processors, branch 
instructions are delayed branches, which do not transfer control until the instruction 
following the branch (its “delay slot”) has executed (see Chapter 4). Delayed branches 
aff ect the off set calculation, since it must be computed relative to the address of the 
delay slot instruction (PC + 4), which is when the branch occurs. SPIM does not 
simulate this delay slot, unless the -bare or -delayed_branch fl ags are specifi ed.

In assembly code, off sets are not usually specifi ed as numbers. Instead, an 
instructions branch to a label, and the assembler computes the distance between 
the branch and the target instructions.

In MIPS-32, all actual (not pseudo) conditional branch instructions have a 
“likely” variant (for example, beq’s likely variant is beql), which does not execute 
the instruction in the branch’s delay slot if the branch is not taken. Do not use 
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these instructions; they may be removed in subsequent versions of the architec ture. 
SPIM implements these instructions, but they are not described further.

Branch instruction

b label pseudoinstruction

Unconditionally branch to the instruction at the label.

Branch coprocessor false

bclf cc label
0x11 8 cc 0 Offset
6 5 3 2 16

Branch coprocessor true

bclt cc label
0x11 8 cc 1 Offset
6 5 3 2 16

Conditionally branch the number of instructions specifi ed by the off set if the 
fl oating-point coprocessor’s condition fl ag numbered cc is false (true). If cc is 
omitted from the instruction, condition code fl ag 0 is assumed.

Branch on equal

beq rs, rt, label
4 rs rt Offset
6 5 5 16

Conditionally branch the number of instructions specifi ed by the off set if  register 
rs equals rt.

Branch on greater than equal zero

bgez rs, label
1 rs 1 Offset
6 5 5 16

Conditionally branch the number of instructions specifi ed by the off set if  register 
rs is greater than or equal to 0.



Branch on greater than equal zero and link

bgezal rs, label
1 rs 0x11 Offset
6 5 5 16

Conditionally branch the number of instructions specifi ed by the off set if  register 
rs is greater than or equal to 0. Save the address of the next instruction in reg-
ister 31.

Branch on greater than zero

bgtz rs, label
7 rs 0 Offset
6 5 5 16

Conditionally branch the number of instructions specifi ed by the off set if  register 
rs is greater than 0.

Branch on less than equal zero

blez rs, label
6 rs 0 Offset
6 5 5 16

Conditionally branch the number of instructions specifi ed by the off set if  register 
rs is less than or equal to 0.

Branch on less than and link

bltzal rs, label
1 rs 0x10 Offset
6 5 5 16

Conditionally branch the number of instructions specifi ed by the off set if  register 
rs is less than 0. Save the address of the next instruction in register 31.

Branch on less than zero

bltz rs, label 
1 rs 0 Offset
6 5 5 16

Conditionally branch the number of instructions specifi ed by the off set if  register 
rs is less than 0.
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Branch on not equal

bne rs, rt, label
5 rs rt Offset
6 5 5 16

Conditionally branch the number of instructions specifi ed by the off set if  register 
rs is not equal to rt.

Branch on equal zero

beqz rsrc, label pseudoinstruction

Conditionally branch to the instruction at the label if rsrc equals 0.

Branch on greater than equal

bge rsrc1, rsrc2, label pseudoinstruction

Branch on greater than equal unsigned

bgeu rsrc1, rsrc2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is greater than 
or equal to rsrc2.

Branch on greater than

bgt rsrc1, src2, label pseudoinstruction

Branch on greater than unsigned

bgtu rsrc1, src2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is greater than 
src2.

Branch on less than equal

ble rsrc1, src2, label pseudoinstruction



Branch on less than equal unsigned

bleu rsrc1, src2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is less than or 
equal to src2.

Branch on less than

blt rsrc1, rsrc2, label pseudoinstruction

Branch on less than unsigned

bltu rsrc1, rsrc2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is less than 
rsrc2.

Branch on not equal zero

bnez rsrc, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc is not equal to 0.

Jump Instructions

Jump

j target
2 target
6 26

Unconditionally jump to the instruction at target.

Jump and link

jal target
3 target
6 26

Unconditionally jump to the instruction at target. Save the address of the next 
instruction in register $ra.
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Jump and link register

jalr rs, rd
0 rs 0 rd 0 9
6 5 5 5 5 6

Unconditionally jump to the instruction whose address is in register rs. Save the 
address of the next instruction in register rd (which defaults to 31).

Jump register

jr rs
0 rs 0 8
6 5 15 6

Unconditionally jump to the instruction whose address is in register rs.

Trap Instructions

Trap if equal

teq rs, rt
0 rs rt 0 0x34
6 5 5 10 6

If register rs is equal to register rt, raise a Trap exception.

Trap if equal immediate

teqi rs, imm
1 rs 0xc imm
6 5 5 16

If register rs is equal to the sign-extended value imm, raise a Trap exception.

Trap if not equal

teq rs, rt
0 rs rt 0 0x36
6 5 5 10 6

If register rs is not equal to register rt, raise a Trap exception.

Trap if not equal immediate

teqi rs, imm
1 rs 0xe imm
6 5 5 16

If register rs is not equal to the sign-extended value imm, raise a Trap exception.



Trap if greater equal

tge rs, rt
0 rs rt 0 0x30
6 5 5 10 6

Unsigned trap if greater equal

tgeu rs, rt
0 rs rt 0 0x31
6 5 5 10 6

If register rs is greater than or equal to register rt, raise a Trap exception.

Trap if greater equal immediate

tgei rs, imm
1 rs 8 imm
6 5 5 16

Unsigned trap if greater equal immediate

tgeiu rs, imm
1 rs 9 imm
6 5 5 16

If register rs is greater than or equal to the sign-extended value imm, raise a Trap 
exception.

Trap if less than

tlt rs, rt
0 rs rt 0 0x32
6 5 5 10 6

Unsigned trap if less than

tltu rs, rt
0 rs rt 0 0x33
6 5 5 10 6

If register rs is less than register rt, raise a Trap exception.

Trap if less than immediate

tlti rs, imm
1 rs a imm
6 5 5 16
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Unsigned trap if less than immediate

tltiu rs, imm
1 rs b imm
6 5 5 16

If register rs is less than the sign-extended value imm, raise a Trap exception.

Load Instructions

Load address

la rdest, address pseudoinstruction

Load computed address—not the contents of the location—into register rdest.

Load byte

lb rt, address
0x20 rs rt Offset
6 5 5 16

Load unsigned byte

lbu rt, address
0x24 rs rt Offset
6 5 5 16

Load the byte at address into register rt. Th e byte is sign-extended by lb, but not 
by lbu.

Load halfword

lh rt, address
0x21 rs rt Offset
6 5 5 16

Load unsigned halfword

lhu rt, address
0x25 rs rt Offset
6 5 5 16

Load the 16-bit quantity (halfword) at address into register rt. Th e halfword is 
sign-extended by lh, but not by lhu.



Load word

lw rt, address
0x23 rs rt Offset
6 5 5 16

Load the 32-bit quantity (word) at address into register rt.

Load word coprocessor 1

lwcl ft, address
0x31 rs rt Offset
6 5 5 16

Load the word at address into register ft in the fl oating-point unit.

Load word left

lwl rt, address
0x22 rs rt Offset
6 5 5 16

Load word right

lwr rt, address
0x26 rs rt Offset
6 5 5 16

Load the left  (right) bytes from the word at the possibly unaligned address into 
register rt.

Load doubleword

ld rdest, address pseudoinstruction

Load the 64-bit quantity at address into registers rdest and rdest + 1.

Unaligned load halfword

ulh rdest, address pseudoinstruction

 A.10 MIPS R2000 Assembly Language A-67



A-68 Appendix A Assemblers, Linkers, and the SPIM Simulator

Unaligned load halfword unsigned

ulhu rdest, address pseudoinstruction

Load the 16-bit quantity (halfword) at the possibly unaligned address into  register 
rdest. Th e halfword is sign-extended by ulh, but not ulhu.

Unaligned load word

ulw rdest, address pseudoinstruction

Load the 32-bit quantity (word) at the possibly unaligned address into register 
rdest.

Load linked

ll rt, address
0x30 rs rt Offset
6 5 5 16

Load the 32-bit quantity (word) at address into register rt and start an atomic 
read-modify-write operation. Th is operation is completed by a store conditional 
(sc) instruction, which will fail if another processor writes into the block contain-
ing the loaded word. Since SPIM does not simulate multiple processors, the store 
conditional operation always succeeds.

Store Instructions

Store byte

sb rt, address
0x28 rs rt Offset
6 5 5 16

Store the low byte from register rt at address.

Store halfword

sh rt, address
0x29 rs rt Offset
6 5 5 16

Store the low halfword from register rt at address.



Store word

sw rt, address
0x2b rs rt Offset
6 5 5 16

Store the word from register rt at address.

Store word coprocessor 1

swcl ft, address
0x31 rs ft Offset
6 5 5 16

Store the fl oating-point value in register ft of fl oating-point coprocessor at address.

Store double coprocessor 1

sdcl ft, address
0x3d rs ft Offset
6 5 5 16

Store the doubleword fl oating-point value in registers ft and ft + l of fl oating-
point coprocessor at address. Register ft must be even numbered.

Store word left

swl rt, address
0x2a rs rt Offset
6 5 5 16

Store word right

swr rt, address
0x2e rs rt Offset

 
6 5 5 16

Store the left  (right) bytes from register rt at the possibly unaligned address.

Store doubleword

sd rsrc, address pseudoinstruction

Store the 64-bit quantity in registers rsrc and rsrc + 1 at address.
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Unaligned store halfword

ush rsrc, address pseudoinstruction

Store the low halfword from register rsrc at the possibly unaligned address.

Unaligned store word

usw rsrc, address pseudoinstruction

Store the word from register rsrc at the possibly unaligned address.

Store conditional

sc rt, address
0x38 rs rt Offset
6 5 5 16

Store the 32-bit quantity (word) in register rt into memory at address and com plete 
an atomic read-modify-write operation. If this atomic operation is success ful, the 
memory word is modifi ed and register rt is set to 1. If the atomic operation fails 
because another processor wrote to a location in the block contain ing the addressed 
word, this instruction does not modify memory and writes 0 into register rt. Since 
SPIM does not simulate multiple processors, the instruc tion always succeeds.

Data Movement Instructions
Move

move rdest, rsrc pseudoinstruction

Move register rsrc to rdest.

Move from hi

mfhi rd
0 0 rd 0 0x10
6 10 5 5 6



Move from lo

mflo rd
0 0 rd 0 0x12
6 10 5 5 6

Th e multiply and divide unit produces its result in two additional registers, hi 
and lo. Th ese instructions move values to and from these registers. Th e multiply, 
divide, and remainder pseudoinstructions that make this unit appear to operate on 
the general registers move the result aft er the computation fi nishes.

Move the hi (lo) register to register rd.

Move to hi

mthi rs
0 rs 0 0x11
6 5 15 6

Move to lo

mtlo rs
0 rs 0 0x13
6 5 15 6

Move register rs to the hi (lo) register.

Move from coprocessor 0

mfc0 rt, rd
0x10 0 rt rd 0
6 5 5 5 11

Move from coprocessor 1

mfcl rt, fs
0x11 0 rt fs 0
6 5 5 5 11

Coprocessors have their own register sets. Th ese instructions move values between 
these registers and the CPU’s registers.

Move register rd in a coprocessor (register fs in the FPU) to CPU register rt. Th e 
fl oating-point unit is coprocessor 1.
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Move double from coprocessor 1

mfc1.d rdest, frsrc1 pseudoinstruction

Move fl oating-point registers frsrc1 and frsrc1 + 1 to CPU registers rdest 
and rdest + 1.

Move to coprocessor 0

mtc0 rd, rt
0x10 4 rt rd 0
6 5 5 5 11

Move to coprocessor 1

mtc1 rd, fs
0x11 4 rt fs 0
6 5 5 5 11

Move CPU register rt to register rd in a coprocessor (register fs in the FPU).

Move conditional not zero

movn rd, rs, rt
0 rs rt rd 0xb
6 5 5 5 11

Move register rs to register rd if register rt is not 0.

Move conditional zero

movz rd, rs, rt
0 rs rt rd 0xa
6 5 5 5 11

Move register rs to register rd if register rt is 0.

Move conditional on FP false

movf rd, rs, cc
0 rs cc 0 rd 0 1
6 5 3 2 5 5 6

Move CPU register rs to register rd if FPU condition code fl ag number cc is 0. If 
cc is omitted from the instruction, condition code fl ag 0 is assumed.



Move conditional on FP true

movt rd, rs, cc
0 rs cc 1 rd 0 1
6 5 3 2 5 5 6

Move CPU register rs to register rd if FPU condition code fl ag number cc is 1. If 
cc is omitted from the instruction, condition code bit 0 is assumed.

Floating-Point Instructions
Th e MIPS has a fl oating-point coprocessor (numbered 1) that operates on single 
precision (32-bit) and double precision (64-bit) fl oating-point numbers. Th is 
coprocessor has its own registers, which are numbered $f0–$f31. Because these 
registers are only 32 bits wide, two of them are required to hold doubles, so only 
fl oating-point registers with even numbers can hold double precision values. Th e 
fl oating-point coprocessor also has eight condition code (cc) fl ags, numbered 0–7, 
which are set by compare instructions and tested by branch (bclf or bclt) and 
conditional move instructions.

Values are moved in or out of these registers one word (32 bits) at a time by 
lwc1, swc1, mtc1, and mfc1 instructions or one double (64 bits) at a time by ldcl 
and sdcl, described above, or by the l.s, l.d, s.s, and s.d pseudoinstructions 
described below. 

In the actual instructions below, bits 21–26 are 0 for single precision and 1 
for double precision. In the pseudoinstructions below, fdest is a fl oating-point 
register (e.g., $f2).

Floating-point absolute value double

abs.d fd, fs
0x11 1 0 fs fd 5
6 5 5 5 5 6

Floating-point absolute value single

abs.s fd, fs
0x11 0 0 fs fd 5

Compute the absolute value of the fl oating-point double (single) in register fs and 
put it in register fd.

Floating-point addition double

add.d fd, fs, ft
0x11 0x11 ft fs fd 0
6 5 5 5 5 6
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Floating-point addition single

add.s fd, fs, ft
0x11 0x10 ft fs fd 0
6 5 5 5 5 6

Compute the sum of the fl oating-point doubles (singles) in registers fs and ft and 
put it in register fd.

Floating-point ceiling to word

ceil.w.d fd, fs
0x11 0x11 0 fs fd 0xe
6 5 5 5 5 6

ceil.w.s fd, fs
0x11 0x10 0 fs fd 0xe

Compute the ceiling of the fl oating-point double (single) in register fs, convert to 
a 32-bit fi xed-point value, and put the resulting word in register fd.

Compare equal double

c.eq.d cc fs, ft
0x11 0x11 ft fs cc 0 FC 2
6 5 5 5 3 2 2 4

Compare equal single

c.eq.s cc fs, ft
0x11 0x10 ft fs cc 0 FC 2
6 5 5 5 3 2 2 4

Compare the fl oating-point double (single) in register fs against the one in ft 
and set the fl oating-point condition fl ag cc to 1 if they are equal. If cc is omitted, 
condition code fl ag 0 is assumed.

Compare less than equal double

c.le.d cc fs, ft
0x11 0x11 ft fs cc 0 FC 0xe
6 5 5 5 3 2 2 4

Compare less than equal single

c.le.s cc fs, ft
0x11 0x10 ft fs cc 0 FC 0xe
6 5 5 5 3 2 2 4



Compare the fl oating-point double (single) in register fs against the one in ft and 
set the fl oating-point condition fl ag cc to 1 if the fi rst is less than or equal to the 
second. If cc is omitted, condition code fl ag 0 is assumed.

Compare less than double

c.lt.d cc fs, ft
0x11 0x11 ft fs cc 0 FC 0xc
6 5 5 5 3 2 2 4

Compare less than single

c.lt.s cc fs, ft
0x11 0x10 ft fs cc 0 FC 0xc
6 5 5 5 3 2 2 4

Compare the fl oating-point double (single) in register fs against the one in ft 
and set the condition fl ag cc to 1 if the fi rst is less than the second. If cc is omitted, 
condition code fl ag 0 is assumed.

Convert single to double

cvt.d.s fd, fs
0x11 0x10 0 fs fd 0x21
6 5 5 5 5 6

Convert integer to double

cvt.d.w fd, fs
0x11 0x14 0 fs fd 0x21
6 5 5 5 5 6

Convert the single precision fl oating-point number or integer in register fs to a 
double (single) precision number and put it in register fd.

Convert double to single

cvt.s.d fd, fs
0x11 0x11 0 fs fd 0x20
6 5 5 5 5 6

Convert integer to single

cvt.s.w fd, fs
0x11 0x14 0 fs fd 0x20
6 5 5 5 5 6

Convert the double precision fl oating-point number or integer in register fs to a 
single precision number and put it in register fd.
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Convert double to integer

cvt.w.d fd, fs
0x11 0x11 0 fs fd 0x24
6 5 5 5 5 6

Convert single to integer

cvt.w.s fd, fs
0x11 0x10 0 fs fd 0x24
6 5 5 5 5 6

Convert the double or single precision fl oating-point number in register fs to an 
integer and put it in register fd.

Floating-point divide double

div.d fd, fs, ft
0x11 0x11 ft fs fd 3
6 5 5 5 5 6

Floating-point divide single

div.s fd, fs, ft
0x11 0x10 ft fs fd 3
6 5 5 5 5 6

Compute the quotient of the fl oating-point doubles (singles) in registers fs and ft 
and put it in register fd.

Floating-point fl oor to word

floor.w.d fd, fs
0x11 0x11 0 fs fd 0xf
6 5 5 5 5 6

floor.w.s fd, fs
0x11 0x10 0 fs fd 0xf

Compute the fl oor of the fl oating-point double (single) in register fs and put the 
resulting word in register fd.

Load fl oating-point double

l.d fdest, address pseudoinstruction



Load fl oating-point single

l.s fdest, address pseudoinstruction

Load the fl oating-point double (single) at address into register fdest.

Move fl oating-point double

mov.d fd, fs
0x11 0x11 0 fs fd 6
6 5 5 5 5 6

Move fl oating-point single

mov.s fd, fs
0x11 0x10 0 fs fd 6
6 5 5 5 5 6

Move the fl oating-point double (single) from register fs to register fd.

Move conditional fl oating-point double false

movf.d fd, fs, cc
0x11 0x11 cc 0 fs fd 0x11
6 5 3 2 5 5 6

Move conditional fl oating-point single false

movf.s fd, fs, cc
0x11 0x10 cc 0 fs fd 0x11
6 5 3 2 5 5 6

Move the fl oating-point double (single) from register fs to register fd if condi tion 
code fl ag cc is 0. If cc is omitted, condition code fl ag 0 is assumed.

Move conditional fl oating-point double true

movt.d fd, fs, cc
0x11 0x11 cc 1 fs fd 0x11
6 5 3 2 5 5 6

Move conditional fl oating-point single true

movt.s fd, fs, cc
0x11 0x10 cc 1 fs fd 0x11
6 5 3 2 5 5 6
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Move the fl oating-point double (single) from register fs to register fd if condi tion 
code fl ag cc is 1. If cc is omitted, condition code fl ag 0 is assumed.

Move conditional fl oating-point double not zero

movn.d fd, fs, rt
0x11 0x11 rt fs fd 0x13
6 5 5 5 5 6

Move conditional fl oating-point single not zero

movn.s fd, fs, rt
0x11 0x10 rt fs fd 0x13
6 5 5 5 5 6

Move the fl oating-point double (single) from register fs to register fd if proces sor 
register rt is not 0.

Move conditional fl oating-point double zero

movz.d fd, fs, rt
0x11 0x11 rt fs fd 0x12
6 5 5 5 5 6

Move conditional fl oating-point single zero

movz.s fd, fs, rt
0x11 0x10 rt fs fd 0x12
6 5 5 5 5 6

Move the fl oating-point double (single) from register fs to register fd if proces sor 
register rt is 0.

Floating-point multiply double

mul.d fd, fs, ft
0x11 0x11 ft fs fd 2
6 5 5 5 5 6

Floating-point multiply single

mul.s fd, fs, ft
0x11 0x10 ft fs fd 2
6 5 5 5 5 6

Compute the product of the fl oating-point doubles (singles) in registers fs and ft 
and put it in register fd.

Negate double

neg.d fd, fs
0x11 0x11 0 fs fd 7
6 5 5 5 5 6



Negate single

neg.s fd, fs
0x11 0x10 0 fs fd 7
6 5 5 5 5 6

Negate the fl oating-point double (single) in register fs and put it in register fd.

Floating-point round to word

round.w.d fd, fs
0x11 0x11 0 fs fd 0xc
6 5 5 5 5 6

round.w.s fd, fs 0x11 0x10 0 fs fd 0xc

Round the fl oating-point double (single) value in register fs, convert to a 32-bit 
fi xed-point value, and put the resulting word in register fd.

Square root double

sqrt.d fd, fs
0x11 0x11 0 fs fd 4
6 5 5 5 5 6

Square root single

sqrt.s fd, fs
0x11 0x10 0 fs fd 4
6 5 5 5 5 6

Compute the square root of the fl oating-point double (single) in register fs and 
put it in register fd.

Store fl oating-point double

s.d fdest, address pseudoinstruction

Store fl oating-point single

s.s fdest, address pseudoinstruction

Store the fl oating-point double (single) in register fdest at address.

Floating-point subtract double

sub.d fd, fs, ft
0x11 0x11 ft fs fd 1
6 5 5 5 5 6
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Floating-point subtract single

sub.s fd, fs, ft
0x11 0x10 ft fs fd 1
6 5 5 5 5 6

Compute the diff erence of the fl oating-point doubles (singles) in registers fs and 
ft and put it in register fd.

Floating-point truncate to word

trunc.w.d fd, fs
0x11 0x11 0 fs fd 0xd
6 5 5 5 5 6

trunc.w.s fd, fs 0x11 0x10 0 fs fd 0xd

Truncate the fl oating-point double (single) value in register fs, convert to a 32-bit 
fi xed-point value, and put the resulting word in register fd.

Exception and Interrupt Instructions
Exception return

eret
0x10 1 0 0x18
6 1 19 6

Set the EXL bit in coprocessor 0’s Status register to 0 and return to the instruction 
pointed to by coprocessor 0’s EPC register.

System call

syscall
0 0 0xc
6 20 6

Register $v0 contains the number of the system call (see Figure A.9.1) provided 
by SPIM.

Break

break code
0 code 0xd
6 20 6

Cause exception code. Exception 1 is reserved for the debugger.

No operation

nop
0 0 0 0 0 0
6 5 5 5 5 6

Do nothing. 



  A.11 Concluding Remarks

Programming in assembly language requires a programmer to trade helpful fea-
tures of high-level languages—such as data structures, type checking, and control 
constructs—for complete control over the instructions that a computer executes. 
External constraints on some applications, such as response time or program size, 
require a programmer to pay close attention to every instruction. However, the 
cost of this level of attention is assembly language programs that are longer, more 
time-consuming to write, and more diffi  cult to maintain than high-level language 
programs.

Moreover, three trends are reducing the need to write programs in assembly 
language. Th e fi rst trend is toward the improvement of compilers. Modern com-
pilers produce code that is typically comparable to the best handwritten code—
and is sometimes better. Th e second trend is the introduction of new processors 
that are not only faster, but in the case of processors that execute multiple instruc-
tions simultaneously, also more diffi  cult to program by hand. In addition, the rapid 
evolution of the modern computer favors high-level language programs that are 
not tied to a single architecture. Finally, we witness a trend toward increasingly 
complex applications, characterized by complex graphic interfaces and many more 
features than their predecessors had. Large applications are written by teams of 
programmers and require the modularity and semantic checking features pro vided 
by high-level languages.

Further Reading

Aho, A., R. Sethi, and J. Ullman [1985]. Compilers: Principles, Techniques, and Tools, Reading, MA: Addison-
Wesley.

Slightly dated and lacking in coverage of modern architectures, but still the standard reference on compilers.

Sweetman, D. [1999]. See MIPS Run, San Francisco, CA: Morgan Kaufmann Publishers.

A complete, detailed, and engaging introduction to the MIPS instruction set and assembly language program-
ming on these machines.

Detailed documentation on the MIPS-32 architecture is available on the Web:

MIPS32™ Architecture for Programmers Volume I: Introduction to the MIPS32™ Architecture 
(http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/
ArchitectureProgrammingPublicationsforMIPS32/MD00082-2B-MIPS32INT-AFP-02.00.pdf/
getDownload)

MIPS32™ Architecture for Programmers Volume II: Th e MIPS32™ Instruction Set 
(http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/
ArchitectureProgrammingPublicationsforMIPS32/MD00086-2B-MIPS32BIS-AFP-02.00.pdf/getDownload)

MIPS32™ Architecture for Programmers Volume III: Th e MIPS32™ Privileged Resource Architecture
(http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/
ArchitectureProgrammingPublicationsforMIPS32/MD00090-2B-MIPS32PRA-AFP-02.00.pdf/getDownload)
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  A.12 Exercises

A.1 [5] <§A.5> Section A.5 described how memory is partitioned on most MIPS 
systems. Propose another way of dividing memory that meets the same goals.

A.2 [20] <§A.6> Rewrite the code for fact to use fewer instructions.

A.3 [5] <§A.7> Is it ever safe for a user program to use registers $k0 or $k1?

A.4 [25] <§A.7> Section A.7 contains code for a very simple exception handler. 
One serious problem with this handler is that it disables interrupts for a long 
time. Th is means that interrupts from a fast I/O device may be lost. Write a better 
exception handler that is interruptable and enables interrupts as quickly as possible.

A.5 [15] <§A.7> Th e simple exception handler always jumps back to the instruc-
tion following the exception. Th is works fi ne unless the instruction that causes the 
exception is in the delay slot of a branch. In that case, the next instruction is the 
target of the branch. Write a better handler that uses the EPC register to determine 
which instruction should be executed aft er the exception.

A.6 [5] <§A.9> Using SPIM, write and test an adding machine program that 
repeatedly reads in integers and adds them into a running sum. Th e program 
should stop when it gets an input that is 0, printing out the sum at that point. Use 
the SPIM system calls described on pages A-43 and A-45.

A.7 [5] <§A.9> Using SPIM, write and test a program that reads in three integers 
and prints out the sum of the largest two of the three. Use the SPIM system calls 
described on pages A-43 and A-45. You can break ties arbitrarily.

A.8 [5] <§A.9> Using SPIM, write and test a program that reads in a positive inte-
ger using the SPIM system calls. If the integer is not positive, the program should 
terminate with the message “Invalid Entry”; otherwise the program should print 
out the names of the digits of the integers, delimited by exactly one space. For 
example, if the user entered “728,” the output would be “Seven Two Eight.”

A.9 [25] <§A.9> Write and test a MIPS assembly language program to compute 
and print the fi rst 100 prime numbers. A number n is prime if no numbers except 
1 and n divide it evenly. You should implement two routines: 

 ■ test_prime (n)   Return 1 if n is prime and 0 if n is not prime.

 ■ main ()   Iterate over the integers, testing if each is prime. Print the fi rst 
100 numbers that are prime.

Test your programs by running them on SPIM.



A.10 [10] <§§A.6, A.9> Using SPIM, write and test a recursive program for solv ing 
the classic mathematical recreation, the Towers of Hanoi puzzle. (Th is will require 
the use of stack frames to support recursion.) Th e puzzle consists of three pegs 
(1, 2, and 3) and n disks (the number n can vary; typical values might be in the 
range from 1 to 8). Disk 1 is smaller than disk 2, which is in turn smaller than disk 
3, and so forth, with disk n being the largest. Initially, all the disks are on peg 1, 
starting with disk n on the bottom, disk n − 1 on top of that, and so forth, up to 
disk 1 on the top. Th e goal is to move all the disks to peg 2. You may only move one 
disk at a time, that is, the top disk from any of the three pegs onto the top of either 
of the other two pegs. Moreover, there is a constraint: You must not place a larger 
disk on top of a smaller disk.

Th e C program below can be used to help write your assembly language program.

/* move n smallest disks from start to finish using 
extra */

void hanoi(int n, int start, int finish, int extra){
 if(n != 0){

  hanoi(n-1, start, extra, finish);
  print_string(“Move disk”);
  print_int(n);
  print_string(“from peg”);
  print_int(start);
  print_string(“to peg”);
  print_int(finish);
  print_string(“.\n”);
  hanoi(n-1, extra, finish, start);

 }
}
main(){
 int n;
 print_string(“Enter number of disks>“);
 n = read_int();
 hanoi(n, 1, 2, 3);
 return 0;
}
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 B.1 Introduction

Th is appendix provides a brief discussion of the basics of logic design. It does not 
replace a course in logic design, nor will it enable you to design signifi cant working 
logic systems. If you have little or no exposure to logic design, however, this 
appendix will provide suffi  cient background to understand all the material in this 
book. In addition, if you are looking to understand some of the motivation behind 
how computers are implemented, this material will serve as a useful introduction. 
If your curiosity is aroused but not sated by this appendix, the references at the end 
provide several additional sources of information.

Section B.2 introduces the basic building blocks of logic, namely, gates. Section 
B.3 uses these building blocks to construct simple combinational logic systems, 
which contain no memory. If you have had some exposure to logic or digital 
systems, you will probably be familiar with the material in these fi rst two sections. 
Section B.5 shows how to use the concepts of Sections B.2 and B.3 to design an 
ALU for the MIPS processor. Section B.6 shows how to make a fast adder, and 
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may be safely skipped if you are not interested in this topic. Section B.7 is a short 
introduction to the topic of clocking, which is necessary to discuss how memory 
elements work. Section B.8 introduces memory elements, and Section B.9 extends 
it to focus on random access memories; it describes both the characteristics that 
are important to understanding how they are used, as discussed in Chapter 4, and 
the background that motivates many of the aspects of memory hierarchy design 
discussed in Chapter 5. Section B.10 describes the design and use of fi nite-state 
machines, which are sequential logic blocks. If you intend to read  Appendix D, 
you should thoroughly understand the material in Sections B.2 through B.10. If 
you intend to read only the material on control in Chapter 4, you can skim the 
appendices; however, you should have some familiarity with all the material except 
Section B.11. Section B.11 is intended for those who want a deeper understanding 
of clocking methodologies and timing. It explains the basics of how edge-triggered 
clocking works, introduces another clocking scheme, and briefl y describes the 
problem of synchronizing asynchronous inputs.

Th roughout this appendix, where it is appropriate, we also include segments 
to demonstrate how logic can be represented in Verilog, which we introduce in 
Section B.4. A more extensive and complete Verilog tutorial appears elsewhere on 
the CD.

 B.2 Gates, Truth Tables, and Logic Equations

Th e electronics inside a modern computer are digital. Digital electronics operate 
with only two voltage levels of interest: a high voltage and a low voltage. All other 
voltage values are temporary and occur while transitioning between the values. 
(As we discuss later in this section, a possible pitfall in digital design is sampling 
a signal when it not clearly either high or low.) Th e fact that computers are digital 
is also a key reason they use binary numbers, since a binary system matches the 
underlying abstraction inherent in the electronics. In various logic families, the 
values and relationships between the two voltage values diff er. Th us, rather than 
refer to the voltage levels, we talk about signals that are (logically) true, or 1, or are 
asserted; or signals that are (logically) false, or 0, or are deasserted. Th e values 0 
and 1 are called complements or inverses of one another.

Logic blocks are categorized as one of two types, depending on whether they 
contain memory. Blocks without memory are called combinational; the output of 
a combinational block depends only on the current input. In blocks with memory, 
the outputs can depend on both the inputs and the value stored in memory, which 
is called the state of the logic block. In this section and the next, we will focus 

asserted signal A signal 
that is (logically) true, 
or 1.

deasserted signal 
A signal that is (logically) 
false, or 0.
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only on combinational logic. Aft er introducing diff erent memory elements in 
Section B.8, we will describe how sequential logic, which is logic including state, 
is designed.

Truth Tables
Because a combinational logic block contains no memory, it can be completely 
specifi ed by defi ning the values of the outputs for each possible set of input values. 
Such a description is normally given as a truth table. For a logic block with n 
inputs, there are 2n entries in the truth table, since there are that many possible 
combinations of input values. Each entry specifi es the value of all the outputs for 
that particular input combination.

Truth Tables

Consider a logic function with three inputs, A, B, and C, and three outputs, D, 
E, and F. Th e function is defi ned as follows: D is true if at least one input is true, 
E is true if exactly two inputs are true, and F is true only if all three inputs are 
true. Show the truth table for this function.

Th e truth table will contain 23 � 8 entries. Here it is:
Inpu

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

Truth tables can completely describe any combinational logic function; however, 
they grow in size quickly and may not be easy to understand. Sometimes we want 
to construct a logic function that will be 0 for many input combinations, and we 
use a shorthand of specifying only the truth table entries for the nonzero outputs. 
Th is approach is used in Chapter 4 and  Appendix D.

combinational logic 
A logic system whose 
blocks do not contain 
memory and hence 
compute the same output 
given the same input.

sequential logic 
A group of logic elements 
that contain memory 
and hence whose value 
depends on the inputs 
as well as the current 
contents of the memory.

EXAMPLE

ANSWER
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Boolean Algebra
Another approach is to express the logic function with logic equations. Th is 
is done with the use of Boolean algebra (named aft er Boole, a 19th-century 
mathematician). In Boolean algebra, all the variables have the values 0 or 1 and, in 
typical formulations, there are three operators:

■ Th e OR operator is written as �, as in A � B. Th e result of an OR operator is 
1 if either of the variables is 1. Th e OR operation is also called a logical sum, 
since its result is 1 if either operand is 1.

■ Th e AND operator is written as � , as in A � B. Th e result of an AND operator 
is 1 only if both inputs are 1. Th e AND operator is also called logical product, 
since its result is 1 only if both operands are 1.

■ Th e unary operator NOT is written as A. Th e result of a NOT operator is 1 only if 
the input is 0. Applying the operator NOT to a logical value results in an inversion 
or negation of the value (i.e., if the input is 0 the output is 1, and vice versa).

Th ere are several laws of Boolean algebra that are helpful in manipulating logic 
equations.

■ Identity law: A � 0 � A and A � 1 � A

■ Zero and One laws: A � 1 � 1 and A � 0 � 0

■ Inverse laws: A A 1 and A A 0

■ Commutative laws: A � B � B � A and A � B � B � A

■ Associative laws: A � (B � C) � (A � B) � C and A � (B � C) � (A � B) � C

■ Distributive laws: A � (B � C) � (A � B) � (A � C) and 
A � (B � C) � (A � B) � (A � C)

In addition, there are two other useful theorems, called DeMorgan’s laws, that are 
discussed in more depth in the exercises.

Any set of logic functions can be written as a series of equations with an output 
on the left -hand side of each equation and a formula consisting of variables and the 
three operators above on the right-hand side.
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Logic Equations

Show the logic equations for the logic functions, D, E, and F, described in the 
previous example.

Here’s the equation for D:

D A B C
F is equally simple:

F A B C

E is a little tricky. Th ink of it in two parts: what must be true for E to be true 
(two of the three inputs must be true), and what cannot be true (all three 
cannot be true). Th us we can write E as

E A B A C B C A B C(( ) ( ) ( )) ( )

We can also derive E by realizing that E is true only if exactly two of the inputs 
are true. Th en we can write E as an OR of the three possible terms that have 
two true inputs and one false input:

E A B C A C B B C A( ) ( ) ( )

Proving that these two expressions are equivalent is explored in the exercises.

In Verilog, we describe combinational logic whenever possible using the assign 
statement, which is described beginning on page B-23. We can write a defi nition 
for E using the Verilog exclusive-OR operator as assign E � (A ^ B ^ C) * 
(A + B + C) * (A * B * C), which is yet another way to describe this function. 
D and F have even simpler representations, which are just like the corresponding C 
code: D � A | B | C and F � A & B & C.

EXAMPLE

ANSWER
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Gates
Logic blocks are built from gates that implement basic logic functions. For example, 
an AND gate implements the AND function, and an OR gate implements the OR 
function. Since both AND and OR are commutative and associative, an AND or an 
OR gate can have multiple inputs, with the output equal to the AND or OR of all 
the inputs. Th e logical function NOT is implemented with an inverter that always 
has a single input. Th e standard representation of these three logic building blocks 
is shown in Figure B.2.1.

Rather than draw inverters explicitly, a common practice is to add “bubbles” 
to the inputs or outputs of a gate to cause the logic value on that input line or 
output line to be inverted. For example, Figure B.2.2 shows the logic diagram for 
the function A B� , using explicit inverters on the left  and bubbled inputs and 
outputs on the right.

Any logical function can be constructed using AND gates, OR gates, and 
inversion; several of the exercises give you the opportunity to try implementing 
some common logic functions with gates. In the next section, we’ll see how an 
implementation of any logic function can be constructed using this knowledge.

In fact, all logic functions can be constructed with only a single gate type, if that 
gate is inverting. Th e two common inverting gates are called NOR and NAND and 
correspond to inverted OR and AND gates, respectively. NOR and NAND gates are 
called universal, since any logic function can be built using this one gate type. Th e 
exercises explore this concept further.

Are the following two logical expressions equivalent? If not, fi nd a setting of the 
variables to show they are not:

■ ( ) ( ) ( )A B C A C B B C A
■ B A C C A( )

gate A device that 
implements basic logic 
functions, such as AND 
or OR.

NOR gate An inverted 
OR gate.

NAND gate An inverted 
AND gate.

Check 
Yourself

FIGURE B.2.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from 
left to right. Th e signals to the left  of each symbol are the inputs, while the output appears on the right. Th e 
AND and OR gates both have two inputs. Inverters have a single input.

A
B

A
B

FIGURE B.2.2 Logic gate implementation of A B�  using explicit inverts on the left and 
bubbled inputs and outputs on the right. Th is logic function can be simplifi ed to A B� or in Verilog, 
A & ~ B.
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 B.3 Combinational Logic

In this section, we look at a couple of larger logic building blocks that we use 
heavily, and we discuss the design of structured logic that can be automatically 
implemented from a logic equation or truth table by a translation program. Last, 
we discuss the notion of an array of logic blocks.

Decoders
One logic block that we will use in building larger components is a decoder. Th e 
most common type of decoder has an n-bit input and 2n outputs, where only one 
output is asserted for each input combination. Th is decoder translates the n-bit 
input into a signal that corresponds to the binary value of the n-bit input. Th e 
outputs are thus usually numbered, say, Out0, Out1, … , Out2n � 1. If the value of 
the input is i, then Outi will be true and all other outputs will be false. Figure B.3.1 
shows a 3-bit decoder and the truth table. Th is decoder is called a 3-to-8 decoder 
since there are 3 inputs and 8 (23) outputs. Th ere is also a logic element called 
an encoder that performs the inverse function of a decoder, taking 2n inputs and 
producing an n-bit output.

decoder A logic block 
that has an n-bit input 
and 2n outputs, where 
only one output is 
asserted for each input 
combination.

stuptuOstupnI

12 11 10 Out7 Out6 Out5 Out4 Out3 Out2 Out1 Out0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

b. The truth table for a 3-bit decoder

Decoder
3

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

a. A 3-bit decoder

FIGURE B.3.1 A 3-bit decoder has 3 inputs, called 12, 11, and 10, and 23 = 8 outputs, called Out0 to Out7. Only the 
output corresponding to the binary value of the input is true, as shown in the truth table. Th e label 3 on the input to the decoder says that the 
input signal is 3 bits wide.
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Multiplexors
One basic logic function that we use quite oft en in Chapter 4 is the multiplexor. 
A multiplexor might more properly be called a selector, since its output is one of 
the inputs that is selected by a control. Consider the two-input multiplexor. Th e 
left  side of Figure B.3.2 shows this multiplexor has three inputs: two data values 
and a selector (or control) value. Th e selector value determines which of the 
inputs becomes the output. We can represent the logic function computed by a 
two-input multiplexor, shown in gate form on the right side of Figure B.3.2, as 
C A S B S( ) ( ) .

Multiplexors can be created with an arbitrary number of data inputs. When 
there are only two inputs, the selector is a single signal that selects one of the inputs 
if it is true (1) and the other if it is false (0). If there are n data inputs, there will 
need to be log2n⎡⎢ ⎤⎥ selector inputs. In this case, the multiplexor basically consists 
of three parts:

1. A decoder that generates n signals, each indicating a diff erent input value

2. An array of n AND gates, each combining one of the inputs with a signal 
from the decoder

3. A single large OR gate that incorporates the outputs of the AND gates

To associate the inputs with selector values, we oft en label the data inputs numerically 
(i.e., 0, 1, 2, 3, …, n � 1) and interpret the data selector inputs as a binary number. 
Sometimes, we make use of a multiplexor with undecoded selector signals.

Multiplexors are easily represented combinationally in Verilog by using if 
expressions. For larger multiplexors, case statements are more convenient, but care 
must be taken to synthesize combinational logic.

selector value Also 
called control value. Th e 
control signal that is used 
to select one of the input 
values of a multiplexor 
as the output of the 
multiplexor.

M
u
x

1

0

C

S

B

A
A

B

S

C

FIGURE B.3.2 A two-input multiplexor on the left and its implementation with gates on 
the right. Th e multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one selector input 
(S), as well as an output C. Implementing multiplexors in Verilog requires a little more work, especially when 
they are wider than two inputs. We show how to do this beginning on page B-23.
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Two-Level Logic and PLAs
As pointed out in the previous section, any logic function can be implemented with 
only AND, OR, and NOT functions. In fact, a much stronger result is true. Any logic 
function can be written in a canonical form, where every input is either a true or 
complemented variable and there are only two levels of gates—one being AND and 
the other OR—with a possible inversion on the fi nal output. Such a representation 
is called a two-level representation, and there are two forms, called sum of products 
and product of sums. A sum-of-products representation is a logical sum (OR) of 
products (terms using the AND operator); a product of sums is just the opposite. 
In our earlier example, we had two equations for the output E:

E A B A C B C A B C(( ) ( ) ( )) ( )
and

E A B C A C B B C A( ) ( ) ( )

Th is second equation is in a sum-of-products form: it has two levels of logic and the 
only inversions are on individual variables. Th e fi rst equation has three levels of logic.

Elaboration: We can also write E as a product of sums:

E A B C A C B B C A( ) ( ) ( )

To derive this form, you need to use DeMorgan’s theorems, which are discussed in the 
exercises.

In this text, we use the sum-of-products form. It is easy to see that any logic 
function can be represented as a sum of products by constructing such a 
representation from the truth table for the function. Each truth table entry for 
which the function is true corresponds to a product term. Th e product term 
consists of a logical product of all the inputs or the complements of the inputs, 
depending on whether the entry in the truth table has a 0 or 1 corresponding to 
this variable. Th e logic function is the logical sum of the product terms where the 
function is true. Th is is more easily seen with an example.

sum of products A form 
of logical representation 
that employs a logical sum 
(OR) of products (terms 
joined using the AND 
operator).
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Sum of Products

Show the sum-of-products representation for the following truth table for D.

Inputs Outputs
A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Th ere are four product terms, since the function is true (1) for four diff erent 
input combinations. Th ese are:

A B C
A B C
A B C
A B C

� �

� �

� �

� �

Th us, we can write the function for D as the sum of these terms:

D A B C A B C A B C A B C( )( )( )( )

Note that only those truth table entries for which the function is true generate 
terms in the equation.

We can use this relationship between a truth table and a two-level representation 
to generate a gate-level implementation of any set of logic functions. A set of logic 
functions corresponds to a truth table with multiple output columns, as we saw in 
the example on page B-5. Each output column represents a diff erent logic function, 
which may be directly constructed from the truth table.

Th e sum-of-products representation corresponds to a common structured-logic 
implementation called a programmable logic array (PLA). A PLA has a set of 
inputs and corresponding input complements (which can be implemented with a 
set of inverters), and two stages of logic. Th e fi rst stage is an array of AND gates that 
form a set of product terms (sometimes called minterms); each product term can 
consist of any of the inputs or their complements. Th e second stage is an array of 
OR gates, each of which forms a logical sum of any number of the product terms. 
Figure B.3.3 shows the basic form of a PLA.

EXAMPLE

ANSWER

programmable logic 
array (PLA) 
A structured-logic 
element composed 
of a set of inputs and 
corresponding input 
complements and two 
stages of logic: the fi rst 
generates product terms 
of the inputs and input 
complements, and the 
second generates sum 
terms of the product 
terms. Hence, PLAs 
implement logic functions 
as a sum of products.

minterms Also called 
product terms. A set 
of logic inputs joined 
by conjunction (AND 
operations); the product 
terms form the fi rst logic 
stage of the programmable 
logic array (PLA).
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A PLA can directly implement the truth table of a set of logic functions with 
multiple inputs and outputs. Since each entry where the output is true requires 
a product term, there will be a corresponding row in the PLA. Each output 
corresponds to a potential row of OR gates in the second stage. Th e number of OR 
gates corresponds to the number of truth table entries for which the output is true. 
Th e total size of a PLA, such as that shown in Figure B.3.3, is equal to the sum of the 
size of the AND gate array (called the AND plane) and the size of the OR gate array 
(called the OR plane). Looking at Figure B.3.3, we can see that the size of the AND 
gate array is equal to the number of inputs times the number of diff erent product 
terms, and the size of the OR gate array is the number of outputs times the number 
of product terms.

A PLA has two characteristics that help make it an effi  cient way to implement a 
set of logic functions. First, only the truth table entries that produce a true value for 
at least one output have any logic gates associated with them. Second, each diff erent 
product term will have only one entry in the PLA, even if the product term is used 
in multiple outputs. Let’s look at an example.

PLAs

Consider the set of logic functions defi ned in the example on page B-5. Show 
a PLA implementation of this example for D, E, and F. EXAMPLE

AND gates

OR gates

Product terms

Outputs

Inputs

FIGURE B.3.3 The basic form of a PLA consists of an array of AND gates followed by an 
array of OR gates. Each entry in the AND gate array is a product term consisting of any number of inputs or 
inverted inputs. Each entry in the OR gate array is a sum term consisting of any number of these product terms.
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Here is the truth table we constructed earlier:

Inputs Outputs
A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

Since there are seven unique product terms with at least one true value in the 
output section, there will be seven columns in the AND plane. Th e number of 
rows in the AND plane is three (since there are three inputs), and there are also 
three rows in the OR plane (since there are three outputs). Figure B.3.4 shows 
the resulting PLA, with the product terms corresponding to the truth table 
entries from top to bottom.

Rather than drawing all the gates, as we do in Figure B.3.4, designers oft en show 
just the position of AND gates and OR gates. Dots are used on the intersection of a 
product term signal line and an input line or an output line when a corresponding 
AND gate or OR gate is required. Figure B.3.5 shows how the PLA of Figure B.3.4 
would look when drawn in this way. Th e contents of a PLA are fi xed when the PLA 
is created, although there are also forms of PLA-like structures, called PALs, that 
can be programmed electronically when a designer is ready to use them.

ROMs
Another form of structured logic that can be used to implement a set of logic 
functions is a read-only memory (ROM). A ROM is called a memory because it 
has a set of locations that can be read; however, the contents of these locations are 
fi xed, usually at the time the ROM is manufactured. Th ere are also programmable 
ROMs (PROMs) that can be programmed electronically, when a designer knows 
their contents. Th ere are also erasable PROMs; these devices require a slow erasure 
process using ultraviolet light, and thus are used as read-only memories, except 
during the design and debugging process.

A ROM has a set of input address lines and a set of outputs. Th e number of 
addressable entries in the ROM determines the number of address lines: if the 

ANSWER

read-only memory 
(ROM) A memory 
whose contents are 
designated at creation 
time, aft er which the 
contents can only be read. 
ROM is used as structured 
logic to implement a 
set of logic functions by 
using the terms in the 
logic functions as address 
inputs and the outputs as 
bits in each word of the 
memory.

programmable ROM 
(PROM) A form of 
read-only memory that 
can be pro grammed 
when a designer knows its 
contents.
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ROM contains 2m addressable entries, called the height, then there are m input 
lines. Th e number of bits in each addressable entry is equal to the number of output 
bits and is sometimes called the width of the ROM. Th e total number of bits in the 
ROM is equal to the height times the width. Th e height and width are sometimes 
collectively referred to as the shape of the ROM.

A
B
C

E

F

Outputs
D

Inputs

FIGURE B.3.4 The PLA for implementing the logic function described in the example.

A ROM can encode a collection of logic functions directly from the truth table. 
For example, if there are n functions with m inputs, we need a ROM with m address 
lines (and 2m entries), with each entry being n bits wide. Th e entries in the input 
portion of the truth table represent the addresses of the entries in the ROM, while 
the contents of the output portion of the truth table constitute the contents of the 
ROM. If the truth table is organized so that the sequence of entries in the input 
portion constitutes a sequence of binary numbers (as have all the truth tables 
we have shown so far), then the output portion gives the ROM contents in order 
as well. In the example starting on page B-13, there were three inputs and three 
outputs. Th is leads to a ROM with 23 � 8 entries, each 3 bits wide. Th e contents of 
those entries in increasing order by address are directly given by the output portion 
of the truth table that appears on page B-14.

ROMs and PLAs are closely related. A ROM is fully decoded: it contains a full 
output word for every possible input combination. A PLA is only partially decoded. 
Th is means that a ROM will always contain more entries. For the earlier truth table 
on page B-14, the ROM contains entries for all eight possible inputs, whereas the 
PLA contains only the seven active product terms. As the number of inputs grows, 
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the number of entries in the ROM grows exponentially. In contrast, for most real 
logic functions, the number of product terms grows much more slowly (see the 
examples in  Appendix D). Th is diff erence makes PLAs generally more effi  cient 
for implementing combinational logic functions. ROMs have the advantage of 
being able to implement any logic function with the matching number of inputs 
and outputs. Th is advantage makes it easier to change the ROM contents if the logic 
function changes, since the size of the ROM need not change.

In addition to ROMs and PLAs, modern logic synthesis systems will also 
translate small blocks of combinational logic into a collection of gates that can 
be placed and wired automatically. Although some small collections of gates are 
usually not area effi  cient, for small logic functions they have less overhead than the 
rigid structure of a ROM and PLA and so are preferred.

For designing logic outside of a custom or semicustom integrated circuit, a common 
choice is a fi eld programming device; we describe these devices in Section B.12.

A

B

C

Inputs

AND plane

OR plane

D

E

F

Outputs

FIGURE B.3.5 A PLA drawn using dots to indicate the components of the product terms 
and sum terms in the array. Rather than use inverters on the gates, usually all the inputs are run the 
width of the AND plane in both true and complement forms. A dot in the AND plane indicates that the 
input, or its inverse, occurs in the product term. A dot in the OR plane indicates that the corresponding 
product term appears in the corresponding output.
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Don’t Cares
Oft en in implementing some combinational logic, there are situations where we do 
not care what the value of some output is, either because another output is true or 
because a subset of the input combinations determines the values of the outputs. 
Such situations are referred to as don’t cares. Don’t cares are important because they 
make it easier to optimize the implementation of a logic function.

Th ere are two types of don’t cares: output don’t cares and input don’t cares, both 
of which can be represented in a truth table. Output don’t cares arise when we don’t 
care about the value of an output for some input combination. Th ey appear as Xs in 
the output portion of a truth table. When an output is a don’t care for some input 
combination, the designer or logic optimization program is free to make the output 
true or false for that input combination. Input don’t cares arise when an output 
depends on only some of the inputs, and they are also shown as Xs, though in the 
input portion of the truth table.

Don’t Cares

Consider a logic function with inputs A, B, and C defi ned as follows:
■ If A or C is true, then output D is true, whatever the value of B.
■ If A or B is true, then output E is true, whatever the value of C.
■ Output F is true if exactly one of the inputs is true, although we don’t care 

about the value of F, whenever D and E are both true.

Show the full truth table for this function and the truth table using don’t cares. 
How many product terms are required in a PLA for each of these?

Here’s the full truth table, without don’t cares:

Inputs Outputs
A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 0

1 0 0 1 1 1

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 1 0

EXAMPLE

ANSWER
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Th is requires seven product terms without optimization. Th e truth table 
written with output don’t cares looks like this:

Inputs Outputs
A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 X

1 0 0 1 1 X

1 0 1 1 1 X

1 1 0 1 1 X

1 1 1 1 1 X

If we also use the input don’t cares, this truth table can be further simplifi ed 
to yield the following:

Inputs Outputs
A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

X 1 1 1 1 X

1 X X 1 1 X

Th is simplifi ed truth table requires a PLA with four minterms, or it can be 
implemented in discrete gates with one two-input AND gate and three OR gates 
(two with three inputs and one with two inputs). Th is compares to the original 
truth table that had seven minterms and would have required four AND gates.

Logic minimization is critical to achieving effi  cient implementations. One tool 
useful for hand minimization of random logic is Karnaugh maps. Karnaugh maps 
represent the truth table graphically, so that product terms that may be combined 
are easily seen. Nevertheless, hand optimization of signifi cant logic functions 
using Karnaugh maps is impractical, both because of the size of the maps and their 
complexity. Fortunately, the process of logic minimization is highly mechanical and 
can be performed by design tools. In the process of minimization, the tools take 
advantage of the don’t cares, so specifying them is important. Th e text book references 
at the end of this appendix provide further discussion on logic minimization, 
Karnaugh maps, and the theory behind such minimization algorithms.

Arrays of Logic Elements
Many of the combinational operations to be performed on data have to be done 
to an entire word (32 bits) of data. Th us we oft en want to build an array of logic 
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elements, which we can represent simply by showing that a given operation will 
happen to an entire collection of inputs. Inside a machine, much of the time we 
want to select between a pair of buses. A bus is a collection of data lines that is 
treated together as a single logical signal. (Th e term bus is also used to indicate a 
shared collection of lines with multiple sources and uses.)

For example, in the MIPS instruction set, the result of an instruction that is written 
into a register can come from one of two sources. A multiplexor is used to choose 
which of the two buses (each 32 bits wide) will be written into the Result register. 
Th e 1-bit multiplexor, which we showed earlier, will need to be replicated 32 times.

We indicate that a signal is a bus rather than a single 1-bit line by showing it with 
a thicker line in a fi gure. Most buses are 32 bits wide; those that are not are explicitly 
labeled with their width. When we show a logic unit whose inputs and outputs are 
buses, this means that the unit must be replicated a suffi  cient number of times to 
accommodate the width of the input. Figure B.3.6 shows how we draw a multiplexor 
that selects between a pair of 32-bit buses and how this expands in terms of 1-bit-
wide multiplexors. Sometimes we need to construct an array of logic elements 
where the inputs for some elements in the array are outputs from earlier elements. 
For example, this is how a multibit-wide ALU is constructed. In such cases, we must 
explicitly show how to create wider arrays, since the individual elements of the array 
are no longer independent, as they are in the case of a 32-bit-wide multiplexor.

bus In logic design, a 
collection of data lines 
that is treated together 
as a single logical signal; 
also, a shared collection 
of lines with multiple 
sources and uses.
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a. A 32-bit wide 2-to-1 multiplexor b. The 32-bit wide multiplexor is actually 
an array of 32 1-bit multiplexors

FIGURE B.3.6 A multiplexor is arrayed 32 times to perform a selection between two 32-
bit inputs. Note that there is still only one data selection signal used for all 32 1-bit multiplexors.
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Parity is a function in which the output depends on the number of 1s in the input. 
For an even parity function, the output is 1 if the input has an even number of ones. 
Suppose a ROM is used to implement an even parity function with a 4-bit input. 
Which of A, B, C, or D represents the contents of the ROM?

Address A B C D

0 0 1 0 1

1 0 1 1 0

2 0 1 0 1

3 0 1 1 0

4 0 1 0 1

5 0 1 1 0

6 0 1 0 1

7 0 1 1 0

8 1 0 0 1

9 1 0 1 0

10 1 0 0 1

11 1 0 1 0

12 1 0 0 1

13 1 0 1 0

14 1 0 0 1

15 1 0 1 0

 B.4 Using a Hardware Description Language

Today most digital design of processors and related hardware systems is done 
using a hardware description language. Such a language serves two purposes. 
First, it provides an abstract description of the hardware to simulate and debug the 
design. Second, with the use of logic synthesis and hardware compilation tools, this 
description can be compiled into the hardware implementation.

In this section, we introduce the hardware description language Verilog and 
show how it can be used for combinational design. In the rest of the appendix, 
we expand the use of Verilog to include design of sequential logic. In the optional 
sections of Chapter 4 that appear online, we use Verilog to describe processor 
implementations. In the optional section from Chapter 5 that appears online, we 
use system Verilog to describe cache controller implementations. System Verilog 
adds structures and some other useful features to Verilog.

Verilog is one of the two primary hardware description languages; the other 
is VHDL. Verilog is somewhat more heavily used in industry and is based on C, 
as opposed to VHDL, which is based on Ada. Th e reader generally familiar with 
C will fi nd the basics of Verilog, which we use in this appendix, easy to follow. 

Check 
Yourself

hardware description 
language 
A programming language 
for describing hardware, 
used for generating 
simulations of a hardware 
design and also as input 
to synthesis tools that can 
generate actual hardware.

Verilog One of the two 
most common hardware 
description languages.

VHDL One of the two 
most common hardware 
description languages.
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Readers already familiar with VHDL should fi nd the concepts simple, provided 
they have been exposed to the syntax of C.

Verilog can specify both a behavioral and a structural defi nition of a digital 
system. A behavioral specifi cation describes how a digital system functionally 
operates. A structural specifi cation describes the detailed organization of a digital 
system, usually using a hierarchical description. A structural specifi cation can be 
used to describe a hardware system in terms of a hierarchy of basic elements such 
as gates and switches. Th us, we could use Verilog to describe the exact contents of 
the truth tables and datapath of the last section.

With the arrival of hardware synthesis tools, most designers now use Verilog 
or VHDL to structurally describe only the datapath, relying on logic synthesis to 
generate the control from a behavioral description. In addition, most CAD systems 
provide extensive libraries of standardized parts, such as ALUs, multiplexors, 
register fi les, memories, and programmable logic blocks, as well as basic gates.

Obtaining an acceptable result using libraries and logic synthesis requires that 
the specifi cation be written with an eye toward the eventual synthesis and the 
desired outcome. For our simple designs, this primarily means making clear what 
we expect to be implemented in combinational logic and what we expect to require 
sequential logic. In most of the examples we use in this section and the remainder 
of this appendix, we have written the Verilog with the eventual synthesis in mind.

Datatypes and Operators in Verilog
Th ere are two primary datatypes in Verilog:

1. A wire specifi es a combinational signal.

2. A reg (register) holds a value, which can vary with time. A reg need not 
necessarily correspond to an actual register in an implementation, although 
it oft en will.

A register or wire, named X, that is 32 bits wide is declared as an array: reg 
[31:0] X or wire [31:0] X, which also sets the index of 0 to designate the 
least signifi cant bit of the register. Because we oft en want to access a subfi eld of a 
register or wire, we can refer to a contiguous set of bits of a register or wire with the 
notation [starting bit: ending bit], where both indices must be constant 
values.

An array of registers is used for a structure like a register fi le or memory. Th us, 
the declaration

reg [31:0] registerfile[0:31]

specifi es a variable registerfi le that is equivalent to a MIPS registerfi le, where 
register 0 is the fi rst. When accessing an array, we can refer to a single element, as 
in C, using the notation registerfile[regnum].

behavioral 
specifi cation Describes 
how a digital system 
operates functionally.

structural 
specifi cation Describes 
how a digital system is 
organized in terms of a 
hierarchical connection of 
elements.

hardware synthesis 
tools Computer-aided 
design soft ware that 
can generate a gate-
level design based on 
behavioral descriptions of 
a digital system.

wire In Verilog, specifi es 
a combinational signal.

reg In Verilog, a register.
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Th e possible values for a register or wire in Verilog are

■ 0 or 1, representing logical false or true

■ X, representing unknown, the initial value given to all registers and to any 
wire not connected to something

■ Z, representing the high-impedance state for tristate gates, which we will not 
discuss in this appendix

Constant values can be specifi ed as decimal numbers as well as binary, octal, or 
hexadecimal. We oft en want to say exactly how large a constant fi eld is in bits. Th is 
is done by prefi xing the value with a decimal number specifying its size in bits. For 
example:

■ 4’b0100 specifi es a 4-bit binary constant with the value 4, as does 4’d4.

■ - 8 ‘h4 specifi es an 8-bit constant with the value �4 (in two’s complement 
representation)

Values can also be concatenated by placing them within { } separated by commas. 
Th e notation {x{bitfield}} replicates bit field x times. For example:

■ {16{2’b01}} creates a 32-bit value with the pattern 0101 … 01.

■ {A[31:16],B[15:0]} creates a value whose upper 16 bits come from A 
and whose lower 16 bits come from B.

Verilog provides the full set of unary and binary operators from C, including the 
arithmetic operators (�, �, *. /), the logical operators (&, |, �), the comparison 
operators (� �, !�, �, �, � �, � �), the shift  operators (��, ��), and C’s 
conditional operator (?, which is used in the form condition ? expr1 :expr2 
and returns expr1 if the condition is true and expr2 if it is false). Verilog adds 
a set of unary logic reduction operators (&, |, ^) that yield a single bit by applying 
the logical operator to all the bits of an operand. For example, &A returns the value 
obtained by ANDing all the bits of A together, and ̂ A returns the reduction obtained 
by using exclusive OR on all the bits of A.

Which of the following defi ne exactly the same value?

l. 8’bimoooo
2. 8’hF0
3. 8’d240
4. {{4{1’b1}},{4{1’b0}}}
5. {4’b1,4’b0)

Check 
Yourself
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Structure of a Verilog Program
A Verilog program is structured as a set of modules, which may represent anything 
from a collection of logic gates to a complete system. Modules are similar to classes 
in C��, although not nearly as powerful. A module specifi es its input and output 
ports, which describe the incoming and outgoing connections of a module. A 
module may also declare additional variables. Th e body of a module consists of:

■ initial constructs, which can initialize reg variables

■ Continuous assignments, which defi ne only combinational logic

■ always constructs, which can defi ne either sequential or combinational 
logic

■ Instances of other modules, which are used to implement the module being 
defi ned

Representing Complex Combinational Logic in Verilog
A continuous assignment, which is indicated with the keyword assign, acts like 
a combinational logic function: the output is continuously assigned the value, and 
a change in the input values is refl ected immediately in the output value. Wires 
may only be assigned values with continuous assignments. Using continuous 
assignments, we can defi ne a module that implements a half-adder, as Figure B.4.1 
shows.

Assign statements are one sure way to write Verilog that generates combinational 
logic. For more complex structures, however, assign statements may be awkward or 
tedious to use. It is also possible to use the always block of a module to describe 
a combinational logic element, although care must be taken. Using an always 
block allows the inclusion of Verilog control constructs, such as if-then-else, case 
statements, for statements, and repeat statements, to be used. Th ese statements are 
similar to those in C with small changes.

An always block specifi es an optional list of signals on which the block is 
sensitive (in a list starting with @). Th e always block is re-evaluated if any of the 

FIGURE B.4.1 A Verilog module that defi nes a half-adder using continuous assignments.
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listed signals changes value; if the list is omitted, the always block is constantly re-
evaluated. When an always block is specifying combinational logic, the sensitivity 
list should include all the input signals. If there are multiple Verilog statements to 
be executed in an always block, they are surrounded by the keywords begin and 
end, which take the place of the { and } in C. An always block thus looks like this:

always @(list of signals that cause reevaluation) begin
Verilog statements including assignments and other 

control statements end

Reg variables may only be assigned inside an always block, using a procedural 
assignment statement (as distinguished from continuous assignment we saw 
earlier). Th ere are, however, two diff erent types of procedural assignments. Th e 
assignment operator � executes as it does in C; the right-hand side is evaluated, 
and the left -hand side is assigned the value. Furthermore, it executes like the 
normal C assignment statement: that is, it is completed before the next statement is 
executed. Hence, the assignment operator � has the name blocking assignment. 
Th is blocking can be useful in the generation of sequential logic, and we will return 
to it shortly. Th e other form of assignment (nonblocking) is indicated by <=. In 
nonblocking assignment, all right-hand sides of the assignments in an always 
group are evaluated and the assignments are done simultaneously. As a fi rst 
example of combinational logic implemented using an always block, Figure B.4.2 
shows the implementation of a 4-to-1 multiplexor, which uses a case construct to 
make it easy to write. Th e case construct looks like a C switch statement. Figure 
B.4.3 shows a defi nition of a MIPS ALU, which also uses a case statement.

Since only reg variables may be assigned inside always blocks, when we want to 
describe combinational logic using an always block, care must be taken to ensure 
that the reg does not synthesize into a register. A variety of pitfalls are described in 
the elaboration below.

Elaboration: Continuous assignment statements always yield combinational logic, 
but other Verilog structures, even when in always blocks, can yield unexpected results 
during logic synthesis. The most common problem is creating sequential logic by 
implying the existence of a latch or register, which results in an implementation that is 
both slower and more costly than perhaps intended. To ensure that the logic that you 
intend to be combinational is synthesized that way, make sure you do the following:

1. Place all combinational logic in a continuous assignment or an always block.

2. Make sure that all the signals used as inputs appear in the sensitivity list of an 
always block.

3. Ensure that every path through an always block assigns a value to the exact 
same set of bits.

The last of these is the easiest to overlook; read through the example in Figure 
B.5.15 to convince yourself that this property is adhered to.

sensitivity list Th e list of 
signals that specifi es when 
an always block should 
be re-evaluated.

blocking assignment 
In Verilog, an assignment 
that completes before 
the execution of the next 
statement.

nonblocking 
assignment An 
assignment that continues 
aft er evaluating the right-
hand side, assigning the 
left -hand side the value 
only aft er all right-hand 
sides are evaluated.
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FIGURE B.4.3 A Verilog behavioral defi nition of a MIPS ALU. Th is could be synthesized using a module library containing basic 
arithmetic and logical operations.

FIGURE B.4.2 A Verilog defi nition of a 4-to-1 multiplexor with 32-bit inputs, using a case 
statement. Th e case statement acts like a C switch statement, except that in Verilog only the code 
associated with the selected case is executed (as if each case state had a break at the end) and there is no fall-
through to the next statement.
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Assuming all values are initially zero, what are the values of A and B aft er executing 
this Verilog code inside an always block?

C=1;
A <= C;
B = C;

 B.5 Constructing a Basic Arithmetic Logic 
Unit

Th e arithmetic logic unit (ALU) is the brawn of the computer, the device that per-
forms the arithmetic operations like addition and subtraction or logical operations 
like AND and OR. Th is section constructs an ALU from four hardware building 
blocks (AND and OR gates, inverters, and multiplexors) and illustrates how 
combinational logic works. In the next section, we will see how addition can be 
sped up through more clever designs.

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let’s assume 
that we will connect 32 1-bit ALUs to create the desired ALU. We’ll therefore start 
by constructing a 1-bit ALU.

A 1-Bit ALU
Th e logical operations are easiest, because they map directly onto the hardware 
components in Figure B.2.1.

Th e 1-bit logical unit for AND and OR looks like Figure B.5.1. Th e multiplexor 
on the right then selects a AND b or a OR b, depending on whether the value 
of Operation is 0 or 1. Th e line that controls the multiplexor is shown in color 
to distinguish it from the lines containing data. Notice that we have renamed the 
control and output lines of the multiplexor to give them names that refl ect the 
function of the ALU.

Th e next function to include is addition. An adder must have two inputs for the 
operands and a single-bit output for the sum. Th ere must be a second output to 
pass on the carry, called CarryOut. Since the CarryOut from the neighbor adder 
must be included as an input, we need a third input. Th is input is called CarryIn. 
Figure B.5.2 shows the inputs and the outputs of a 1-bit adder. Since we know what 
addition is supposed to do, we can specify the outputs of this “black box” based on 
its inputs, as Figure B.5.3 demonstrates.

We can express the output functions CarryOut and Sum as logical equations, 
and these equations can in turn be implemented with logic gates. Let’s do CarryOut. 
Figure B.5.4 shows the values of the inputs when CarryOut is a 1.

We can turn this truth table into a logical equation:

CarryOut b CarryIn a CarryIn a b a b CarryIn( ) ( ) ( ) ( )

Check 
Yourself

ALU n. [Arthritic 
Logic Unit or (rare) 
Arithmetic Logic Unit] 
A random-number 
generator supplied 
as standard with all 
computer systems.
Stan Kelly-Bootle, Th e 
Devil’s DP Dictionary, 
1981
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Operation

1

0

Result

a

b

FIGURE B.5.1 The 1-bit logical unit for AND and OR.

CarryIn

Sum

CarryOut

a

b

+

FIGURE B.5.2 A 1-bit adder. Th is adder is called a full adder; it is also called a (3,2) adder because it has 
3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder.

stuptuOstupnI

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two
0 0 1 0 1 0 + 0 + 1 = 01two
0 1 0 0 1 0 + 1 + 0 = 01two
0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE B.5.3 Input and output specifi cation for a 1-bit adder.
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If a � b � CarryIn is true, then all of the other three terms must also be true, so we 
can leave out this last term corresponding to the fourth line of the table. We can 
thus simplify the equation to

CarryOut b CarryIn a CarryIn a b( ) ( ) ( )

Figure B.5.5 shows that the hardware within the adder black box for CarryOut 
consists of three AND gates and one OR gate. Th e three AND gates correspond 
exactly to the three parenthesized terms of the formula above for CarryOut, and 
the OR gate sums the three terms.

Inputs

a b CarryIn

0 1 1

1 0 1

1 1 0

1 1 1

FIGURE B.5.4 Values of the inputs when CarryOut is a 1.

a

b

CarryIn

CarryOut

FIGURE B.5.5 Adder hardware for the CarryOut signal. Th e rest of the adder hardware is the logic 
for the Sum output given in the equation on this page.

Th e Sum bit is set when exactly one input is 1 or when all three inputs are 1. Th e 
Sum results in a complex Boolean equation (recall that a means NOT a):

Sum a b CarryIn a b CarryIn a b CarryIn a b CarryIn( ) ( ) ( ) ( ))

Th e drawing of the logic for the Sum bit in the adder black box is left  as an exercise 
for the reader.
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a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

FIGURE B.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure B.5.5).

Figure B.5.6 shows a 1-bit ALU derived by combining the adder with the earlier 
components. Sometimes designers also want the ALU to perform a few more 
simple operations, such as generating 0. Th e easiest way to add an operation is to 
expand the multiplexor controlled by the Operation line and, for this example, to 
connect 0 directly to the new input of that expanded multiplexor.

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by 
connecting adjacent “black boxes.” Using xi to mean the ith bit of x, Figure B.5.7 
shows a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores 
of a quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all 
the way through the adder, causing a carry out of the most signifi cant bit (Result31). 
Hence, the adder created by directly linking the carries of 1-bit adders is called a 
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on 
page B-38.

Subtraction is the same as adding the negative version of an operand, and this 
is how adders perform subtraction. Recall that the shortcut for negating a two’s 
complement number is to invert each bit (sometimes called the one’s complement) 
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses 
between b and b, as Figure B.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure B.5.7. Th e added 
multiplexor gives the option of b or its inverted value, depending on Binvert, but 
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this is only one step in negating a two’s complement number. Notice that the least 
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition. 
What happens if we set this CarryIn to 1 instead of 0? Th e adder will then calculate 
a � b � 1. By selecting the inverted version of b, we get exactly what we want:

a b a b a b) a b1 1( ) (

Th e simplicity of the hardware design of a two’s complement adder helps explain 
why two’s complement representation has become the universal standard for 
integer computer arithmetic.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

FIGURE B.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit is 
connected to the CarryIn of the more signifi cant bit. Th is organization is called ripple carry.
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Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

FIGURE B.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By 
selecting b (Binvert � 1) and setting CarryIn to 1 in the least signifi cant bit of the ALU, we get two’s comple-
ment subtraction of b from a instead of addition of b to a.

A MIPS ALU also needs a NOR function. Instead of adding a separate gate 
for NOR, we can reuse much of the hardware already in the ALU, like we did for 
subtract. Th e insight comes from the following truth about NOR:

( )a b a b

Th at is, NOT (a OR b) is equivalent to NOT a AND NOT b. Th is fact is called 
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU. Figure 
B.5.9 shows that change.

Tailoring the 32-Bit ALU to MIPS
Th ese four operations—add, subtract, AND, OR—are found in the ALU of almost 
every computer, and the operations of most MIPS instructions can be performed 
by this ALU. But the design of the ALU is incomplete.

One instruction that still needs support is the set on less than instruction (slt). 
Recall that the operation produces 1 if rs � rt, and 0 otherwise. Consequently, slt 
will set all but the least signifi cant bit to 0, with the least signifi cant bit set according to 
the comparison. For the ALU to perform slt, we fi rst need to expand the three-input 
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multiplexor in Figure B.5.8 to add an input for the slt result. We call that new input 
Less and use it only for slt.

Th e top drawing of Figure B.5.10 shows the new 1-bit ALU with the expanded 
multiplexor. From the description of slt above, we must connect 0 to the Less 
input for the upper 31 bits of the ALU, since those bits are always set to 0. What 
remains to consider is how to compare and set the least signifi cant bit for set on less 
than instructions.

What happens if we subtract b from a? If the diff erence is negative, then a � b 
since

( ) (( ) ) ( )a b a b b b
a b

0 0⇒
⇒

We want the least signifi cant bit of a set on less than operation to be a 1 if a � b; 
that is, a 1 if a � b is negative and a 0 if it’s positive. Th is desired result corresponds 
exactly to the sign bit values: 1 means negative and 0 means positive. Following this 
line of argument, we need only connect the sign bit from the adder output to the 
least signifi cant bit to get set on less than.

Unfortunately, the Result output from the most signifi cant ALU bit in the top of 
Figure B.5.10 for the slt operation is not the output of the adder; the ALU output 
for the slt operation is obviously the input value Less.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

Ainvert

1

0

FIGURE B.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By 
selecting a (Ainvert � 1) and b (Binvert � 1), we get a NOR b instead of a AND b.
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a

b

CarryIn

CarryOut

Operation

1

0
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Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2�

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

FIGURE B.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b , and 
(bottom) a 1-bit ALU for the most signifi cant bit. Th e top drawing includes a direct input that is 
connected to perform the set on less than operation (see Figure B.5.11); the bottom has a direct output from 
the adder for the less than comparison called Set. (See Exercise B.24 at the end of this appendix to see how to 
calculate overfl ow with fewer inputs.)
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Th us, we need a new 1-bit ALU for the most signifi cant bit that has an extra 
output bit: the adder output. Th e bottom drawing of Figure B.5.10 shows the 
design, with this new adder output line called Set, and used only for slt. As long 
as we need a special ALU for the most signifi cant bit, we added the overfl ow detec-
tion logic since it is also associated with that bit.

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Binvert

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn

FIGURE B.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top 
of Figure B.5.10 and one 1-bit ALU in the bottom of that fi gure. Th e Less inputs are connected 
to 0 except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the 
ALU performs a � b and we select the input 3 in the multiplexor in Figure B.5.10, then Result � 0 … 001 if 
a � b, and Result � 0 … 000 otherwise.
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Alas, the test of less than is a little more complicated than just described because 
of overfl ow, as we explore in the exercises. Figure B.5.11 shows the 32-bit ALU.

Notice that every time we want the ALU to subtract, we set both CarryIn and 
Binvert to 1. For adds or logical operations, we want both control lines to be 0. We 
can therefore simplify control of the ALU by combining the CarryIn and Binvert to 
a single control line called Bnegate.

To further tailor the ALU to the MIPS instruction set, we must support 
conditional branch instructions. Th ese instructions branch either if two registers 
are equal or if they are unequal. Th e easiest way to test equality with the ALU is to 
subtract b from a and then test to see if the result is 0, since

( )a b a b0 ⇒

Th us, if we add hardware to test if the result is 0, we can test for equality. Th e 
simplest way is to OR all the outputs together and then send that signal through 
an inverter:

Zero Result Result Result Result Result( )31 30 2 1 0…

Figure B.5.12 shows the revised 32-bit ALU. We can think of the combination of 
the 1-bit Ainvert line, the 1-bit Binvert line, and the 2-bit Operation lines as 4-bit 
control lines for the ALU, telling it to perform add, subtract, AND, OR, or set on 
less than. Figure B.5.13 shows the ALU control lines and the corresponding ALU 
operation.

Finally, now that we have seen what is inside a 32-bit ALU, we will use the 
universal symbol for a complete ALU, as shown in Figure B.5.14.

Defi ning the MIPS ALU in Verilog
Figure B.5.15 shows how a combinational MIPS ALU might be specifi ed in Verilog; 
such a specifi cation would probably be compiled using a standard parts library that 
provided an adder, which could be instantiated. For completeness, we show the 
ALU control for MIPS in Figure B.5.16, which is used in Chapter 4, where we build 
a Verilog version of the MIPS datapath.

Th e next question is, “How quickly can this ALU add two 32-bit operands?” 
We can determine the a and b inputs, but the CarryIn input depends on the 
operation in the adjacent 1-bit adder. If we trace all the way through the chain of 
dependencies, we connect the most signifi cant bit to the least signifi cant bit, so 
the most signifi cant bit of the sum must wait for the sequential evaluation of all 32 
1-bit adders. Th is sequential chain reaction is too slow to be used in time-critical 
hardware. Th e next section explores how to speed-up addition. Th is topic is not 
crucial to understanding the rest of the appendix and may be skipped.



B-36 Appendix B The Basics of Logic Design
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FIGURE B.5.12 The fi nal 32-bit ALU. Th is adds a Zero detector to Figure B.5.11.

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR

FIGURE B.5.13 The values of the three ALU control lines, Bnegate, and Operation, and the 
corresponding ALU operations.
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ALU

a

ALU operation

b

CarryOut

Zero

Result

Overflow

FIGURE B.5.14 The symbol commonly used to represent an ALU, as shown in Figure 
B.5.12. Th is symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.

FIGURE B.5.15 A Verilog behavioral defi nition of a MIPS ALU.
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Suppose you wanted to add the operation NOT (a AND b), called NAND. How 
could the ALU change to support it?

1. No change. You can calculate NAND quickly using the current ALU since 
( )a b a b  and we already have NOT a, NOT b, and OR.

2. You must expand the big multiplexor to add another input, and then add 
new logic to calculate NAND.

 B.6 Faster Addition: Carry Lookahead

Th e key to speeding up addition is determining the carry in to the high-order bits 
sooner. Th ere are a variety of schemes to anticipate the carry so that the worst-
case scenario is a function of the log2 of the number of bits in the adder. Th ese 
anticipatory signals are faster because they go through fewer gates in sequence, but 
it takes many more gates to anticipate the proper carry.

A key to understanding fast-carry schemes is to remember that, unlike soft  
ware, hardware executes in parallel whenever inputs change.

Fast Carry Using “Infi nite” Hardware
As we mentioned earlier, any equation can be represented in two levels of logic. 
Since the only external inputs are the two operands and the CarryIn to the least 

Check 
Yourself

FIGURE B.5.16 The MIPS ALU control: a simple piece of combinational control logic.
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signifi cant bit of the adder, in theory we could calculate the CarryIn values to all 
the remaining bits of the adder in just two levels of logic.

For example, the CarryIn for bit 2 of the adder is exactly the CarryOut of bit 1, 
so the formula is

CarryIn b CarryIn a CarryIn a b12 1 1 1 1 1( ) ( ) ( )

Similarly, CarryIn1 is defi ned as

CarryIn b CarryIn a CarryIn a b1 0 0 0 0 0 0( ) ( ) ( )

Using the shorter and more traditional abbreviation of ci for CarryIni, we can 
rewrite the formulas as

c b c a c a b
c b c a c a b
2 1 1 1 1 1 1
1 0 0 0 0 0 0

( ) ( ) ( )
( ) ( ) ( )

Substituting the defi nition of c1 for the fi rst equation results in this formula:

c a a b a a c a b c
b a b b a c

2 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0

( ) ( ) ( )
( ) ( ) (( ) ( )b b c a b1 0 0 1 1

You can imagine how the equation expands as we get to higher bits in the adder; 
it grows rapidly with the number of bits. Th is complexity is refl ected in the cost of 
the hardware for fast carry, making this simple scheme prohibitively expensive for 
wide adders.

Fast Carry Using the First Level of Abstraction: Propagate 
and Generate
Most fast-carry schemes limit the complexity of the equations to simplify the 
hardware, while still making substantial speed improvements over ripple carry. 
One such scheme is a carry-lookahead adder. In Chapter 1, we said computer 
systems cope with complexity by using levels of abstraction. A carry-lookahead 
adder relies on levels of abstraction in its implementation.

Let’s factor our original equation as a fi rst step:

c 1 b c a c a b
a b a b c

i i i i i i i
i i i i i

( ) ( ) ( )
( ) ( )=

If we were to rewrite the equation for c2 using this formula, we would see some 
repeated patterns:

c a b a b a b a b c2 1 1 1 1 0 0 0 0 0( ) ( ) (( ) ( ) )

Note the repeated appearance of (ai � bi) and (ai � bi) in the formula above. Th ese 
two important factors are traditionally called generate (gi) and propagate (pi):
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g a b
p a b

i i i
i i i

Using them to defi ne ci � 1, we get

c 1 g p ci i i i

To see where the signals get their names, suppose gi is 1. Th en

c 1 g p c 1 p c 1i i i i i i

Th at is, the adder generates a CarryOut (ci � 1) independent of the value of Car-
ryIn (ci). Now suppose that gi is 0 and pi is 1. Th en

c g p c 1 c ci i i i i i1 0

Th at is, the adder propagates CarryIn to a CarryOut. Putting the two together, 
CarryIni � 1 is a 1 if either gi is 1 or both pi is 1 and CarryIni is 1.

As an analogy, imagine a row of dominoes set on edge. Th e end domino can be 
tipped over by pushing one far away, provided there are no gaps between the two. 
Similarly, a carry out can be made true by a generate far away, provided all the 
propagates between them are true.

Relying on the defi nitions of propagate and generate as our fi rst level of 
abstraction, we can express the CarryIn signals more economically. Let’s show it 
for 4 bits:

c g p c
c g p g p p c
c g p g p p

1 0 0 0
2 1 1 0 1 0 0
3 2 2 1 2 1

( )
( ) ( )
( ) ( gg p p p c

c g p g p p g p p p g
0 2 1 0 0

4 3 3 2 3 2 1 3 2 1 0
) ( )

( ) ( ) ( )
(pp3 p2 p1 p c  0 0)

Th ese equations just represent common sense: CarryIni is a 1 if some earlier adder 
generates a carry and all intermediary adders propagate a carry. Figure B.6.1 uses 
plumbing to try to explain carry lookahead.

Even this simplifi ed form leads to large equations and, hence, considerable logic 
even for a 16-bit adder. Let’s try moving to two levels of abstraction.

Fast Carry Using the Second Level of Abstraction
First, we consider this 4-bit adder with its carry-lookahead logic as a single building 
block. If we connect them in ripple carry fashion to form a 16-bit adder, the add 
will be faster than the original with a little more hardware.
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To go faster, we’ll need carry lookahead at a higher level. To perform carry look 
ahead for 4-bit adders, we need to propagate and generate signals at this higher 
level. Here they are for the four 4-bit adder blocks:

P p p p p
P p p p p
P p p p p
P p p p

0 3 2 1 0
1 7 6 5 4
2 11 10 9 8
3 15 14 13 p12

Th at is, the “super” propagate signal for the 4-bit abstraction (Pi) is true only if each 
of the bits in the group will propagate a carry.

For the “super” generate signal (Gi), we care only if there is a carry out of the 
most signifi cant bit of the 4-bit group. Th is obviously occurs if generate is true 
for that most signifi cant bit; it also occurs if an earlier generate is true and all the 
intermediate propagates, including that of the most signifi cant bit, are also true:

G g p g p p g p p p g
G g p g p p

0 3 3 2 3 2 1 3 2 1 0
1 7 7 6 7 6

( ) ( ) ( )
( ) ( g p p p g

G g p g p p g p p
5 7 6 5 4

2 11 11 10 11 10 9 11 10
) ( )

( ) ( ) ( pp g
G g p g p p g p p p g

9 8
3 15 15 14 15 14 13 15 14 13 12

)
( ) ( ) ( )

Figure B.6.2 updates our plumbing analogy to show P0 and G0.
Th en the equations at this higher level of abstraction for the carry in for each 

4-bit group of the 16-bit adder (C1, C2, C3, C4 in Figure B.6.3) are very similar to 
the carry out equations for each bit of the 4-bit adder (c1, c2, c3, c4) on page B-40:

C G P c
C G P G P P c
C G P G P P

1 0 0 0
2 1 1 0 1 0 0
3 2 2 1 2 1

( )
( ) ( )
( ) ( GG P P P c

C G P G P P G P P P G  
0 2 1 0 0

4 3 3 2 3 2 1 3 2 1 0
) ( )

( ) ( ) ( )
(( )P P P P c3 2 1 0 0

Figure B.6.3 shows 4-bit adders connected with such a carry-lookahead unit. 
Th e exercises explore the speed diff erences between these carry schemes, diff erent 
notations for multibit propagate and generate signals, and the design of a 64-bit 
adder.
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c4

p3

p2

p1

p0

g3

g2

g1

g0

c0

c2

p1

p0

g1

g0

c0

c1

p0

g0

c0

FIGURE B.6.1 A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using 
water pipes and valves. Th e wrenches are turned to open and close valves. Water is shown in color. Th e 
output of the pipe (ci � 1) will be full if either the nearest generate value (gi) is turned on or if the i propagate 
value (pi) is on and there is water further upstream, either from an earlier generate or a propagate with water 
behind it. CarryIn (c0) can result in a carry out without the help of any generates, but with the help of all 
propagates.
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G0

p3

p2

p1

g3

g2

g1

g0

P0
p3

p2

p1

p0

FIGURE B.6.2 A plumbing analogy for the next-level carry-lookahead signals P0 and G0. 
P0 is open only if all four propagates (pi) are open, while water fl ows in G0 only if at least one generate (gi) is 
open and all the propagates downstream from that generate are open.
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Both Levels of the Propagate and Generate

Determine the gi, pi, Pi, and Gi values of these two 16-bit numbers:

a:    0001 1010 0011 0011two

b:    1110 0101 1110 1011two

Also, what is CarryOut15 (C4)?

Aligning the bits makes it easy to see the values of generate gi (ai � bi) and 
propagate pi (ai � bi):

a:    0001 1010 0011 0011
b:    1110 0101 1110 1011
gi:   0000 0000 0010 0011
pi:   1111 1111 1111 1011

where the bits are numbered 15 to 0 from left  to right. Next, the “super” 
propagates (P3, P2, P1, P0) are simply the AND of the lower-level propagates:

P 1 1 1 1 1
P 1 1 1 1 1
P 1 1 1 1 1
P 1 1 1

3
2
1
0 0 0

Th e “super” generates are more complex, so use the following equations:

G g p g p p g p p p g0 3 3 2 3 2 1 3 2 1 0
0 1 0 1 0 1 1

( ) ( ) ( )
( ) ( ) (= 00 1 1 0 0 0 0 0

1 7 7 6 7 6 5 7 6 5 4
0

)
( ) ( ) ( )G g p g p p g p p p g

(( ) ( ) ( )
( ) (

1 0 1 1 1 1 1 1 0 0 0 1 0 1
2 11 11 10 11 1G g p g p p 00 9 11 10 9 8

0 1 0 1 1 0 1 1 1 0 0 0 0 0 0
g p p p g) ( )

( ) ( ) ( )
GG g p g p p g p p p g3 15 15 14 15 14 13 15 14 13 12

0 1 0
( ) ( ) ( )

( ) (( ) ( )1 1 0 1 1 1 0 0 0 0 0 0

Finally, CarryOut15 is

C G P G P P G P P P G
P P P P c

4 3 3 2 3 2 1 3 2 1 0
3 2 1 0 0

0

( ) ( ) ( )
( )

(( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1
1 1

0 0 0 0
0 0 0 0

Hence, there is a carry out when adding these two 16-bit numbers.

EXAMPLE

ANSWER
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a4 CarryIn

ALU1
  P1
  G1

b4
a5
b5
a6
b6
a7
b7

a0 CarryIn

ALU0
  P0
  G0

b0

Carry-lookahead unit

a1
b1
a2
b2
a3
b3

CarryIn

Result0–3

pi
gi

ci + 1

pi + 1
gi + 1

C1

Result4–7

a8 CarryIn

ALU2
  P2
  G2

b8
a9
b9

a10
b10
a11
b11

ci + 2

pi + 2
gi + 2

C2

Result8–11

a12 CarryIn

ALU3
  P3
  G3

b12
a13
b13
a14
b14
a15
b15

ci + 3

pi + 3
gi + 3

C3

Result12–15

ci + 4
C4

CarryOut

FIGURE B.6.3 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the 
carries come from the carry-lookahead unit, not from the 4-bit ALUs.
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Th e reason carry lookahead can make carries faster is that all logic begins 
evaluating the moment the clock cycle begins, and the result will not change once 
the output of each gate stops changing. By taking the shortcut of going through 
fewer gates to send the carry in signal, the output of the gates will stop changing 
sooner, and hence the time for the adder can be less.

To appreciate the importance of carry lookahead, we need to calculate the 
relative performance between it and ripple carry adders.

Speed of Ripple Carry versus Carry Lookahead

One simple way to model time for logic is to assume each AND or OR gate 
takes the same time for a signal to pass through it. Time is estimated by simply 
counting the number of gates along the path through a piece of logic. Compare 
the number of gate delays for paths of two 16-bit adders, one using ripple carry 
and one using two-level carry lookahead.

Figure B.5.5 on page B-28 shows that the carry out signal takes two gate 
delays per bit. Th en the number of gate delays between a carry in to the least 
signifi cant bit and the carry out of the most signifi cant is 16 � 2 � 32.

For carry lookahead, the carry out of the most signifi cant bit is just C4, 
defi ned in the example. It takes two levels of logic to specify C4 in terms of 
Pi and Gi (the OR of several AND terms). Pi is specifi ed in one level of logic 
(AND) using pi, and Gi is specifi ed in two levels using pi and gi, so the worst 
case for this next level of abstraction is two levels of logic. pi and gi are each 
one level of logic, defi ned in terms of ai and bi. If we assume one gate delay 
for each level of logic in these equations, the worst case is 2 � 2 � 1 � 5 gate 
delays.

Hence, for the path from carry in to carry out, the 16-bit addition by a 
carry-lookahead adder is six times faster, using this very simple estimate of 
hardware speed.

Summary
Carry lookahead off ers a faster path than waiting for the carries to ripple through 
all 32 1-bit adders. Th is faster path is paved by two signals, generate and propagate. 

EXAMPLE

ANSWER
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Th e former creates a carry regardless of the carry input, and the latter passes a carry 
along. Carry lookahead also gives another example of how abstraction is important 
in computer design to cope with complexity.

Using the simple estimate of hardware speed above with gate delays, what is the 
relative performance of a ripple carry 8-bit add versus a 64-bit add using carry-
lookahead logic?

1. A 64-bit carry-lookahead adder is three times faster: 8-bit adds are 16 gate 
delays and 64-bit adds are 7 gate delays.

2. Th ey are about the same speed, since 64-bit adds need more levels of logic in 
the 16-bit adder.

3. 8-bit adds are faster than 64 bits, even with carry lookahead.

Elaboration: We have now accounted for all but one of the arithmetic and logical 
operations for the core MIPS instruction set: the ALU in Figure B.5.14 omits support of 
shift instructions. It would be possible to widen the ALU multiplexor to include a left shift 
by 1 bit or a right shift by 1 bit. But hardware designers have created a circuit called a 
barrel shifter, which can shift from 1 to 31 bits in no more time than it takes to add two 
32-bit numbers, so shifting is normally done outside the ALU.

Elaboration: The logic equation for the Sum output of the full adder on page B-28 can 
be expressed more simply by using a more powerful gate than AND and OR. An exclusive 
OR gate is true if the two operands disagree; that is,

x y  and x y≠ ⇒ ⇒1 0��

In some technologies, exclusive OR is more effi cient than two levels of AND and OR 
gates. Using the symbol ⊕ to represent exclusive OR, here is the new equation:

Sum a b CarryIn� ⊕ ⊕

Also, we have drawn the ALU the traditional way, using gates. Computers are designed 
today in CMOS transistors, which are basically switches. CMOS ALU and barrel shifters 
take advantage of these switches and have many fewer multiplexors than shown in our 
designs, but the design principles are similar.

Elaboration: Using lowercase and uppercase to distinguish the hierarchy of generate 
and propagate symbols breaks down when you have more than two levels. An alternate 
notation that scales is g

i..j
 and p

i..j
 for the generate and propagate signals for bits i to j. 

Thus, g1..1 is generated for bit 1, g4..1 is for bits 4 to 1, and g16..1 is for bits 16 to 1.

Check 
Yourself
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 B.7 Clocks

Before we discuss memory elements and sequential logic, it is useful to discuss 
briefl y the topic of clocks. Th is short section introduces the topic and is similar 
to the discussion found in Section 4.2. More details on clocking and timing 
methodologies are presented in Section B.11.

Clocks are needed in sequential logic to decide when an element that contains 
state should be updated. A clock is simply a free-running signal with a fi xed cycle 
time; the clock frequency is simply the inverse of the cycle time. As shown in Figure 
B.7.1, the clock cycle time or clock period is divided into two portions: when the 
clock is high and when the clock is low. In this text, we use only edge-triggered 
clocking. Th is means that all state changes occur on a clock edge. We use an edge-
triggered methodology because it is simpler to explain. Depending on the tech-
nology, it may or may not be the best choice for a clocking methodology.

edge-triggered 
clocking A clocking 
scheme in which all state 
changes occur on a clock 
edge.

clocking methodology 
Th e approach used to 
determine when data is 
valid and stable relative to 
the clock.

Clock period Rising edge

Falling edge

FIGURE B.7.1 A clock signal oscillates between high and low values. Th e clock period is the 
time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and 
causes state to be changed.

In an edge-triggered methodology, either the rising edge or the falling edge of 
the clock is active and causes state changes to occur. As we will see in the next 
section, the state elements in an edge-triggered design are implemented so that the 
contents of the state elements only change on the active clock edge. Th e choice of 
which edge is active is infl uenced by the implementation technology and does not 
aff ect the concepts involved in designing the logic.

Th e clock edge acts as a sampling signal, causing the value of the data input to a 
state element to be sampled and stored in the state element. Using an edge trigger 
means that the sampling process is essentially instantaneous, eliminating problems 
that could occur if signals were sampled at slightly diff erent times.

Th e major constraint in a clocked system, also called a synchronous system, is 
that the signals that are written into state elements must be valid when the active 

state element 
A memory element.

synchronous system 
A memory system that 
employs clocks and where 
data signals are read only 
when the clock indicates 
that the signal values are 
stable.
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clock edge occurs. A signal is valid if it is stable (i.e., not changing), and the value 
will not change again until the inputs change. Since combinational circuits cannot 
have feedback, if the inputs to a combinational logic unit are not changed, the 
outputs will eventually become valid.

Figure B.7.2 shows the relationship among the state elements and the 
combinational logic blocks in a synchronous, sequential logic design. Th e state 
elements, whose outputs change only aft er the clock edge, provide valid inputs 
to the combinational logic block. To ensure that the values written into the state 
elements on the active clock edge are valid, the clock must have a long enough 
period so that all the signals in the combinational logic block stabilize, and then the 
clock edge samples those values for storage in the state elements. Th is constraint 
sets a lower bound on the length of the clock period, which must be long enough 
for all state element inputs to be valid.

In the rest of this appendix, as well as in Chapter 4, we usually omit the clock 
signal, since we are assuming that all state elements are updated on the same clock 
edge. Some state elements will be written on every clock edge, while others will be 
written only under certain conditions (such as a register being updated). In such 
cases, we will have an explicit write signal for that state element. Th e write signal 
must still be gated with the clock so that the update occurs only on the clock edge if 
the write signal is active. We will see how this is done and used in the next section.

One other advantage of an edge-triggered methodology is that it is possible 
to have a state element that is used as both an input and output to the same 
combinational logic block, as shown in Figure B.7.3. In practice, care must be 
taken to prevent races in such situations and to ensure that the clock period is long 
enough; this topic is discussed further in Section B.11.

Now that we have discussed how clocking is used to update state elements, we 
can discuss how to construct the state elements.

State
element

1

State
element

2
Combinational logic

Clock cycle

FIGURE B.7.2 The inputs to a combinational logic block come from a state element, and 
the outputs are written into a state element. Th e clock edge determines when the contents of the 
state elements are updated.
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Elaboration: Occasionally, designers fi nd it useful to have a small number of state 
elements that change on the opposite clock edge from the majority of the state elements. 
Doing so requires extreme care, because such an approach has effects on both the 
inputs and the outputs of the state element. Why then would designers ever do this? 
Consider the case where the amount of combinational logic before and after a state 
element is small enough so that each could operate in one-half clock cycle, rather than 
the more usual full clock cycle. Then the state element can be written on the clock edge 
corresponding to a half clock cycle, since the inputs and outputs will both be usable 
after one-half clock cycle. One common place where this technique is used is in register 

fi les, where simply reading or writing the register fi le can often be done in half the normal 
clock cycle. Chapter 4 makes use of this idea to reduce the pipelining overhead.

 B.8 Memory Elements: Flip-Flops, Latches, 
and Registers

In this section and the next, we discuss the basic principles behind memory 
elements, starting with fl ip-fl ops and latches, moving on to register fi les, and 
fi nishing with memories. All memory elements store state: the output from any 
memory element depends both on the inputs and on the value that has been stored 
inside the memory element. Th us all logic blocks containing a memory element 
contain state and are sequential.

register fi le A state 
element that consists 
of a set of registers that 
can be read and written 
by supplying a register 
number to be accessed.

State
element

Combinational logic

FIGURE B.7.3 An edge-triggered methodology allows a state element to be read and 
written in the same clock cycle without creating a race that could lead to undetermined 
data values. Of course, the clock cycle must still be long enough so that the input values are stable when 
the active clock edge occurs.

R

S

Q

Q

FIGURE B.8.1 A pair of cross-coupled NOR gates can store an internal value. Th e value 
stored on the output Q is recycled by inverting it to obtain Q and then inverting Q to obtain Q. If either R or 
Q is asserted, Q will be deasserted and vice versa.
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Th e simplest type of memory elements are unclocked; that is, they do not 
have any clock input. Although we only use clocked memory elements in this 
text, an unclocked latch is the simplest memory element, so let’s look at this 
circuit fi rst. Figure B.8.1 shows an S-R latch (set-reset latch), built from a pair of 
NOR gates (OR gates with inverted outputs). Th e outputs Q and Q represent the 
value of the stored state and its complement. When neither S nor R are asserted, 
the cross-coupled NOR gates act as inverters and store the previous values of 
Q and Q.

For example, if the output, Q, is true, then the bottom inverter produces a false 
output (which is Q), which becomes the input to the top inverter, which produces 
a true output, which is Q, and so on. If S is asserted, then the output Q will be 
asserted and Q will be deasserted, while if R is asserted, then the output Q will be 
asserted and Q will be deasserted. When S and R are both deasserted, the last values 
of Q and Q will continue to be stored in the cross-coupled structure. Asserting S 
and R simultaneously can lead to incorrect operation: depending on how S and R 
are deasserted, the latch may oscillate or become metastable (this is described in 
more detail in Section B.11).

Th is cross-coupled structure is the basis for more complex memory elements 
that allow us to store data signals. Th ese elements contain additional gates used to 
store signal values and to cause the state to be updated only in conjunction with a 
clock. Th e next section shows how these elements are built.

Flip-Flops and Latches
Flip-fl ops and latches are the simplest memory elements. In both fl ip-fl ops and 
latches, the output is equal to the value of the stored state inside the element. 
Furthermore, unlike the S-R latch described above, all the latches and fl ip-fl ops we 
will use from this point on are clocked, which means that they have a clock input 
and the change of state is triggered by that clock. Th e diff erence between a fl ip-
fl op and a latch is the point at which the clock causes the state to actually change. 
In a clocked latch, the state is changed whenever the appropriate inputs change 
and the clock is asserted, whereas in a fl ip-fl op, the state is changed only on a clock 
edge. Since throughout this text we use an edge-triggered timing methodology 
where state is only updated on clock edges, we need only use fl ip-fl ops. Flip-fl ops 
are oft en built from latches, so we start by describing the operation of a simple 
clocked latch and then discuss the operation of a fl ip-fl op constructed from that 
latch.

For computer applications, the function of both fl ip-fl ops and latches is to 
store a signal. A D latch or D fl ip-fl op stores the value of its data input signal in 
the internal memory. Although there are many other types of latch and fl ip-fl op, 
the D type is the only basic building block that we will need. A D latch has two 
inputs and two outputs. Th e inputs are the data value to be stored (called D) and 
a clock signal (called C) that indicates when the latch should read the value on 
the D input and store it. Th e outputs are simply the value of the internal state (Q) 

latch A memory element 
in which the output is 
equal to the value of the 
stored state inside the 
element and the state is 
changed whenever the 
appropriate inputs change 
and the clock is asserted.

fl ip-fl op A memory 
element for which the 
output is equal to the 
value of the stored state 
inside the element and for 
which the internal state is 
changed only on a clock 
edge.

D fl ip-fl op A fl ip-fl op 
with one data input 
that stores the value of 
that input signal in the 
internal memory when 
the clock edge occurs.
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and its complement (Q). When the clock input C is asserted, the latch is said to 
be open, and the value of the output (Q) becomes the value of the input D. When 
the clock input C is deasserted, the latch is said to be closed, and the value of the 
output (Q) is whatever value was stored the last time the latch was open.

Figure B.8.2 shows how a D latch can be implemented with two additional gates 
added to the cross-coupled NOR gates. Since when the latch is open the value of Q 
changes as D changes, this structure is sometimes called a transparent latch. Figure 
B.8.3 shows how this D latch works, assuming that the output Q is initially false and 
that D changes fi rst.

As mentioned earlier, we use fl ip-fl ops as the basic building block, rather than 
latches. Flip-fl ops are not transparent: their outputs change only on the clock edge. 
A fl ip-fl op can be built so that it triggers on either the rising (positive) or falling 
(negative) clock edge; for our designs we can use either type. Figure B.8.4 shows 
how a falling-edge D fl ip-fl op is constructed from a pair of D latches. In a D fl ip-
fl op, the output is stored when the clock edge occurs. Figure B.8.5 shows how this 
fl ip-fl op operates.

C

D

Q

Q

FIGURE B.8.2 A D latch implemented with NOR gates. A NOR gate acts as an inverter if the other 
input is 0. Th us, the cross-coupled pair of NOR gates acts to store the state value unless the clock input, C, is 
asserted, in which case the value of input D replaces the value of Q and is stored. Th e value of input D must 
be stable when the clock signal C changes from asserted to deasserted.

D

C

Q

FIGURE B.8.3 Operation of a D latch, assuming the output is initially deasserted. When 
the clock, C, is asserted, the latch is open and the Q output immediately assumes the value of the D input.
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D

C

D
latch

D

C

Q
D

latch

D

C

Q Q

Q Q

FIGURE B.8.4 A D fl ip-fl op with a falling-edge trigger. Th e fi rst latch, called the master, is open 
and follows the input D when the clock input, C, is asserted. When the clock input, C, falls, the fi rst latch is 
closed, but the second latch, called the slave, is open and gets its input from the output of the master latch.

Here is a Verilog description of a module for a rising-edge D fl ip-fl op, assuming 
that C is the clock input and D is the data input:

module DFF(clock,D,Q,Qbar);
 input clock, D;

 output reg Q; // Q is a reg since it is assigned in an 
always block

 output Qbar;
 assign Qbar = ~ Q; // Qbar is always just the inverse 
of Q
 always @(posedge clock) // perform actions whenever the 
clock rises

 Q = D;
endmodule

Because the D input is sampled on the clock edge, it must be valid for a period 
of time immediately before and immediately aft er the clock edge. Th e minimum 
time that the input must be valid before the clock edge is called the setup time; the 

D

C

Q

FIGURE B.8.5 Operation of a D fl ip-fl op with a falling-edge trigger, assuming the output is 
initially deasserted. When the clock input (C) changes from asserted to deasserted, the Q output stores 
the value of the D input. Compare this behavior to that of the clocked D latch shown in Figure B.8.3. In a 
clocked latch, the stored value and the output, Q, both change whenever C is high, as opposed to only when 
C transitions.

setup time Th e 
minimum time that the 
input to a memory device 
must be valid before the 
clock edge.
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minimum time during which it must be valid aft er the clock edge is called the hold 
time. Th us the inputs to any fl ip-fl op (or anything built using fl ip-fl ops) must be valid 
during a window that begins at time tsetup before the clock edge and ends at thold aft er 
the clock edge, as shown in Figure B.8.6. Section B.11 talks about clocking and timing 
constraints, including the propagation delay through a fl ip-fl op, in more detail.

We can use an array of D fl ip-fl ops to build a register that can hold a multibit 
datum, such as a byte or word. We used registers throughout our datapaths in 
Chapter 4.

Register Files
One structure that is central to our datapath is a register fi le. A register fi le consists 
of a set of registers that can be read and written by supplying a register number 
to be accessed. A register fi le can be implemented with a decoder for each read 
or write port and an array of registers built from D fl ip-fl ops. Because reading a 
register does not change any state, we need only supply a register number as an 
input, and the only output will be the data contained in that register. For writing a 
register we will need three inputs: a register number, the data to write, and a clock 
that controls the writing into the register. In Chapter 4, we used a register fi le that 
has two read ports and one write port. Th is register fi le is drawn as shown in Figure 
B.8.7. Th e read ports can be implemented with a pair of multiplexors, each of which 
is as wide as the number of bits in each register of the register fi le. Figure B.8.8 
shows the implementation of two register read ports for a 32-bit-wide register fi le.

Implementing the write port is slightly more complex, since we can only change 
the contents of the designated register. We can do this by using a decoder to generate 
a signal that can be used to determine which register to write. Figure B.8.9 shows 
how to implement the write port for a register fi le. It is important to remember that 
the fl ip-fl op changes state only on the clock edge. In Chapter 4, we hooked up write 
signals for the register fi le explicitly and assumed the clock shown in Figure B.8.9 
is attached implicitly.

What happens if the same register is read and written during a clock cycle? 
Because the write of the register fi le occurs on the clock edge, the register will be 

D

C

Setup time Hold time

FIGURE B.8.6 Setup and hold time requirements for a D fl ip-fl op with a falling-edge trigger. 
Th e input must be stable for a period of time before the clock edge, as well as aft er the clock edge. Th e 
minimum time the signal must be stable before the clock edge is called the setup time, while the minimum 
time the signal must be stable aft er the clock edge is called the hold time. Failure to meet these minimum 
requirements can result in a situation where the output of the fl ip-fl op may not be predictable, as described 
in Section B.11. Hold times are usually either 0 or very small and thus not a cause of worry.

hold time Th e minimum 
time during which the 
input must be valid aft er 
the clock edge.
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Read register
number 1 Read 

data 1Read register
number 2

Read 
data 2

Write
register

Write
Write
data

Register file

FIGURE B.8.7 A register fi le with two read ports and one write port has fi ve inputs and 
two outputs. Th e control input Write is shown in color.
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Register 1

. . .

Register n – 2

Register n – 1

M

u

x

Read register
number 2

M

u

x

Read data 1

Read data 2

FIGURE B.8.8 The implementation of two read ports for a register fi le with n registers 
can be done with a pair of n-to-1 multiplexors, each 32 bits wide. Th e register read number 
signal is used as the multiplexor selector signal. Figure B.8.9 shows how the write port is implemented.
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valid during the time it is read, as we saw earlier in Figure B.7.2. Th e value returned 
will be the value written in an earlier clock cycle. If we want a read to return the 
value currently being written, additional logic in the register fi le or outside of it is 
needed. Chapter 4 makes extensive use of such logic.

Specifying Sequential Logic in Verilog
To specify sequential logic in Verilog, we must understand how to generate a 
clock, how to describe when a value is written into a register, and how to specify 
sequential control. Let us start by specifying a clock. A clock is not a predefi ned 
object in Verilog; instead, we generate a clock by using the Verilog notation #n 
before a statement; this causes a delay of n simulation time steps before the execu-
tion of the statement. In most Verilog simulators, it is also possible to generate 
a clock as an external input, allowing the user to specify at simulation time the 
number of clock cycles during which to run a simulation.

Th e code in Figure B.8.10 implements a simple clock that is high or low for one 
simulation unit and then switches state. We use the delay capability and blocking 
assignment to implement the clock.

Write

0
1

n-to-2n

decoder

n – 2

n – 1

Register 0

C

D

Register 1

C

D

Register n – 2

C

D

Register n – 1

C

D

...

Register number
...

Register data

FIGURE B.8.9 The write port for a register fi le is implemented with a decoder that is 
used with the write signal to generate the C input to the registers. All three inputs (the register 
number, the data, and the write signal) will have setup and hold-time constraints that ensure that the correct 
data is written into the register fi le.
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Next, we must be able to specify the operation of an edge-triggered register. In 
Verilog, this is done by using the sensitivity list on an always block and specifying 
as a trigger either the positive or negative edge of a binary variable with the 
notation posedge or negedge, respectively. Hence, the following Verilog code 
causes register A to be written with the value b at the positive edge clock:

FIGURE B.8.10 A specifi cation of a clock.

FIGURE B.8.11 A MIPS register fi le written in behavioral Verilog. Th is register fi le writes on 
the rising clock edge.

Th roughout this chapter and the Verilog sections of Chapter 4, we will assume 
a positive edge-triggered design. Figure B.8.11 shows a Verilog specifi cation of a 
MIPS register fi le that assumes two reads and one write, with only the write being 
clocked.
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In the Verilog for the register fi le in Figure B.8.11, the output ports corresponding to 
the registers being read are assigned using a continuous assignment, but the register 
being written is assigned in an always block. Which of the following is the reason?

a. Th ere is no special reason. It was simply convenient.

b. Because Data1 and Data2 are output ports and WriteData is an input port.

c. Because reading is a combinational event, while writing is a sequential event.

 B.9 Memory Elements: SRAMs and DRAMs

Registers and register fi les provide the basic building blocks for small memories, 
but larger amounts of memory are built using either SRAMs (static random 
access memories) or DRAMs (dynamic random access memories). We fi rst discuss 
SRAMs, which are somewhat simpler, and then turn to DRAMs.

SRAMs
SRAMs are simply integrated circuits that are memory arrays with (usually) a single 
access port that can provide either a read or a write. SRAMs have a fi xed access 
time to any datum, though the read and write access characteristics oft en diff er. 
An SRAM chip has a specifi c confi guration in terms of the number of addressable 
locations, as well as the width of each addressable location. For example, a 4M � 8 
SRAM provides 4M entries, each of which is 8 bits wide. Th us it will have 22 address 
lines (since 4M � 222), an 8-bit data output line, and an 8-bit single data input line. 
As with ROMs, the number of addressable locations is oft en called the height, with 
the number of bits per unit called the width. For a variety of technical reasons, the 
newest and fastest SRAMs are typically available in narrow confi gurations: � 1 and 
� 4. Figure B.9.1 shows the input and output signals for a 2M � 16 SRAM.

Check 
Yourself

static random access 
memory (SRAM) 
A memory where data 
is stored statically (as 
in fl ip-fl ops) rather 
than dynamically (as 
in DRAM). SRAMs are 
faster than DRAMs, 
but less dense and more 
expensive per bit.

SRAM
2M � 16

Dout[15–0]

Address
21

Din[15–0]
16

Chip select

Output enable

Write enable

16

FIGURE B.9.1 A 32K � 8 SRAM showing the 21 address lines (32K � 215) and 16 data 
inputs, the 3 control lines, and the 16 data outputs.



 B.9 Memory Elements: SRAMs and DRAMs B-59

To initiate a read or write access, the Chip select signal must be made active. 
For reads, we must also activate the Output enable signal that controls whether or 
not the datum selected by the address is actually driven on the pins. Th e Output 
enable is useful for connecting multiple memories to a single-output bus and using 
Output enable to determine which memory drives the bus. Th e SRAM read access 
time is usually specifi ed as the delay from the time that Output enable is true and 
the address lines are valid until the time that the data is on the output lines. Typical 
read access times for SRAMs in 2004 varied from about 2–4 ns for the fastest CMOS 
parts, which tend to be somewhat smaller and narrower, to 8–20 ns for the typical 
largest parts, which in 2004 had more than 32 million bits of data. Th e demand for 
low-power SRAMs for consumer products and digital appliances has grown greatly 
in the past fi ve years; these SRAMs have much lower stand-by and access power, 
but usually are 5–10 times slower. Most recently, synchronous SRAMs—similar to 
the synchronous DRAMs, which we discuss in the next section—have also been 
developed.

For writes, we must supply the data to be written and the address, as well as 
signals to cause the write to occur. When both the Write enable and Chip select are 
true, the data on the data input lines is written into the cell specifi ed by the address. 
Th ere are setup-time and hold-time requirements for the address and data lines, 
just as there were for D fl ip-fl ops and latches. In addition, the Write enable signal 
is not a clock edge but a pulse with a minimum width requirement. Th e time to 
complete a write is specifi ed by the combination of the setup times, the hold times, 
and the Write enable pulse width.

Large SRAMs cannot be built in the same way we build a register fi le because, 
unlike a register fi le where a 32-to-1 multiplexor might be practical, the 64K-to-
1 multiplexor that would be needed for a 64K � 1 SRAM is totally impractical. 
Rather than use a giant multiplexor, large memories are implemented with a shared 
output line, called a bit line, which multiple memory cells in the memory array can 
assert. To allow multiple sources to drive a single line, a three-state buff er (or tristate 
buff er) is used. A three-state buff er has two inputs—a data signal and an Output 
enable—and a single output, which is in one of three states: asserted, deasserted, 
or high impedance. Th e output of a tristate buff er is equal to the data input signal, 
either asserted or deasserted, if the Output enable is asserted, and is otherwise in a 
high-impedance state that allows another three-state buff er whose Output enable is 
asserted to determine the value of a shared output.

Figure B.9.2 shows a set of three-state buff ers wired to form a multiplexor with a 
decoded input. It is critical that the Output enable of at most one of the three-state 
buff ers be asserted; otherwise, the three-state buff ers may try to set the output line 
diff erently. By using three-state buff ers in the individual cells of the SRAM, each 
cell that corresponds to a particular output can share the same output line. Th e use 
of a set of distributed three-state buff ers is a more effi  cient implementation than a 
large centralized multiplexor. Th e three-state buff ers are incorporated into the fl ip-
fl ops that form the basic cells of the SRAM. Figure B.9.3 shows how a small 4 � 2 
SRAM might be built, using D latches with an input called Enable that controls the 
three-state output.
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Th e design in Figure B.9.3 eliminates the need for an enormous multiplexor; 
however, it still requires a very large decoder and a correspondingly large number 
of word lines. For example, in a 4M � 8 SRAM, we would need a 22-to-4M decoder 
and 4M word lines (which are the lines used to enable the individual fl ip-fl ops)! 
To circumvent this problem, large memories are organized as rectangular arrays 
and use a two-step decoding process. Figure B.9.4 shows how a 4M � 8 SRAM 
might be organized internally using a two-step decode. As we will see, the two-level 
decoding process is quite important in understanding how DRAMs operate.

Recently we have seen the development of both synchronous SRAMs (SSRAMs) 
and synchronous DRAMs (SDRAMs). Th e key capability provided by synchronous 
RAMs is the ability to transfer a burst of data from a series of sequential addresses 
within an array or row. Th e burst is defi ned by a starting address, supplied in the 
usual fashion, and a burst length. Th e speed advantage of synchronous RAMs 
comes from the ability to transfer the bits in the burst without having to specify 
additional address bits. Instead, a clock is used to transfer the successive bits in the 
burst. Th e elimination of the need to specify the address for the transfers within 
the burst signifi cantly improves the rate for transferring the block of data. Because 
of this capability, synchronous SRAMs and DRAMs are rapidly becoming the 
RAMs of choice for building memory systems in computers. We discuss the use of 
synchronous DRAMs in a memory system in more detail in the next section and 
in Chapter 5.

Select 0

Data 0

Enable

OutIn

Select 1

Data 1

Enable

OutIn

Select 2

Data 2

Enable

OutIn

Select 3

Data 3

Enable

OutIn

Output

FIGURE B.9.2 Four three-state buffers are used to form a multiplexor. Only one of the four 
Select inputs can be asserted. A three-state buff er with a deasserted Output enable has a high-impedance 
output that allows a three-state buff er whose Output enable is asserted to drive the shared output line.
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FIGURE B.9.3 The basic structure of a 4 � 2 SRAM consists of a decoder that selects which pair of cells to activate. 
Th e activated cells use a three-state output connected to the vertical bit lines that supply the requested data. Th e address that selects the cell is 
sent on one of a set of horizontal address lines, called word lines. For simplicity, the Output enable and Chip select signals have been omitted, 
but they could easily be added with a few AND gates.
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DRAMs
In a static RAM (SRAM), the value stored in a cell is kept on a pair of inverting gates, 
and as long as power is applied, the value can be kept indefi nitely. In a dynamic 
RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor. A single 
transistor is then used to access this stored charge, either to read the value or to 
overwrite the charge stored there. Because DRAMs use only a single transistor per 
bit of storage, they are much denser and cheaper per bit. By comparison, SRAMs 
require four to six transistors per bit. Because DRAMs store the charge on a 
capacitor, it cannot be kept indefi nitely and must periodically be refreshed. Th at is 
why this memory structure is called dynamic, as opposed to the static storage in a 
SRAM cell.

To refresh the cell, we merely read its contents and write it back. Th e charge can 
be kept for several milliseconds, which might correspond to close to a million clock 
cycles. Today, single-chip memory controllers oft en handle the refresh function 
independently of the processor. If every bit had to be read out of the DRAM and 
then written back individually, with large DRAMs containing multiple megabytes, 
we would constantly be refreshing the DRAM, leaving no time for accessing it. 
Fortunately, DRAMs also use a two-level decoding structure, and this allows us 
to refresh an entire row (which shares a word line) with a read cycle followed 
immediately by a write cycle. Typically, refresh operations consume 1% to 2% of 
the active cycles of the DRAM, leaving the remaining 98% to 99% of the cycles 
available for reading and writing data.

Elaboration: How does a DRAM read and write the signal stored in a cell? The 
transistor inside the cell is a switch, called a pass transistor, that allows the value stored 
on the capacitor to be accessed for either reading or writing. Figure B.9.5 shows how 
the single-transistor cell looks. The pass transistor acts like a switch: when the signal 
on the word line is asserted, the switch is closed, connecting the capacitor to the bit 
line. If the operation is a write, then the value to be written is placed on the bit line. If 
the value is a 1, the capacitor will be charged. If the value is a 0, then the capacitor will 
be discharged. Reading is slightly more complex, since the DRAM must detect a very 
small charge stored in the capacitor. Before activating the word line for a read, the bit 
line is charged to the voltage that is halfway between the low and high voltage. Then, by 
activating the word line, the charge on the capacitor is read out onto the bit line. This 
causes the bit line to move slightly toward the high or low direction, and this change is 
detected with a sense amplifi er, which can detect small changes in voltage.
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Word line

Pass transistor

Capacitor

Bit line

FIGURE B.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell 
contents and a transistor used to access the cell.

Address[10–0]

Row
decoder

11-to-2048

2048 � 2048
array

Column latches

Mux

Dout

FIGURE B.9.6 A 4M � 1 DRAM is built with a 2048 � 2048 array. Th e row access uses 11 bits to 
select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from these 2048 
latches. Th e RAS and CAS signals control whether the address lines are sent to the row decoder or column 
multiplexor.
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DRAMs use a two-level decoder consisting of a row access followed by a column 
access, as shown in Figure B.9.6. Th e row access chooses one of a number of rows 
and activates the corresponding word line. Th e contents of all the columns in the 
active row are then stored in a set of latches. Th e column access then selects the 
data from the column latches. To save pins and reduce the package cost, the same 
address lines are used for both the row and column address; a pair of signals called 
RAS (Row Access Strobe) and CAS (Column Access Strobe) are used to signal the 
DRAM that either a row or column address is being supplied. Refresh is performed 
by simply reading the columns into the column latches and then writing the same 
values back. Th us, an entire row is refreshed in one cycle. Th e two-level addressing 
scheme, combined with the internal circuitry, makes DRAM access times much 
longer (by a factor of 5–10) than SRAM access times. In 2004, typical DRAM access 
times ranged from 45 to 65 ns; 256 Mbit DRAMs are in full production, and the 
fi rst customer samples of 1 GB DRAMs became available in the fi rst quarter of 
2004. Th e much lower cost per bit makes DRAM the choice for main memory, 
while the faster access time makes SRAM the choice for caches.

You might observe that a 64M � 4 DRAM actually accesses 8K bits on every 
row access and then throws away all but 4 of those during a column access. DRAM 
designers have used the internal structure of the DRAM as a way to provide 
higher bandwidth out of a DRAM. Th is is done by allowing the column address to 
change without changing the row address, resulting in an access to other bits in the 
column latches. To make this process faster and more precise, the address inputs 
were clocked, leading to the dominant form of DRAM in use today: synchronous 
DRAM or SDRAM.

Since about 1999, SDRAMs have been the memory chip of choice for most 
cache-based main memory systems. SDRAMs provide fast access to a series of bits 
within a row by sequentially transferring all the bits in a burst under the control 
of a clock signal. In 2004, DDRRAMs (Double Data Rate RAMs), which are called 
double data rate because they transfer data on both the rising and falling edge of 
an externally supplied clock, were the most heavily used form of SDRAMs. As we 
discuss in Chapter 5, these high-speed transfers can be used to boost the bandwidth 
available out of main memory to match the needs of the processor and caches.

Error Correction
Because of the potential for data corruption in large memories, most computer 
systems use some sort of error-checking code to detect possible corruption of data. 
One simple code that is heavily used is a parity code. In a parity code the number 
of 1s in a word is counted; the word has odd parity if the number of 1s is odd and 
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even otherwise. When a word is written into memory, the parity bit is also written 
(1 for odd, 0 for even). Th en, when the word is read out, the parity bit is read and 
checked. If the parity of the memory word and the stored parity bit do not match, 
an error has occurred.

A 1-bit parity scheme can detect at most 1 bit of error in a data item; if there 
are 2 bits of error, then a 1-bit parity scheme will not detect any errors, since the 
parity will match the data with two errors. (Actually, a 1-bit parity scheme can 
detect any odd number of errors; however, the probability of having three errors is 
much lower than the probability of having two, so, in practice, a 1-bit parity code is 
limited to detecting a single bit of error.) Of course, a parity code cannot tell which 
bit in a data item is in error.

A 1-bit parity scheme is an error detection code; there are also error correction 
codes (ECC) that will detect and allow correction of an error. For large main 
memories, many systems use a code that allows the detection of up to 2 bits of error 
and the correction of a single bit of error. Th ese codes work by using more bits to 
encode the data; for example, the typical codes used for main memories require 7 
or 8 bits for every 128 bits of data.

Elaboration: A 1-bit parity code is a distance-2 code, which means that if we look 
at the data plus the parity bit, no 1-bit change is suffi cient to generate another legal 
combination of the data plus parity. For example, if we change a bit in the data, the parity 
will be wrong, and vice versa. Of course, if we change 2 bits (any 2 data bits or 1 data 
bit and the parity bit), the parity will match the data and the error cannot be detected. 
Hence, there is a distance of two between legal combinations of parity and data.

To detect more than one error or correct an error, we need a distance-3 code, which 
has the property that any legal combination of the bits in the error correction code and 
the data has at least 3 bits differing from any other combination. Suppose we have such 
a code and we have one error in the data. In that case, the code plus data will be one bit 
away from a legal combination, and we can correct the data to that legal combination. 
If we have two errors, we can recognize that there is an error, but we cannot correct 
the errors. Let’s look at an example. Here are the data words and a distance-3 error 
correction code for a 4-bit data item.

Data Word Code bits Data Code bits

0000 000 1000 111

0001 011 1001 100

0010 101 1010 010

0011 110 1011 001

0100 110 1100 001

0101 101 1101 010

0110 011 1110 100

0111 000 1111 111

error detection code 
A code that enables the 
detection of an error in 
data, but not the precise 
location and, hence, 
correction of the error.



 B.10 Finite-State Machines B-67

To see how this works, let’s choose a data word, say 0110, whose error correction 
code is 011. Here are the four 1-bit error possibilities for this data: 1110, 0010, 0100, 
and 0111. Now look at the data item with the same code (011), which is the entry with 
the value 0001. If the error correction decoder received one of the four possible data 
words with an error, it would have to choose between correcting to 0110 or 0001. While 
these four words with error have only one bit changed from the correct pattern of 0110, 
they each have two bits that are different from the alternate correction of 0001. Hence, 
the error correction mechanism can easily choose to correct to 0110, since a single 
error is a much higher probability. To see that two errors can be detected, simply notice 
that all the combinations with two bits changed have a different code. The one reuse of 
the same code is with three bits different, but if we correct a 2-bit error, we will correct 
to the wrong value, since the decoder will assume that only a single error has occurred. 
If we want to correct 1-bit errors and detect, but not erroneously correct, 2-bit errors, we 
need a distance-4 code.

Although we distinguished between the code and data in our explanation, in truth, 
an error correction code treats the combination of code and data as a single word in 
a larger code (7 bits in this example). Thus, it deals with errors in the code bits in the 
same fashion as errors in the data bits.

While the above example requires n � 1 bits for n bits of data, the number of bits 
required grows slowly, so that for a distance-3 code, a 64-bit word needs 7 bits and a 
128-bit word needs 8. This type of code is called a Hamming code, after R. Hamming, 
who described a method for creating such codes.

 B.10 Finite-State Machines

As we saw earlier, digital logic systems can be classifi ed as combinational or 
sequential. Sequential systems contain state stored in memory elements internal to 
the system. Th eir behavior depends both on the set of inputs supplied and on the 
contents of the internal memory, or state of the system. Th us, a sequential system 
cannot be described with a truth table. Instead, a sequential system is described as 
a fi nite-state machine (or oft en just state machine). A fi nite-state machine has a set 
of states and two functions, called the next-state function and the output function. 
Th e set of states corresponds to all the possible values of the internal storage. 
Th us, if there are n bits of storage, there are 2n states. Th e next-state function is a 
combinational function that, given the inputs and the current state, determines the 
next state of the system. Th e output function produces a set of outputs from the 
current state and the inputs. Figure B.10.1 shows this diagrammatically.

Th e state machines we discuss here and in Chapter 4 are synchronous. Th is means 
that the state changes together with the clock cycle, and a new state is computed 
once every clock. Th us, the state elements are updated only on the clock edge. We 
use this methodology in this section and throughout Chapter 4, and we do not 

fi nite-state machine 
A sequential logic 
function consisting of a 
set of inputs and out puts, 
a next-state function that 
maps the current state and 
the inputs to a new state, 
and an output function 
that maps the current 
state and possibly the 
inputs to a set of asserted 
outputs.

next-state function 
A combinational function 
that, given the inputs 
and the current state, 
determines the next state 
of a fi nite-state machine.
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usually show the clock explicitly. We use state machines throughout Chapter 4 to 
control the execution of the processor and the actions of the datapath.

To illustrate how a fi nite-state machine operates and is designed, let’s look at a 
simple and classic example: controlling a traffi  c light. (Chapters 4 and 5 contain more 
detailed examples of using fi nite-state machines to control processor execution.) When 
a fi nite-state machine is used as a controller, the output function is oft en restricted to 
depend on just the current state. Such a fi nite-state machine is called a Moore machine. 
Th is is the type of fi nite-state machine we use throughout this book. If the output 
function can depend on both the current state and the current input, the machine 
is called a Mealy machine. Th ese two machines are equivalent in their capabilities, 
and one can be turned into the other mechanically. Th e basic advantage of a Moore 
machine is that it can be faster, while a Mealy machine may be smaller, since it may 
need fewer states than a Moore machine. In Chapter 5, we discuss the diff erences in 
more detail and show a Verilog version of fi nite-state control using a Mealy machine.

Our example concerns the control of a traffi  c light at an intersection of a north-
south route and an east-west route. For simplicity, we will consider only the green 
and red lights; adding the yellow light is left  for an exercise. We want the lights to 
cycle no faster than 30 seconds in each direction, so we will use a 0.033 Hz clock 
so that the machine cycles between states at no faster than once every 30 seconds. 
Th ere are two output signals:

Inputs

Current state

Outputs

Clock

Next-state
function

Output
function

Next
state

FIGURE B.10.1 A state machine consists of internal storage that contains the state and 
two combinational functions: the next-state function and the output function. Oft en, the 
output function is restricted to take only the current state as its input; this does not change the capability of 
a sequential machine, but does aff ect its internals.
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■ NSlite: When this signal is asserted, the light on the north-south road is 
green; when this signal is deasserted, the light on the north-south road is red.

■ EWlite: When this signal is asserted, the light on the east-west road is green; 
when this signal is deasserted, the light on the east-west road is red.

In addition, there are two inputs:

■ NScar: Indicates that a car is over the detector placed in the roadbed in front 
of the light on the north-south road (going north or south).

■ EWcar: Indicates that a car is over the detector placed in the roadbed in front 
of the light on the east-west road (going east or west).

Th e traffi  c light should change from one direction to the other only if a car is 
waiting to go in the other direction; otherwise, the light should continue to show 
green in the same direction as the last car that crossed the intersection.

To implement this simple traffi  c light we need two states:
■ NSgreen: Th e traffi  c light is green in the north-south direction.

■ EWgreen: Th e traffi  c light is green in the east-west direction.

We also need to create the next-state function, which can be specifi ed with a table:

 
Inputs

NScar EWcar Next state

NSgreen 0 0 NSgreen

NSgreen 0 1 EWgreen

NSgreen 1 0 NSgreen

NSgreen 1 1 EWgreen

EWgreen 0 0 EWgreen

EWgreen 0 1 EWgreen

EWgreen 1 0 NSgreen

EWgreen 1 1 NSgreen

Notice that we didn’t specify in the algorithm what happens when a car 
approaches from both directions. In this case, the next-state function given above 
changes the state to ensure that a steady stream of cars from one direction cannot 
lock out a car in the other direction.

Th e fi nite-state machine is completed by specifying the output function.
Before we examine how to implement this fi nite-state machine, let’s look at a 

graphical representation, which is oft en used for fi nite-state machines. In this 
representation, nodes are used to indicate states. Inside the node we place a list of 
the outputs that are active for that state. Directed arcs are used to show the next-state
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w

Outputs

NSlite EWlite

NSgreen 1 0

EWgreen 0 1

function, with labels on the arcs specifying the input condition as logic functions. 
Figure B.10.2 shows the graphical representation for this fi nite-state machine.

NSlite EWlite
NScar

NSgreen EWgreen

EWcar

EWcar NScar

FIGURE B.10.2 The graphical representation of the two-state traffi c light controller. We 
simplifi ed the logic functions on the state transitions. For example, the transition from NSgreen to EWgreen 
in the next-state table is ( ) ( )NScar EWcar NScar EWcar , which is equivalent to EWcar.

A fi nite-state machine can be implemented with a register to hold the current 
state and a block of combinational logic that computes the next-state function and 
the output function. Figure B.10.3 shows how a fi nite-state machine with 4 bits of 
state, and thus up to 16 states, might look. To implement the fi nite-state machine 
in this way, we must fi rst assign state numbers to the states. Th is process is called 
state assignment. For example, we could assign NSgreen to state 0 and EWgreen to 
state 1. Th e state register would contain a single bit. Th e next-state function would 
be given as

NextState CurrentState EWcar CurrentState NScar( ) ( )
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where CurrentState is the contents of the state register (0 or 1) and NextState is the 
output of the next-state function that will be written into the state register at the 
end of the clock cycle. Th e output function is also simple:

NSlite CurrentState
EWlite CurrentState

�
�

Th e combinational logic block is oft en implemented using structured logic, 
such as a PLA. A PLA can be constructed automatically from the next-state and 
output function tables. In fact, there are computer-aided design (CAD) programs 

Combinational logic

Outputs

State register

Inputs

Next state

FIGURE B.10.3 A fi nite-state machine is implemented with a state register that holds 
the current state and a combinational logic block to compute the next state and output 
functions. Th e latter two functions are oft en split apart and implemented with two separate blocks of logic, 
which may require fewer gates.

that take either a graphical or textual representation of a fi nite-state machine and 
produce an optimized implementation automatically. In Chapters 4 and 5, fi nite-
state machines were used to control processor execution.  Appendix D discusses 
the detailed implementation of these controllers with both PLAs and ROMs.

To show how we might write the control in Verilog, Figure B.10.4 shows a 
Verilog version designed for synthesis. Note that for this simple control function, 
a Mealy machine is not useful, but this style of specifi cation is used in Chapter 5 to 
implement a control function that is a Mealy machine and has fewer states than the 
Moore machine controller.
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What is the smallest number of states in a Moore machine for which a Mealy 
machine could have fewer states?

a. Two, since there could be a one-state Mealy machine that might do the same 
thing.

b. Th ree, since there could be a simple Moore machine that went to one of two 
diff erent states and always returned to the original state aft er that. For such a 
simple machine, a two-state Mealy machine is possible.

c. You need at least four states to exploit the advantages of a Mealy machine 
over a Moore machine.

 B.11 Timing Methodologies

Th roughout this appendix and in the rest of the text, we use an edge-triggered 
timing methodology. Th is timing methodology has an advantage in that it is 
simpler to explain and understand than a level-triggered methodology. In this 
section, we explain this timing methodology in a little more detail and also 
introduce level-sensitive clocking. We conclude this section by briefl y discussing 

Check 
Yourself

FIGURE B.10.4 A Verilog version of the traffi c light controller.
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the issue of asynchronous signals and synchronizers, an important problem for 
digital designers.

Th e purpose of this section is to introduce the major concepts in clocking 
methodology. Th e section makes some important simplifying assumptions; if you 
are interested in understanding timing methodology in more detail, consult one of 
the references listed at the end of this appendix.

We use an edge-triggered timing methodology because it is simpler to explain 
and has fewer rules required for correctness. In particular, if we assume that all 
clocks arrive at the same time, we are guaranteed that a system with edge-triggered 
registers between blocks of combinational logic can operate correctly without races 
if we simply make the clock long enough. A race occurs when the contents of a 
state element depend on the relative speed of diff erent logic elements. In an edge-
triggered design, the clock cycle must be long enough to accommodate the path 
from one fl ip-fl op through the combinational logic to another fl ip-fl op where it 
must satisfy the setup-time requirement. Figure B.11.1 shows this requirement for 
a system using rising edge-triggered fl ip-fl ops. In such a system the clock period 
(or cycle time) must be at least as large as

t t tprop combinational setup� �

for the worst-case values of these three delays, which are defi ned as follows:

■ tprop is the time for a signal to propagate through a fl ip-fl op; it is also sometimes 
called clock-to-Q.

■ tcombinational is the longest delay for any combinational logic (which by defi nition 
is surrounded by two fl ip-fl ops).

■ tsetup is the time before the rising clock edge that the input to a fl ip-fl op must 
be valid.

Flip-flop

D

C

Q
Combinational

logic block Flip-flop

D

C

Q

tprop tcombinational tsetup

FIGURE B.11.1 In an edge-triggered design, the clock must be long enough to allow 
signals to be valid for the required setup time before the next clock edge. Th e time for a 
fl ip-fl op input to propagate to the fl ip-fl ip outputs is tprop; the signal then takes tcombinational to travel through the 
combinational logic and must be valid tsetup before the next clock edge.
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We make one simplifying assumption: the hold-time requirements are satisfi ed, 
which is almost never an issue with modern logic.

One additional complication that must be considered in edge-triggered designs 
is clock skew. Clock skew is the diff erence in absolute time between when two state 
elements see a clock edge. Clock skew arises because the clock signal will oft en 
use two diff erent paths, with slightly diff erent delays, to reach two diff erent state 
elements. If the clock skew is large enough, it may be possible for a state element to 
change and cause the input to another fl ip-fl op to change before the clock edge is 
seen by the second fl ip-fl op.

Figure B.11.2 illustrates this problem, ignoring setup time and fl ip-fl op 
propagation delay. To avoid incorrect operation, the clock period is increased to 
allow for the maximum clock skew. Th us, the clock period must be longer than

t t t tprop combinational setup skew� � �

With this constraint on the clock period, the two clocks can also arrive in the 
opposite order, with the second clock arriving tskew earlier, and the circuit will work 

clock skew Th e 
diff erence in absolute time 
between the times when 
two state elements see a 
clock edge.

Flip-flop

D

C

Q
Combinational
logic block with
delay time of Δ

Flip-flop

D

C

Q

Clock arrives
at time t

Clock arrives
after t + Δ

FIGURE B.11.2 Illustration of how clock skew can cause a race, leading to incorrect operation. Because of the diff erence 
in when the two fl ip-fl ops see the clock, the signal that is stored into the fi rst fl ip-fl op can race forward and change the input to the second fl ip-
fl op before the clock arrives at the second fl ip-fl op.

correctly. Designers reduce clock-skew problems by carefully routing the clock 
signal to minimize the diff erence in arrival times. In addition, smart designers also 
provide some margin by making the clock a little longer than the minimum; this 
allows for variation in components as well as in the power supply. Since clock skew 
can also aff ect the hold-time requirements, minimizing the size of the clock skew 
is important.

Edge-triggered designs have two drawbacks: they require extra logic and they 
may sometimes be slower. Just looking at the D fl ip-fl op versus the level-sensitive 
latch that we used to construct the fl ip-fl op shows that edge-triggered design 
requires more logic. An alternative is to use level-sensitive clocking. Because state 
changes in a level-sensitive methodology are not instantaneous, a level-sensitive 
scheme is slightly more complex and requires additional care to make it operate 
correctly.

level-sensitive 
clocking A timing 
methodology in which 
state changes occur 
at either high or low 
clock levels but are not 
instantaneous as such 
changes are in edge-
triggered designs.
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Level-Sensitive Timing
In level-sensitive timing, the state changes occur at either high or low levels, but 
they are not instantaneous as they are in an edge-triggered methodology. Because of 
the noninstantaneous change in state, races can easily occur. To ensure that a level-
sensitive design will also work correctly if the clock is slow enough, designers use two-
phase clocking. Two-phase clocking is a scheme that makes use of two nonoverlapping 
clock signals. Since the two clocks, typically called φ1 and φ2, are nonoverlapping, at 
most one of the clock signals is high at any given time, as Figure B.11.3 shows. We 
can use these two clocks to build a system that contains level-sensitive latches but is 
free from any race conditions, just as the edge-triggered designs were.

Nonoverlapping
periods

Φ1

Φ2

FIGURE B.11.3 A two-phase clocking scheme showing the cycle of each clock and the 
nonoverlapping periods.

Latch

D

C

Q
Combinational

logic blockΦ1

Latch

D

C

Q
Combinational

logic blockΦ2

Latch

D

C
Φ1

FIGURE B.11.4 A two-phase timing scheme with alternating latches showing how the system operates on both clock 
phases. Th e output of a latch is stable on the opposite phase from its C input. Th us, the fi rst block of combinational inputs has a stable input 
during φ2, and its output is latched by φ2. Th e second (rightmost) combinational block operates in just the opposite fashion, with stable inputs 
during φ1. Th us, the delays through the combinational blocks determine the minimum time that the respective clocks must be asserted. Th e 
size of the nonoverlapping period is determined by the maximum clock skew and the minimum delay of any logic block.

One simple way to design such a system is to alternate the use of latches that are 
open on φ1 with latches that are open on φ2. Because both clocks are not asserted 
at the same time, a race cannot occur. If the input to a combinational block is a φ1 
clock, then its output is latched by a φ2 clock, which is open only during φ2 when 
the input latch is closed and hence has a valid output. Figure B.11.4 shows how 
a system with two-phase timing and alternating latches operates. As in an edge-
triggered design, we must pay attention to clock skew, particularly between the two 



B-76 Appendix B The Basics of Logic Design

clock phases. By increasing the amount of nonoverlap between the two phases, we 
can reduce the potential margin of error. Th us, the system is guaranteed to operate 
correctly if each phase is long enough and if there is large enough nonoverlap 
between the phases.

Asynchronous Inputs and Synchronizers
By using a single clock or a two-phase clock, we can eliminate race conditions 
if clock-skew problems are avoided. Unfortunately, it is impractical to make an 
entire system function with a single clock and still keep the clock skew small. 
While the CPU may use a single clock, I/O devices will probably have their own 
clock. An asynchronous device may communicate with the CPU through a series 
of handshaking steps. To translate the asynchronous input to a synchronous signal 
that can be used to change the state of a system, we need to use a synchronizer, 
whose inputs are the asynchronous signal and a clock and whose output is a signal 
synchronous with the input clock.

Our fi rst attempt to build a synchronizer uses an edge-triggered D fl ip-fl op, 
whose D input is the asynchronous signal, as Figure B.11.5 shows. Because we 
communicate with a handshaking protocol, it does not matter whether we detect 
the asserted state of the asynchronous signal on one clock or the next, since the 
signal will be held asserted until it is acknowledged. Th us, you might think that this 
simple structure is enough to sample the signal accurately, which would be the case 
except for one small problem.

Flip-flop
D

C

Q

Clock

Asynchronous input Synchronous output

FIGURE B.11.5 A synchronizer built from a D fl ip-fl op is used to sample an asynchronous 
signal to produce an output that is synchronous with the clock. Th is “synchronizer” will not 
work properly!

Th e problem is a situation called metastability. Suppose the asynchronous 
signal is transitioning between high and low when the clock edge arrives. Clearly, 
it is not possible to know whether the signal will be latched as high or low. Th at 
problem we could live with. Unfortunately, the situation is worse: when the signal 
that is sampled is not stable for the required setup and hold times, the fl ip-fl op may 
go into a metastable state. In such a state, the output will not have a legitimate high 
or low value, but will be in the indeterminate region between them. Furthermore, 

metastability 
A situation that occurs if 
a signal is sampled when 
it is not stable for the 
required setup and hold 
times, possibly causing 
the sampled value to 
fall in the indeterminate 
region between a high and 
low value.
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the fl ip-fl op is not guaranteed to exit this state in any bounded amount of time. 
Some logic blocks that look at the output of the fl ip-fl op may see its output as 0, 
while others may see it as 1. Th is situation is called a synchronizer failure.

In a purely synchronous system, synchronizer failure can be avoided by ensuring 
that the setup and hold times for a fl ip-fl op or latch are always met, but this is 
impossible when the input is asynchronous. Instead, the only solution possible is to 
wait long enough before looking at the output of the fl ip-fl op to ensure that its output 
is stable, and that it has exited the metastable state, if it ever entered it. How long is 
long enough? Well, the probability that the fl ip-fl op will stay in the metastable state 
decreases exponentially, so aft er a very short time the probability that the fl ip-fl op 
is in the metastable state is very low; however, the probability never reaches 0! So 
designers wait long enough such that the probability of a synchronizer failure is very 
low, and the time between such failures will be years or even thousands of years.

For most fl ip-fl op designs, waiting for a period that is several times longer than 
the setup time makes the probability of synchronization failure very low. If the 
clock rate is longer than the potential metastability period (which is likely), then a 
safe synchronizer can be built with two D fl ip-fl ops, as Figure B.11.6 shows. If you 
are interested in reading more about these problems, look into the references.

synchronizer failure 
A situation in which 
a fl ip-fl op enters a 
metastable state and 
where some logic blocks 
reading the output of the 
fl ip-fl op see a 0 while 
others see a 1.

Flip-flop
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Flip-flop
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FIGURE B.11.6 This synchronizer will work correctly if the period of metastability that 
we wish to guard against is less than the clock period. Although the output of the fi rst fl ip-fl op 
may be metastable, it will not be seen by any other logic element until the second clock, when the second D 
fl ip-fl op samples the signal, which by that time should no longer be in a metastable state.

Suppose we have a design with very large clock skew—longer than the register 
propagation time. Is it always possible for such a design to slow the clock down 
enough to guarantee that the logic operates properly?

a. Yes, if the clock is slow enough the signals can always propagate and the 
design will work, even if the skew is very large.

b. No, since it is possible that two registers see the same clock edge far enough 
apart that a register is triggered, and its outputs propagated and seen by a 
second register with the same clock edge.

Check 
Yourself

propagation time Th e 
time required for an input 
to a fl ip-fl op to propagate 
to the outputs of the fl ip-
fl op.
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 B.12 Field Programmable Devices

Within a custom or semicustom chip, designers can make use of the fl exibility of the 
underlying structure to easily implement combinational or sequential logic. How 
can a designer who does not want to use a custom or semicustom IC implement 
a complex piece of logic taking advantage of the very high levels of integration 
available? Th e most popular component used for sequential and combinational 
logic design outside of a custom or semicustom IC is a fi eld programmable 
device (FPD). An FPD is an integrated circuit containing combinational logic, and 
possibly memory devices, that are confi gurable by the end user.

FPDs generally fall into two camps: programmable logic devices (PLDs), 
which are purely combinational, and fi eld programmable gate arrays (FPGAs), 
which provide both combinational logic and fl ip-fl ops. PLDs consist of two forms: 
simple PLDs (SPLDs), which are usually either a PLA or a programmable array 
logic (PAL), and complex PLDs, which allow more than one logic block as well as 
confi gurable interconnections among blocks. When we speak of a PLA in a PLD, 
we mean a PLA with user programmable and-plane and or-plane. A PAL is like a 
PLA, except that the or-plane is fi xed.

Before we discuss FPGAs, it is useful to talk about how FPDs are confi gured. 
Confi guration is essentially a question of where to make or break connections. 
Gate and register structures are static, but the connections can be confi gured. 
Notice that by confi guring the connections, a user determines what logic functions 
are implemented. Consider a confi gurable PLA: by determining where the 
connections are in the and-plane and the or-plane, the user dictates what logical 
functions are computed in the PLA. Connections in FPDs are either permanent 
or reconfi gurable. Permanent connections involve the creation or destruction of 
a connection between two wires. Current FPLDs all use an antifuse technology, 
which allows a connection to be built at programming time that is then permanent. 
Th e other way to confi gure CMOS FPLDs is through a SRAM. Th e SRAM is 
downloaded at power-on, and the contents control the setting of switches, which 
in turn determines which metal lines are connected. Th e use of SRAM control 
has the advantage in that the FPD can be reconfi gured by changing the contents 
of the SRAM. Th e disadvantages of the SRAM-based control are two fold: the 
confi guration is volatile and must be reloaded on power-on, and the use of active 
transistors for switches slightly increases the resistance of such connections.

FPGAs include both logic and memory devices, usually structured in a two-
dimensional array with the corridors dividing the rows and columns used for 

fi eld programmable 
devices (FPD) 
An integrated circuit 
containing combinational 
logic, and possibly 
memory devices, that are 
confi gurable by the end 
user.

programmable logic 
device (PLD) 
An integrated circuit 
containing combinational 
logic whose function is 
confi gured by the end 
user.

fi eld programmable 
gate array (FPGA) 
A confi gurable integrated 
circuit containing both 
combinational logic 
blocks and fl ip-fl ops.

simple programmable 
logic device 
(SPLD) Programmable 
logic device, usually 
containing either a single 
PAL or PLA.

programmable array 
logic (PAL) Contains a 
programmable and-plane 
followed by a fi xed or-
plane.

antifuse A structure in 
an integrated circuit that 
when programmed makes 
a permanent connection 
between two wires.
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global interconnect between the cells of the array. Each cell is a combination of 
gates and fl ip-fl ops that can be programmed to perform some specifi c function. 
Because they are basically small, programmable RAMs, they are also called lookup 
tables (LUTs). Newer FPGAs contain more sophisticated building blocks such as 
pieces of adders and RAM blocks that can be used to build register fi les. A few large 
FPGAs even contain 32-bit RISC cores!

In addition to programming each cell to perform a specifi c function, the 
interconnections between cells are also programmable, allowing modern FPGAs 
with hundreds of blocks and hundreds of thousands of gates to be used for complex 
logic functions. Interconnect is a major challenge in custom chips, and this is even 
more true for FPGAs, because cells do not represent natural units of decomposition 
for structured design. In many FPGAs, 90% of the area is reserved for interconnect 
and only 10% is for logic and memory blocks.

Just as you cannot design a custom or semicustom chip without CAD tools, you 
also need them for FPDs. Logic synthesis tools have been developed that target 
FPGAs, allowing the generation of a system using FPGAs from structural and 
behavioral Verilog.

 B.13 Concluding Remarks

Th is appendix introduces the basics of logic design. If you have digested the 
material in this appendix, you are ready to tackle the material in Chapters 4 and 5, 
both of which use the concepts discussed in this appendix extensively.

lookup tables (LUTs) 
In a fi eld programmable 
device, the name given 
to the cells because they 
consist of a small amount 
of logic and RAM.

Further Reading
Th ere are a number of good texts on logic design. Here are some you might like to 
look into.

Ciletti, M. D. [2002]. Advanced Digital Design with the Verilog HDL, Englewood 
Cliff s, NJ: Prentice Hall.
A thorough book on logic design using Verilog.

Katz, R. H. [2004]. Modern Logic Design, 2nd ed., Reading, MA: Addison-Wesley.
A general text on logic design.

Wakerly, J. F. [2000]. Digital Design: Principles and Practices, 3rd ed., Englewood 
Cliff s, NJ: Prentice Hall.
A general text on logic design.
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 B.14 Exercises

B.1 [10] �§B.2� In addition to the basic laws we discussed in this section, there 
are two important theorems, called DeMorgan’s theorems:

A B A B and A B A B

Prove DeMorgan’s theorems with a truth table of the form

A B A B A + B A ˙ B A ˙ B A + B

0 0 1 1 1 1 1 1

0 1 1 0 0 0 1 1

1 0 0 1 0 0 1 1

1 1 0 0 0 0 0 0

B.2 [15] �§B.2� Prove that the two equations for E in the example starting on 
page B-7 are equivalent by using DeMorgan’s theorems and the axioms shown on 
page B-7.

B.3 [10] �§B.2� Show that there are 2n entries in a truth table for a function with 
n inputs.

B.4 [10] �§B.2� One logic function that is used for a variety of purposes 
(including within adders and to compute parity) is exclusive OR. Th e output of a 
two-input exclusive OR function is true only if exactly one of the inputs is true. 
Show the truth table for a two-input exclusive OR function and implement this 
function using AND gates, OR gates, and inverters.

B.5 [15] �§B.2� Prove that the NOR gate is universal by showing how to build 
the AND, OR, and NOT functions using a two-input NOR gate.

B.6 [15] �§B.2� Prove that the NAND gate is universal by showing how to build 
the AND, OR, and NOT functions using a two-input NAND gate.

B.7 [10] �§§B.2, B.3� Construct the truth table for a four-input odd-parity 
function (see page B-65 for a description of parity).

B.8 [10] �§§B.2, B.3� Implement the four-input odd-parity function with AND 
and OR gates using bubbled inputs and outputs.

B.9 [10] �§§B.2, B.3� Implement the four-input odd-parity function with a PLA.
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B.10 [15] �§§B.2, B.3� Prove that a two-input multiplexor is also universal by 
showing how to build the NAND (or NOR) gate using a multiplexor.

B.11 [5] �§§4.2, B.2, B.3� Assume that X consists of 3 bits, x2 x1 x0. Write four 
logic functions that are true if and only if

■ X contains only one 0

■ X contains an even number of 0s

■ X when interpreted as an unsigned binary number is less than 4

■ X when interpreted as a signed (two’s complement) number is negative

B.12 [5] �§§4.2, B.2, B.3� Implement the four functions described in Exercise 
B.11 using a PLA.

B.13 [5] �§§4.2, B.2, B.3� Assume that X consists of 3 bits, x2 x1 x0, and Y 
consists of 3 bits, y2 y1 y0. Write logic functions that are true if and only if

■ X � Y, where X and Y are thought of as unsigned binary numbers

■ X � Y, where X and Y are thought of as signed (two’s complement) numbers

■ X � Y

Use a hierarchical approach that can be extended to larger numbers of bits. Show 
how can you extend it to 6-bit comparison.

B.14 [5] �§§B.2, B.3� Implement a switching network that has two data inputs 
(A and B), two data outputs (C and D), and a control input (S). If S equals 1, the 
network is in pass-through mode, and C should equal A, and D should equal B. If 
S equals 0, the network is in crossing mode, and C should equal B, and D should 
equal A.

B.15 [15] �§§B.2, B.3� Derive the product-of-sums representation for E shown 
on page B-11 starting with the sum-of-products representation. You will need to 
use DeMorgan’s theorems.

B.16 [30] �§§B.2, B.3� Give an algorithm for constructing the sum-of- products 
representation for an arbitrary logic equation consisting of AND, OR, and NOT. 
Th e algorithm should be recursive and should not construct the truth table in the 
process.

B.17 [5] �§§B.2, B.3� Show a truth table for a multiplexor (inputs A, B, and S; 
output C ), using don’t cares to simplify the table where possible.
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B.18 [5] �§B.3� What is the function implemented by the following Verilog 
modules:

module FUNC1 (I0, I1, S, out);
 input I0, I1;
 input S;
 output out;
 out = S? I1: I0;
endmodule

module FUNC2 (out,ctl,clk,reset);
 output [7:0] out;
 input ctl, clk, reset;
 reg [7:0] out;
 always @(posedge clk)
 if (reset) begin
  out <= 8’b0 ;
 end
 else if (ctl) begin
  out <= out + 1;
 end
 else begin
  out <= out - 1;
 end
endmodule

B.19 [5] �§B.4� Th e Verilog code on page B-53 is for a D fl ip-fl op. Show the 
Verilog code for a D latch.

B.20 [10] �§§B.3, B.4� Write down a Verilog module implementation of a 2-to-4 
decoder (and/or encoder).

B.21 [10] �§§B.3, B.4� Given the following logic diagram for an accumulator, 
write down the Verilog module implementation of it. Assume a positive edge-
triggered register and asynchronous Rst.
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B.22 [20] �§§B3, B.4, B.5� Section 3.3 presents basic operation and possible 
implementations of multipliers. A basic unit of such implementations is a shift -
and-add unit. Show a Verilog implementation for this unit. Show how can you use 
this unit to build a 32-bit multiplier.

B.23 [20] �§§B3, B.4, B.5� Repeat Exercise B.22, but for an unsigned divider 
rather than a multiplier.

B.24 [15] �§B.5� Th e ALU supported set on less than (slt) using just the sign 
bit of the adder. Let’s try a set on less than operation using the values �7ten and 6ten. 
To make it simpler to follow the example, let’s limit the binary representations to 4 
bits: 1001two and 0110two.

1001two – 0110two = 1001two + 1010two = 0011two

Th is result would suggest that �7 � 6, which is clearly wrong. Hence, we must 
factor in overfl ow in the decision. Modify the 1-bit ALU in Figure B.5.10 on page 
B-33 to handle slt correctly. Make your changes on a photocopy of this fi gure to 
save time.

B.25 [20] �§B.6� A simple check for overfl ow during addition is to see if the 
CarryIn to the most signifi cant bit is not the same as the CarryOut of the most 
signifi cant bit. Prove that this check is the same as in Figure 3.2.

B.26 [5] �§B.6� Rewrite the equations on page B-44 for a carry-lookahead logic 
for a 16-bit adder using a new notation. First, use the names for the CarryIn signals 
of the individual bits of the adder. Th at is, use c4, c8, c12, … instead of C1, C2, 
C3, …. In addition, let Pi,j; mean a propagate signal for bits i to j, and Gi,j; mean a 
generate signal for bits i to j. For example, the equation

C G P G P P c2 1 1 0 1 0 0( ) ( )



B-84 Appendix B The Basics of Logic Design

can be rewritten as

c G P G P P c8 07 4 7 4 3 0 7 4 3 0, , , , ,( ) ( )

Th is more general notation is useful in creating wider adders.

B.27 [15] �§B.6� Write the equations for the carry-lookahead logic for a 64-
bit adder using the new notation from Exercise B.26 and using 16-bit adders as 
building blocks. Include a drawing similar to Figure B.6.3 in your solution.

B.28 [10] �§B.6� Now calculate the relative performance of adders. Assume that 
hardware corresponding to any equation containing only OR or AND terms, such 
as the equations for pi and gi on page B-40, takes one time unit T. Equations that 
consist of the OR of several AND terms, such as the equations for c1, c2, c3, and 
c4 on page B-40, would thus take two time units, 2T. Th e reason is it would take T 
to produce the AND terms and then an additional T to produce the result of the 
OR. Calculate the numbers and performance ratio for 4-bit adders for both ripple 
carry and carry lookahead. If the terms in equations are further defi ned by other 
equations, then add the appropriate delays for those intermediate equations, and 
continue recursively until the actual input bits of the adder are used in an equation. 
Include a drawing of each adder labeled with the calculated delays and the path of 
the worst-case delay highlighted.

B.29 [15] �§B.6� Th is exercise is similar to Exercise B.28, but this time calculate 
the relative speeds of a 16-bit adder using ripple carry only, ripple carry of 4-bit 
groups that use carry lookahead, and the carry-lookahead scheme on page B-39.

B.30 [15] �§B.6� Th is exercise is similar to Exercises B.28 and B.29, but this 
time calculate the relative speeds of a 64-bit adder using ripple carry only, ripple 
carry of 4-bit groups that use carry lookahead, ripple carry of 16-bit groups that use 
carry lookahead, and the carry-lookahead scheme from Exercise B.27.

B.31 [10] �§B.6� Instead of thinking of an adder as a device that adds two 
numbers and then links the carries together, we can think of the adder as a hardware 
device that can add three inputs together (ai, bi, ci) and produce two outputs 
(s, ci � 1). When adding two numbers together, there is little we can do with this 
observation. When we are adding more than two operands, it is possible to reduce 
the cost of the carry. Th e idea is to form two independent sums, called S	 (sum bits) 
and C	 (carry bits). At the end of the process, we need to add C	 and S	 together 
using a normal adder. Th is technique of delaying carry propagation until the end 
of a sum of numbers is called carry save addition. Th e block drawing on the lower 
right of Figure B.14.1 (see below) shows the organization, with two levels of carry 
save adders connected by a single normal adder.

Calculate the delays to add four 16-bit numbers using full carry-lookahead adders 
versus carry save with a carry-lookahead adder forming the fi nal sum. (Th e time 
unit T in Exercise B.28 is the same.)
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B.32 [20] �§B.6� Perhaps the most likely case of adding many numbers at once 
in a computer would be when trying to multiply more quickly by using many 
adders to add many numbers in a single clock cycle. Compared to the multiply 
algorithm in Chapter 3, a carry save scheme with many adders could multiply more 
than 10 times faster. Th is exercise estimates the cost and speed of a combinational 
multiplier to multiply two positive 16-bit numbers. Assume that you have 16 
intermediate terms M15, M14, …, M0, called partial products, that contain the 
multiplicand ANDed with multiplier bits m15, m14, …, m0. Th e idea is to use 
carry save adders to reduce the n operands into 2n/3 in parallel groups of three, 
and do this repeatedly until you get two large numbers to add together with a 
traditional adder.

FIGURE B.14.1 Traditional ripple carry and carry save addition of four 4-bit numbers. Th e 
details are shown on the left , with the individual signals in lowercase, and the corresponding higher-level 
blocks are on the right, with collective signals in upper case. Note that the sum of four n-bit numbers can 
take n + 2 bits.
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First, show the block organization of the 16-bit carry save adders to add these 16 
terms, as shown on the right in Figure B.14.1. Th en calculate the delays to add these 
16 numbers. Compare this time to the iterative multiplication scheme in Chapter 
3 but only assume 16 iterations using a 16-bit adder that has full carry lookahead 
whose speed was calculated in Exercise B.29.

B.33 [10] �§B.6� Th ere are times when we want to add a collection of numbers 
together. Suppose you wanted to add four 4-bit numbers (A, B, E, F) using 1-bit 
full adders. Let’s ignore carry lookahead for now. You would likely connect the 
1-bit adders in the organization at the top of Figure B.14.1. Below the traditional 
organization is a novel organization of full adders. Try adding four numbers using 
both organizations to convince yourself that you get the same answer.

B.34 [5] �§B.6� First, show the block organization of the 16-bit carry save 
adders to add these 16 terms, as shown in Figure B.14.1. Assume that the time delay 
through each 1-bit adder is 2T. Calculate the time of adding four 4-bit numbers to 
the organization at the top versus the organization at the bottom of Figure B.14.1.

B.35 [5] �§B.8� Quite oft en, you would expect that given a timing diagram 
containing a description of changes that take place on a data input D and a clock 
input C (as in Figures B.8.3 and B.8.6 on pages B-52 and B-54, respectively), there 
would be diff erences between the output waveforms (Q) for a D latch and a D fl ip-
fl op. In a sentence or two, describe the circumstances (e.g., the nature of the inputs) 
for which there would not be any diff erence between the two output waveforms.

B.36 [5] �§B.8� Figure B.8.8 on page B-55 illustrates the implementation of the 
register fi le for the MIPS datapath. Pretend that a new register fi le is to be built, 
but that there are only two registers and only one read port, and that each register 
has only 2 bits of data. Redraw Figure B.8.8 so that every wire in your diagram 
corresponds to only 1 bit of data (unlike the diagram in Figure B.8.8, in which 
some wires are 5 bits and some wires are 32 bits). Redraw the registers using D fl ip-
fl ops. You do not need to show how to implement a D fl ip-fl op or a multiplexor.

B.37 [10] �§B.10� A friend would like you to build an “electronic eye” for use 
as a fake security device. Th e device consists of three lights lined up in a row, 
controlled by the outputs Left , Middle, and Right, which, if asserted, indicate that 
a light should be on. Only one light is on at a time, and the light “moves” from 
left  to right and then from right to left , thus scaring away thieves who believe that 
the device is monitoring their activity. Draw the graphical representation for the 
fi nite-state machine used to specify the electronic eye. Note that the rate of the eye’s 
movement will be controlled by the clock speed (which should not be too great) 
and that there are essentially no inputs.

B.38 [10] �§B.10� Assign state numbers to the states of the fi nite-state machine 
you constructed for Exercise B.37 and write a set of logic equations for each of the 
outputs, including the next-state bits.
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B.39 [15] �§§B.2, B.8, B.10� Construct a 3-bit counter using three D fl ip-
fl ops and a selection of gates. Th e inputs should consist of a signal that resets the 
counter to 0, called reset, and a signal to increment the counter, called inc. Th e 
outputs should be the value of the counter. When the counter has value 7 and is 
incremented, it should wrap around and become 0.

B.40 [20] �§B.10� A Gray code is a sequence of binary numbers with the property 
that no more than 1 bit changes in going from one element of the sequence to 
another. For example, here is a 3-bit binary Gray code: 000, 001, 011, 010, 110, 
111, 101, and 100. Using three D fl ip-fl ops and a PLA, construct a 3-bit Gray code 
counter that has two inputs: reset, which sets the counter to 000, and inc, which 
makes the counter go to the next value in the sequence. Note that the code is cyclic, 
so that the value aft er 100 in the sequence is 000.

B.41 [25] �§B.10� We wish to add a yellow light to our traffi  c light example on 
page B-68. We will do this by changing the clock to run at 0.25 Hz (a 4-second clock 
cycle time), which is the duration of a yellow light. To prevent the green and red lights 
from cycling too fast, we add a 30-second timer. Th e timer has a single input, called 
TimerReset, which restarts the timer, and a single output, called TimerSignal, which 
indicates that the 30-second period has expired. Also, we must redefi ne the traffi  c 
signals to include yellow. We do this by defi ning two out put signals for each light: 
green and yellow. If the output NSgreen is asserted, the green light is on; if the output 
NSyellow is asserted, the yellow light is on. If both signals are off , the red light is on. Do 
not assert both the green and yellow signals at the same time, since American drivers 
will certainly be confused, even if European drivers understand what this means! Draw 
the graphical representation for the fi nite-state machine for this improved controller. 
Choose names for the states that are diff erent from the names of the outputs.

B.42 [15] �§B.10� Write down the next-state and output-function tables for the 
traffi  c light controller described in Exercise B.41.

B.43 [15] �§§B.2, B.10� Assign state numbers to the states in the traf-fi c light 
example of Exercise B.41 and use the tables of Exercise B.42 to write a set of logic 
equations for each of the outputs, including the next-state outputs.

B.44 [15] �§§B.3, B.10� Implement the logic equations of Exercise B.43 as a 
PLA.

§B.2, page B-8: No. If A � 1, C � 1, B � 0, the fi rst is true, but the second is false.
§B.3, page B-20: C.
§B.4, page B-22: Th ey are all exactly the same.
§B.4, page B-26: A � 0, B � 1.
§B.5, page B-38: 2.
§B.6, page B-47: 1.
§B.8, page B-58: c.
§B.10, page B-72: b.
§B.11, page B-77: b.

Answers to 
Check Yourself
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formats, 148
logical, 149
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conditional code assembly, A-17
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function, 125, A-10
macros, A-4, A-15–17
microcode, D-30
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object fi le, 125
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speed, A-13
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defi ned, 14, 123
drawbacks, A-9–10
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high-level languages versus, A-12
illustrated, 15
MIPS, 64, 84, A-45–80
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programs, 123
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when to use, A-7–9
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degree, increasing, 404, 455
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set, tag size versus, 409

Atomic compare and swap, 123
Atomic exchange, 121
Atomic fetch-and-increment, 123
Atomic memory operation, C-21
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Automobiles, computer application in, 4
Average memory access time (AMAT), 

402
calculating, 403
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external to DRAM, 398
memory, 380–381, 398
network, 535

Barrier synchronization, C-18
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for thread communication, C-34

Base addressing, 69, 116
Base registers, 69
Basic block, 93
Benchmarks, 538–540
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Linpack, 538, OL3.11-4
multicores, 522–529
multiprocessor, 538–540
NAS parallel, 540
parallel, 539
PARSEC suite, 540
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SPECrate, 538–539
Stream, 548

beq (Branch On Equal), 64
bge (Branch Greater Th an or Equal), 125
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Biased notation, 79, 200
Big-endian byte order, 70, A-43
Binary numbers, 81–82
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ASCII versus, 107
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sticky, 220
valid, 383

ble (Branch Less Th an or Equal), 125
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Blocks

combinational, B-4
defi ned, 376
fi nding, 456
fl exible placement, 402–404
least recently used (LRU), 409
loads/stores, 149
locating in cache, 407–408
miss rate and, 391
multiword, mapping addresses to, 390
placement locations, 455–456
placement strategies, 404
replacement selection, 409
replacement strategies, 457
spatial locality exploitation, 391
state, B-4
valid data, 386

blt (Branch Less Th an), 125
bne (Branch On Not Equal), 64
Bonding, 28
Boolean algebra, B-6
Bounds check shortcut, 95
Branch datapath

ALU, 254

operations, 254
Branch delay slots

defi ned, 322
scheduling, 323

Branch equal, 318
Branch instructions, A-59–63

jump instruction versus, 270
list of, A-60–63
pipeline impact, 317

Branch not taken
assumption, 318
defi ned, 254

Branch prediction
as control hazard solution, 284
buff ers, 321, 322
defi ned, 283
dynamic, 284, 321–323
static, 335

Branch predictors
accuracy, 322
correlation, 324
information from, 324
tournament, 324

Branch taken
cost reduction, 318
defi ned, 254

Branch target
addresses, 254
buff ers, 324

Branches. See also Conditional 
branches

addressing in, 113–116
compiler creation, 91
condition, 255
decision, moving up, 318
delayed, 96, 255, 284, 318–319, 322, 

324
ending, 93
execution in ID stage, 319
pipelined, 318
target address, 318
unconditional, 91

Branch-on-equal instruction, 268
Bubble Sort, 140
Bubbles, 314
Bus-based coherent multiprocessors, 

OL6.15-7
Buses, B-19
Bytes

addressing, 70
order, 70, A-43

C

C.mmp, OL6.15-4
C language

assignment, compiling into MIPS, 
65–66

compiling, 145, OL2.15-2–2.15-3
compiling assignment with registers, 

67–68
compiling while loops in, 92
sort algorithms, 141
translation hierarchy, 124
translation to MIPS assembly language, 

65
variables, 102

C++ language, OL2.15-27, OL2.21-8
Cache blocking and matrix multiply, 

475–476
Cache coherence, 466–470

coherence, 466
consistency, 466
enforcement schemes, 467–468
implementation techniques, 

OL5.12-11–5.12-12
migration, 467
problem, 466, 467, 470
protocol example, OL5.12-12–5.12-16
protocols, 468
replication, 468
snooping protocol, 468–469
snoopy, OL5.12-17
state diagram, OL5.12-16

Cache coherency protocol, OL5.12-
12–5.12-16

fi nite-state transition diagram, OL5.12-
15

functioning, OL5.12-14
mechanism, OL5.12-14
state diagram, OL5.12-16
states, OL5.12-13
write-back cache, OL5.12-15

Cache controllers, 470
coherent cache implementation 

techniques, OL5.12-11–5.12-12
implementing, OL5.12-2
snoopy cache coherence, OL5.12-17
SystemVerilog, OL5.12-2

Cache hits, 443
Cache misses

block replacement on, 457
capacity, 459
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compulsory, 459
confl ict, 459
defi ned, 392
direct-mapped cache, 404
fully associative cache, 406
handling, 392–393
memory-stall clock cycles, 399
reducing with fl exible block placement, 

402–404
set-associative cache, 405
steps, 393
in write-through cache, 393

Cache performance, 398–417
calculating, 400
hit time and, 401–402
impact on processor performance, 400

Cache-aware instructions, 482
Caches, 383–398. See also Blocks

accessing, 386–389
in ARM cortex-A8, 472
associativity in, 405–406
bits in, 390
bits needed for, 390
contents illustration, 387
defi ned, 21, 383–384
direct-mapped, 384, 385, 390, 402
empty, 386–387
FSM for controlling, 461–462
fully associative, 403
GPU, C-38
inconsistent, 393
index, 388
in Intel Core i7, 472
Intrinsity FastMATH example, 

395–398
locating blocks in, 407–408
locations, 385
multilevel, 398, 410
nonblocking, 472
physically addressed, 443
physically indexed, 443
physically tagged, 443
primary, 410, 417
secondary, 410, 417
set-associative, 403
simulating, 478
size, 389
split, 397
summary, 397–398
tag fi eld, 388
tags, OL5.12-3, OL5.12-11

virtual memory and TLB integration, 
440–441

virtually addressed, 443
virtually indexed, 443
virtually tagged, 443
write-back, 394, 395, 458
write-through, 393, 395, 457
writes, 393–395

Callee, 98, 99
Callee-saved register, A-23
Caller, 98
Caller-saved register, A-23
Capabilities, OL5.17-8
Capacity misses, 459
Carry lookahead, B-38–47

4-bit ALUs using, B-45
adder, B-39
fast, with fi rst level of abstraction, 

B-39–40
fast, with “infi nite” hardware, B-38–39
fast, with second level of abstraction, 

B-40–46
plumbing analogy, B-42, B-43
ripple carry speed versus, B-46
summary, B-46–47

Carry save adders, 188
Cause register

defi ned, 327
fi elds, A-34, A-35

OLC 6600, OL1.12-7, OL4.16-3
Cell phones, 7
Central processor unit (CPU). See also 

Processors
classic performance equation, 36–40
coprocessor 0, A-33–34
defi ned, 19
execution time, 32, 33–34
performance, 33–35
system, time, 32
time, 399
time measurements, 33–34
user, time, 32

Cg pixel shader program, C-15–17
Characters

ASCII representation, 106
in Java, 109–111

Chips, 19, 25, 26
manufacturing process, 26

Classes
defi ned, OL2.15-15
packages, OL2.15-21

Clock cycles

defi ned, 33
memory-stall, 399
number of registers and, 67
worst-case delay and, 272

Clock cycles per instruction (CPI), 35, 
282

one level of caching, 410
two levels of caching, 410

Clock rate
defi ned, 33
frequency switched as function of, 41
power and, 40

Clocking methodology, 249–251, B-48
edge-triggered, 249, B-48, B-73
level-sensitive, B-74, B-75–76
for predictability, 249

Clocks, B-48–50
edge, B-48, B-50
in edge-triggered design, B-73
skew, B-74
specifi cation, B-57
synchronous system, B-48–49

Cloud computing, 533
defi ned, 7

Cluster networking, 537–538, OL6.9-12
Clusters, OL6.15-8–6.15-9

defi ned, 30, 500, OL6.15-8
isolation, 530
organization, 499
scientifi c computing on, OL6.15-8

Cm*, OL6.15-4
CMOS (complementary metal oxide 

semiconductor), 41
Coarse-grained multithreading, 514
Cobol, OL2.21-7
Code generation, OL2.15-13
Code motion, OL2.15-7
Cold-start miss, 459
Collision misses, 459
Column major order, 413
Combinational blocks, B-4
Combinational control units, D-4–8
Combinational elements, 248
Combinational logic, 249, B-3, B-9–20

arrays, B-18–19
decoders, B-9
defi ned, B-5
don’t cares, B-17–18
multiplexors, B-10
ROMs, B-14–16
two-level, B-11–14
Verilog, B-23–26

Cache misses (Continued)
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Commercial computer development, 
OL1.12-4–1.12-10

Commit units
buff er, 339–340
defi ned, 339–340
in update control, 343

Common case fast, 11
Common subexpression elimination, 

OL2.15-6
Communication, 23–24

overhead, reducing, 44–45
thread, C-34

Compact code, OL2.21-4
Comparison instructions, A-57–59

fl oating-point, A-74–75
list of, A-57–59

Comparisons, 93
constant operands in, 93
signed versus unsigned, 94–95

Compilers, 123–124
branch creation, 92
brief history, OL2.21-9
conservative, OL2.15-6
defi ned, 14
front end, OL2.15-3
function, 14, 123–124, A-5–6
high-level optimizations, OL2.15-4
ILP exploitation, OL4.16-5
Just In Time (JIT), 132
machine language production, A-8–9, 

A-10
optimization, 141, OL2.21-9
speculation, 333–334
structure, OL2.15-2

Compiling
C assignment statements, 65–66
C language, 92–93, 145, OL2.15-

2–2.15-3
fl oating-point programs, 214–217
if-then-else, 91
in Java, OL2.15-19
procedures, 98, 101–102
recursive procedures, 101–102
while loops, 92–93

Compressed sparse row (CSR) matrix, 
C-55, C-56

Compulsory misses, 459
Computer architects, 11–12

abstraction to simplify design, 11
common case fast, 11
dependability via redundancy, 12
hierarchy of memories, 12

Moore’s law, 11
parallelism, 12
pipelining, 12
prediction, 12

Computers
application classes, 5–6
applications, 4
arithmetic for, 176–236
characteristics, OL1.12-12
commercial development, OL1.12-

4–1.12-10
component organization, 17
components, 17, 177
design measure, 53
desktop, 5
embedded, 5, A-7
fi rst, OL1.12-2–1.12-4
in information revolution, 4
instruction representation, 80–87
performance measurement, OL1.12-10
PostPC Era, 6–7
principles, 86
servers, 5

Condition fi eld, 324
Conditional branches

ARM, 147–148
changing program counter with, 324
compiling if-then-else into, 91
defi ned, 90
desktop RISC, E-16
embedded RISC, E-16
implementation, 96
in loops, 115
PA-RISC, E-34, E-35
PC-relative addressing, 114
RISC, E-10–16
SPARC, E-10–12

Conditional move instructions, 324
Confl ict misses, 459
Constant memory, C-40
Constant operands, 72–73

in comparisons, 93
frequent occurrence, 72

Constant-manipulating instructions, 
A-57

Content Addressable Memory (CAM), 
408

Context switch, 446
Control

ALU, 259–261
challenge, 325–326
fi nishing, 269–270

forwarding, 307
FSM, D-8–21
implementation, optimizing, D-27–28
for jump instruction, 270
mapping to hardware, D-2–32
memory, D-26
organizing, to reduce logic, D-31–32
pipelined, 300–303

Control fl ow graphs, OL2.15-9–2.15-10
illustrated examples, OL2.15-9, 

OL2.15-10
Control functions

ALU, mapping to gates, D-4–7
defi ning, 264
PLA, implementation, D-7, 

D-20–21
ROM, encoding, D-18–19
for single-cycle implementation, 269

Control hazards, 281–282, 316–325
branch delay reduction, 318–319
branch not taken assumption, 318
branch prediction as solution, 284
delayed decision approach, 284
dynamic branch prediction, 

321–323
logic implementation in Verilog, 

OL4.13-8
pipeline stalls as solution, 282
pipeline summary, 324
simplicity, 317
solutions, 282
static multiple-issue processors and, 

335–336
Control lines

asserted, 264
in datapath, 263
execution/address calculation, 300
fi nal three stages, 303
instruction decode/register fi le read, 

300
instruction fetch, 300
memory access, 302
setting of, 264
values, 300
write-back, 302

Control signals
ALUOp, 263
defi ned, 250
eff ect of, 264
multi-bit, 264
pipelined datapaths with, 300–303
truth tables, D-14
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Control units, 247. See also Arithmetic 
logic unit (ALU)

address select logic, D-24, D-25
combinational, implementing, D-4–8
with explicit counter, D-23
illustrated, 265
logic equations, D-11
main, designing, 261–264
as microcode, D-28
MIPS, D-10
next-state outputs, D-10, D-12–13
output, 259–261, D-10

Conversion instructions, A-75–76
Cooperative thread arrays (CTAs), C-30
Coprocessors, A-33–34

defi ned, 218
move instructions, A-71–72

Core MIPS instruction set, 236. See also 
MIPS

abstract view, 246
desktop RISC, E-9–11
implementation, 244–248
implementation illustration, 247
overview, 245
subset, 244

Cores
defi ned, 43
number per chip, 43

Correlation predictor, 324
Cosmic Cube, OL6.15-7
Count register, A-34
CPU, 9
Cray computers, OL3.11-5–3.11-6
Critical word fi rst, 392
Crossbar networks, 535
CTSS (Compatible Time-Sharing 

System), OL5.18-9
CUDA programming environment, 523, 

C-5
barrier synchronization, C-18, C-34
development, C-17, C-18
hierarchy of thread groups, C-18
kernels, C-19, C-24
key abstractions, C-18
paradigm, C-19–23
parallel plus-scan template, C-61
per-block shared memory, C-58
plus-reduction implementation, C-63
programs, C-6, C-24
scalable parallel programming with, 

C-17–23

shared memories, C-18
threads, C-36

Cyclic redundancy check, 423
Cylinder, 381

D

D fl ip-fl ops, B-51, B-53
D latches, B-51, B-52
Data bits, 421
Data fl ow analysis, OL2.15-11
Data hazards, 278, 303–316.See also 

Hazards
forwarding, 278, 303–316
load-use, 280, 318
stalls and, 313–316

Data layout directives, A-14
Data movement instructions, A-70–73
Data parallel problem decomposition, 

C-17, C-18
Data race, 121
Data segment, A-13
Data selectors, 246
Data transfer instructions.See also 

Instructions
defi ned, 68
load, 68
off set, 69
store, 71

Datacenters, 7
Data-level parallelism, 508
Datapath elements

defi ned, 251
sharing, 256

Datapaths
branch, 254
building, 251–259
control signal truth tables, D-14
control unit, 265
defi ned, 19
design, 251
exception handling, 329
for fetching instructions, 253
for hazard resolution via forwarding, 

311
for jump instruction, 270
for memory instructions, 256
for MIPS architecture, 257
in operation for branch-on-equal 

instruction, 268
in operation for load instruction, 267

in operation for R-type instruction, 
266

operation of, 264–269
pipelined, 286–303
for R-type instructions, 256, 264–265
single, creating, 256
single-cycle, 283
static two-issue, 336

Deasserted signals, 250, B-4
Debugging information, A-13
DEC PDP-8, OL2.21-3
Decimal numbers

binary number conversion to, 76
defi ned, 73

Decision-making instructions, 90–96
Decoders, B-9

two-level, B-65
Decoding machine language, 118–120
Defect, 26
Delayed branches, 96.See also Branches

as control hazard solution, 284
defi ned, 255
embedded RISCs and, E-23
for fi ve-stage pipelines, 26, 323–324
reducing, 318–319
scheduling limitations, 323

Delayed decision, 284
DeMorgan’s theorems, B-11
Denormalized numbers, 222
Dependability via redundancy, 12
Dependable memory hierarchy, 418–423

failure, defi ning, 418
Dependences

between pipeline registers, 308
between pipeline registers and ALU 

inputs, 308
bubble insertion and, 314
detection, 306–308
name, 338
sequence, 304

Design
compromises and, 161
datapath, 251
digital, 354
logic, 248–251, B-1–79
main control unit, 261–264
memory hierarchy, challenges, 460
pipelining instruction sets, 277

Desktop and server RISCs.See also 
Reduced instruction set computer 
(RISC) architectures
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addressing modes, E-6
architecture summary, E-4
arithmetic/logical instructions, E-11
conditional branches, E-16
constant extension summary, E-9
control instructions, E-11
conventions equivalent to MIPS core, 

E-12
data transfer instructions, E-10
features added to, E-45
fl oating-point instructions, E-12
instruction formats, E-7
multimedia extensions, E-16–18
multimedia support, E-18
types of, E-3

Desktop computers, defi ned, 5
Device driver, OL6.9-5
DGEMM (Double precision General 

Matrix Multiply), 225, 352, 413, 553
cache blocked version of, 415
optimized C version of, 226, 227, 476
performance, 354, 416

Dicing, 27
Dies, 26, 26–27
Digital design pipeline, 354
Digital signal-processing (DSP) 

extensions, E-19
DIMMs (dual inline memory modules), 

OL5.17-5
Direct Data IO (DDIO), OL6.9-6
Direct memory access (DMA), OL6.9-4
Direct3D, C-13
Direct-mapped caches.See also Caches

address portions, 407
choice of, 456
defi ned, 384, 402
illustrated, 385
memory block location, 403
misses, 405
single comparator, 407
total number of bits, 390

Dirty bit, 437
Dirty pages, 437
Disk memory, 381–383
Displacement addressing, 116
Distributed Block-Interleaved Parity 

(RAID 5), OL5.11-6
div (Divide), A-52
div.d (FP Divide Double), A-76
div.s (FP Divide Single), A-76
Divide algorithm, 190

Dividend, 189
Division, 189–195

algorithm, 191
dividend, 189
divisor, 189

Divisor, 189
divu (Divide Unsigned), A-52.See also 

Arithmetic
faster, 194
fl oating-point, 211, A-76
hardware, 189–192
hardware, improved version, 192
instructions, A-52–53
in MIPS, 194
operands, 189
quotient, 189
remainder, 189
signed, 192–194
SRT, 194

Don’t cares, B-17–18
example, B-17–18
term, 261

Double data rate (DDR), 379
Double Data Rate RAMs (DDRRAMs), 

379–380, B-65
Double precision.See also Single precision

defi ned, 198
FMA, C-45–46
GPU, C-45–46, C-74
representation, 201

Double words, 152
Dual inline memory modules (DIMMs), 

381
Dynamic branch prediction, 321–323.See 

also Control hazards
branch prediction buff er, 321
loops and, 321–323

Dynamic hardware predictors, 284
Dynamic multiple-issue processors, 333, 

339–341.See also Multiple issue
pipeline scheduling, 339–341
superscalar, 339

Dynamic pipeline scheduling, 339–341
commit unit, 339–340
concept, 339–340
hardware-based speculation, 341
primary units, 340
reorder buff er, 343
reservation station, 339–340

Dynamic random access memory 
(DRAM), 378, 379–381, B-63–65

bandwidth external to, 398
cost, 23
defi ned, 19, B-63
DIMM, OL5.17-5
Double Date Rate (DDR), 379–380
early board, OL5.17-4
GPU, C-37–38
growth of capacity, 25
history, OL5.17-2
internal organization of, 380
pass transistor, B-63
SIMM, OL5.17-5, OL5.17-6
single-transistor, B-64
size, 398
speed, 23
synchronous (SDRAM), 379–380, 

B-60, B-65
two-level decoder, B-65

Dynamically linked libraries (DLLs), 
129–131

defi ned, 129
lazy procedure linkage version, 130

E

Early restart, 392
Edge-triggered clocking methodology, 

249, 250, B-48, B-73
advantage, B-49
clocks, B-73
drawbacks, B-74
illustrated, B-50
rising edge/falling edge, B-48

EDSAC (Electronic Delay Storage 
Automatic Calculator), OL1.12-3, 
OL5.17-2

Eispack, OL3.11-4
Electrically erasable programmable read-

only memory (EEPROM), 381
Elements

combinational, 248
datapath, 251, 256
memory, B-50–58
state, 248, 250, 252, B-48, B-50

Embedded computers, 5
application requirements, 6
defi ned, A-7
design, 5
growth, OL1.12-12–1.12-13

Embedded Microprocessor Benchmark 
Consortium (EEMBC), OL1.12-12



I-8 Index

Embedded RISCs. See also Reduced 
instruction set computer (RISC) 
architectures

addressing modes, E-6
architecture summary, E-4
arithmetic/logical instructions, E-14
conditional branches, E-16
constant extension summary, E-9
control instructions, E-15
data transfer instructions, E-13
delayed branch and, E-23
DSP extensions, E-19
general purpose registers, E-5
instruction conventions, E-15
instruction formats, E-8
multiply-accumulate approaches, E-19
types of, E-4

Encoding
defi ned, D-31
fl oating-point instruction, 213
MIPS instruction, 83, 119, A-49
ROM control function, D-18–19
ROM logic function, B-15
x86 instruction, 155–156

ENIAC (Electronic Numerical Integrator 
and Calculator), OL1.12-2, OL1.12-
3, OL5.17-2

EPIC, OL4.16-5
Error correction, B-65–67
Error Detecting and Correcting Code 

(RAID 2), OL5.11-5
Error detection, B-66
Error detection code, 420
Ethernet, 23
EX stage

load instructions, 292
overfl ow exception detection, 328
store instructions, 294

Exabyte, 6
Exception enable, 447
Exception handlers, A-36–38

defi ned, A-35
return from, A-38

Exception program counters (EPCs), 326
address capture, 331
copying, 181
defi ned, 181, 327
in restart determination, 326–327
transferring, 182

Exceptions, 325–332, A-33–38
association, 331–332

datapath with controls for handling, 
329

defi ned, 180, 326
detecting, 326
event types and, 326
imprecise, 331–332
instructions, A-80
interrupts versus, 325–326
in MIPS architecture, 326–327
overfl ow, 329
PC, 445, 446–447
pipelined computer example, 328
in pipelined implementation, 327–332
precise, 332
reasons for, 326–327
result due to overfl ow in add 

instruction, 330
saving/restoring stage on, 450

Exclusive OR (XOR) instructions, A-57
Executable fi les, A-4

defi ned, 126
linker production, A-19

Execute or address calculation stage, 292
Execute/address calculation

control line, 300
load instruction, 292
store instruction, 292

Execution time
as valid performance measure, 51
CPU, 32, 33–34
pipelining and, 286

Explicit counters, D-23, D-26
Exponents, 197–198
External labels, A-10

F

Facilities, A-14–17
Failures, synchronizer, B-77
Fallacies. See also Pitfalls

add immediate unsigned, 227
Amdahl’s law, 556
arithmetic, 229–232
assembly language for performance, 

159–160
commercial binary compatibility 

importance, 160
defi ned, 49
GPUs, C-72–74, C-75
low utilization uses little power, 50
peak performance, 556

pipelining, 355–356
powerful instructions mean higher 

performance, 159
right shift , 229

False sharing, 469
Fast carry

with “infi nite” hardware, B-38–39
with fi rst level of abstraction, B-39–40
with second level of abstraction, 

B-40–46
Fast Fourier Transforms (FFT), C-53
Fault avoidance, 419
Fault forecasting, 419
Fault tolerance, 419
Fermi architecture, 523, 552
Field programmable devices (FPDs), B-78
Field programmable gate arrays (FPGAs), 

B-78
Fields

Cause register, A-34, A-35
defi ned, 82
format, D-31
MIPS, 82–83
names, 82
Status register, A-34, A-35

Files, register, 252, 257, B-50, B-54–56
Fine-grained multithreading, 514
Finite-state machines (FSMs), 451–466, 

B-67–72
control, D-8–22
controllers, 464
for multicycle control, D-9
for simple cache controller, 464–466
implementation, 463, B-70
Mealy, 463
Moore, 463
next-state function, 463, B-67
output function, B-67, B-69
state assignment, B-70
state register implementation, B-71
style of, 463
synchronous, B-67
SystemVerilog, OL5.12-7
traffi  c light example, B-68–70

Flash memory, 381
characteristics, 23
defi ned, 23

Flat address space, 479
Flip-fl ops

D fl ip-fl ops, B-51, B-53
defi ned, B-51
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Floating point, 196–222, 224
assembly language, 212
backward step, OL3.11-4–3.11-5
binary to decimal conversion, 202
branch, 211
challenges, 232–233
diversity versus portability, OL3.11-

3–3.11-4
division, 211
fi rst dispute, OL3.11-2–3.11-3
form, 197
fused multiply add, 220
guard digits, 218–219
history, OL3.11-3
IEEE 754 standard, 198, 199
instruction encoding, 213
intermediate calculations, 218
machine language, 212
MIPS instruction frequency for, 236
MIPS instructions, 211–213
operands, 212
overfl ow, 198
packed format, 224
precision, 230
procedure with two-dimensional 

matrices, 215–217
programs, compiling, 214–217
registers, 217
representation, 197–202
rounding, 218–219
sign and magnitude, 197
SSE2 architecture, 224–225
subtraction, 211
underfl ow, 198
units, 219
in x86, 224

Floating vectors, OL3.11-3
Floating-point addition, 203–206

arithmetic unit block diagram, 207
binary, 204
illustrated, 205
instructions, 211, A-73–74
steps, 203–204

Floating-point arithmetic (GPUs), 
C-41–46

basic, C-42
double precision, C-45–46, C-74
performance, C-44
specialized, C-42–44
supported formats, C-42
texture operations, C-44

Floating-point instructions, A-73–80
absolute value, A-73
addition, A-73–74
comparison, A-74–75
conversion, A-75–76
desktop RISC, E-12
division, A-76
load, A-76–77
move, A-77–78
multiplication, A-78
negation, A-78–79
SPARC, E-31
square root, A-79
store, A-79
subtraction, A-79–80
truncation, A-80

Floating-point multiplication, 206–210
binary, 210–211
illustrated, 209
instructions, 211
signifi cands, 206
steps, 206–210

Flow-sensitive information, OL2.15-15
Flushing instructions, 318, 319

defi ned, 319
exceptions and, 331

For loops, 141, OL2.15-26
inner, OL2.15-24
SIMD and, OL6.15-2

Formal parameters, A-16
Format fi elds, D-31
Fortran, OL2.21-7
Forward references, A-11
Forwarding, 303–316

ALU before, 309
control, 307
datapath for hazard resolution, 311
defi ned, 278
functioning, 306
graphical representation, 279
illustrations, OL4.13-26–4.13-26
multiple results and, 281
multiplexors, 310
pipeline registers before, 309
with two instructions, 278
Verilog implementation, OL4.13-

2–4.13-4
Fractions, 197, 198
Frame buff er, 18
Frame pointers, 103
Front end, OL2.15-3

Fully associative caches. See also Caches
block replacement strategies, 457
choice of, 456
defi ned, 403
memory block location, 403
misses, 406

Fully connected networks, 535
Function code, 82
Fused-multiply-add (FMA) operation, 

220, C-45–46

G

Game consoles, C-9
Gates, B-3, B-8

AND, B-12, D-7
delays, B-46
mapping ALU control function to, 

D-4–7
NAND, B-8
NOR, B-8, B-50

Gather-scatter, 511, 552
General Purpose GPUs (GPGPUs), 

C-5
General-purpose registers, 150

architectures, OL2.21-3
embedded RISCs, E-5

Generate
defi ned, B-40
example, B-44
super, B-41

Gigabyte, 6
Global common subexpression 

elimination, OL2.15-6
Global memory, C-21, C-39
Global miss rates, 416
Global optimization, OL2.15-5

code, OL2.15-7
implementing, OL2.15-8–2.15-11

Global pointers, 102
GPU computing. See also Graphics 

processing units (GPUs)
defi ned, C-5
visual applications, C-6–7

GPU system architectures, C-7–12
graphics logical pipeline, C-10
heterogeneous, C-7–9
implications for, C-24
interfaces and drivers, C-9
unifi ed, C-10–12

Graph coloring, OL2.15-12
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Graphics displays
computer hardware support, 18
LCD, 18

Graphics logical pipeline, C-10
Graphics processing units (GPUs), 522–

529. See also GPU computing
as accelerators, 522
attribute interpolation, C-43–44
defi ned, 46, 506, C-3
evolution, C-5
fallacies and pitfalls, C-72–75
fl oating-point arithmetic, C-17, C-41–

46, C-74
GeForce 8-series generation, C-5
general computation, C-73–74
General Purpose (GPGPUs), C-5
graphics mode, C-6
graphics trends, C-4
history, C-3–4
logical graphics pipeline, C-13–14
mapping applications to, C-55–72
memory, 523
multilevel caches and, 522
N-body applications, C-65–72
NVIDIA architecture, 523–526
parallel memory system, C-36–41
parallelism, 523, C-76
performance doubling, C-4
perspective, 527–529
programming, C-12–24
programming interfaces to, C-17
real-time graphics, C-13
summary, C-76

Graphics shader programs, C-14–15
Gresham’s Law, 236, OL3.11-2
Grid computing, 533
Grids, C-19
GTX 280, 548–553
Guard digits

defi ned, 218
rounding with, 219

H

Half precision, C-42
Halfwords, 110
Hamming, Richard, 420
Hamming distance, 420
Hamming Error Correction Code (ECC), 

420–421
calculating, 420–421

Handlers
defi ned, 449
TLB miss, 448

Hard disks
access times, 23
defi ned, 23

Hardware
as hierarchical layer, 13
language of, 14–16
operations, 63–66
supporting procedures in, 96–106
synthesis, B-21
translating microprograms to, D-28–32
virtualizable, 426

Hardware description languages. See also 
Verilog

defi ned, B-20
using, B-20–26
VHDL, B-20–21

Hardware multithreading, 514–517
coarse-grained, 514
options, 516
simultaneous, 515–517

Hardware-based speculation, 341
Harvard architecture, OL1.12-4
Hazard detection units, 313–314

functions, 314
pipeline connections for, 314

Hazards, 277–278. See also Pipelining
control, 281–282, 316–325
data, 278, 303–316
forwarding and, 312
structural, 277, 294

Heap
allocating space on, 104–106
defi ned, 104

Heterogeneous systems, C-4–5
architecture, C-7–9
defi ned, C-3

Hexadecimal numbers, 81–82
binary number conversion to, 81–82

Hierarchy of memories, 12
High-level languages, 14–16, A-6

benefi ts, 16
computer architectures, OL2.21-5
importance, 16

High-level optimizations, OL2.15-4–2.15-
5

Hit rate, 376
Hit time

cache performance and, 401–402

defi ned, 376
Hit under miss, 472
Hold time, B-54
Horizontal microcode, D-32
Hot-swapping, OL5.11-7
Human genome project, 4

I

I
I/O, A-38–40, OL6.9-2, OL6.9-3

memory-mapped, A-38
on system performance, OL5.11-2

I/O benchmarks.See Benchmarks
IBM 360/85, OL5.17-7
IBM 701, OL1.12-5
IBM 7030, OL4.16-2
IBM ALOG, OL3.11-7
IBM Blue Gene, OL6.15-9–6.15-10
IBM Personal Computer, OL1.12-7, 

OL2.21-6
IBM System/360 computers, OL1.12-6, 

OL3.11-6, OL4.16-2
IBM z/VM, OL5.17-8
ID stage

branch execution in, 319
load instructions, 292
store instruction in, 291

IEEE 754 fl oating-point standard, 198, 
199, OL3.11-8–3.11-10. See also 
Floating point

fi rst chips, OL3.11-8–3.11-9
in GPU arithmetic, C-42–43
implementation, OL3.11-10
rounding modes, 219
today, OL3.11-10

If statements, 114
I-format, 83
If-then-else, 91
Immediate addressing, 116
Immediate instructions, 72
Imprecise interrupts, 331, OL4.16-4
Index-out-of-bounds check, 94–95
Induction variable elimination, OL2.15-7
Inheritance, OL2.15-15
In-order commit, 341
Input devices, 16
Inputs, 261
Instances, OL2.15-15
Instruction count, 36, 38
Instruction decode/register fi le read stage
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control line, 300
load instruction, 289
store instruction, 294

Instruction execution illustrations, 
OL4.13-16–4.13-17

clock cycle 9, OL4.13-24
clock cycles 1 and 2, OL4.13-21
clock cycles 3 and 4, OL4.13-22
clock cycles 5 and 6, OL4.13-23, 

OL4.13-23
clock cycles 7 and 8, OL4.13-24
examples, OL4.13-20–4.13-25
forwarding, OL4.13-26–4.13-31
no hazard, OL4.13-17
pipelines with stalls and forwarding, 

OL4.13-26, OL4.13-20
Instruction fetch stage

control line, 300
load instruction, 289
store instruction, 294

Instruction formats, 157
ARM, 148
defi ned, 81
desktop/server RISC architectures, E-7
embedded RISC architectures, E-8
I-type, 83
J-type, 113
jump instruction, 270
MIPS, 148
R-type, 83, 261
x86, 157

Instruction latency, 356
Instruction mix, 39, OL1.12-10
Instruction set architecture

ARM, 145–147
branch address calculation, 254
defi ned, 22, 52
history, 163
maintaining, 52
protection and, 427
thread, C-31–34
virtual machine support, 426–427

Instruction sets, 235, C-49
ARM, 324
design for pipelining, 277
MIPS, 62, 161, 234
MIPS-32, 235
Pseudo MIPS, 233
x86 growth, 161

Instruction-level parallelism (ILP), 354. 
See also Parallelism

compiler exploitation, OL4.16-5–4.16-6
defi ned, 43, 333
exploitation, increasing, 343
and matrix multiply, 351–354

Instructions, 60–164, E-25–27, E-40–42. 
See also Arithmetic instructions; 
MIPS; Operands

add immediate, 72
addition, 180, A-51
Alpha, E-27–29
arithmetic-logical, 251, A-51–57
ARM, 145–147, E-36–37
assembly, 66
basic block, 93
branch, A-59–63
cache-aware, 482
comparison, A-57–59
conditional branch, 90
conditional move, 324
constant-manipulating, A-57
conversion, A-75–76
core, 233
data movement, A-70–73
data transfer, 68
decision-making, 90–96
defi ned, 14, 62
desktop RISC conventions, E-12
division, A-52–53
as electronic signals, 80
embedded RISC conventions, E-15
encoding, 83
exception and interrupt, A-80
exclusive OR, A-57
fetching, 253
fi elds, 80
fl oating-point (x86), 224
fl oating-point, 211–213, A-73–80
fl ushing, 318, 319, 331
immediate, 72
introduction to, 62–63
jump, 95, 97, A-63–64
left -to-right fl ow, 287–288
load, 68, A-66–68
load linked, 122
logical operations, 87–89
M32R, E-40
memory access, C-33–34
memory-reference, 245
multiplication, 188, A-53–54
negation, A-54
nop, 314

PA-RISC, E-34–36
performance, 35–36
pipeline sequence, 313
PowerPC, E-12–13, E-32–34
PTX, C-31, C-32
remainder, A-55
representation in computer, 80–87
restartable, 450
resuming, 450
R-type, 252
shift , A-55–56
SPARC, E-29–32
store, 71, A-68–70
store conditional, 122
subtraction, 180, A-56–57
SuperH, E-39–40
thread, C-30–31
Th umb, E-38
trap, A-64–66
vector, 510
as words, 62
x86, 149–155

Instructions per clock cycle (IPC), 333
Integrated circuits (ICs), 19. See also 

specifi c chips
cost, 27
defi ned, 25
manufacturing process, 26
very large-scale (VLSIs), 25

Intel Core i7, 46–49, 244, 501, 548–553
address translation for, 471
architectural registers, 347
caches in, 472
memory hierarchies of, 471–475
microarchitecture, 338
performance of, 473
SPEC CPU benchmark, 46–48
SPEC power benchmark, 48–49
TLB hardware for, 471

Intel Core i7 920, 346–349
microarchitecture, 347

Intel Core i7 960
benchmarking and roofl ines of, 

548–553
Intel Core i7 Pipelines, 344, 346–349

memory components, 348
performance, 349–351
program performance, 351
specifi cation, 345

Intel IA-64 architecture, OL2.21-3
Intel Paragon, OL6.15-8
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Intel Th reading Building Blocks, C-60
Intel x86 microprocessors

clock rate and power for, 40
Interference graphs, OL2.15-12
Interleaving, 398
Interprocedural analysis, OL2.15-14
Interrupt enable, 447
Interrupt handlers, A-33
Interrupt-driven I/O, OL6.9-4
Interrupts

defi ned, 180, 326
event types and, 326
exceptions versus, 325–326
imprecise, 331, OL4.16-4
instructions, A-80
precise, 332
vectored, 327

Intrinsity FastMATH processor, 395–398
caches, 396
data miss rates, 397, 407
read processing, 442
TLB, 440
write-through processing, 442

Inverted page tables, 436
Issue packets, 334

J

j (Jump), 64
jal (Jump And Link), 64
Java

bytecode, 131
bytecode architecture, OL2.15-17
characters in, 109–111
compiling in, OL2.15-19–2.15-20
goals, 131
interpreting, 131, 145, OL2.15-15–

2.15-16
keywords, OL2.15-21
method invocation in, OL2.15-21
pointers, OL2.15-26
primitive types, OL2.15-26
programs, starting, 131–132
reference types, OL2.15-26
sort algorithms, 141
strings in, 109–111
translation hierarchy, 131
while loop compilation in, OL2.15-

18–2.15-19
Java Virtual Machine (JVM), 145, 

OL2.15-16

jr (Jump Register), 64
J-type instruction format, 113
Jump instructions, 254, E-26

branch instruction versus, 270
control and datapath for, 271
implementing, 270
instruction format, 270
list of, A-63–64

Just In Time (JIT) compilers, 
132, 560

K

Karnaugh maps, B-18
Kernel mode, 444
Kernels

CUDA, C-19, C-24
defi ned, C-19

Kilobyte, 6

L

Labels
global, A-10, A-11
local, A-11

LAPACK, 230
Large-scale multiprocessors, OL6.15-7, 

OL6.15-9–6.15-10
Latches

D latch, B-51, B-52
defi ned, B-51

Latency
instruction, 356
memory, C-74–75
pipeline, 286
use, 336–337

lbu (Load Byte Unsigned), 64
Leaf procedures. See also Procedures

defi ned, 100
example, 109

Least recently used (LRU)
as block replacement strategy, 457
defi ned, 409
pages, 434

Least signifi cant bits, B-32
defi ned, 74
SPARC, E-31

Left -to-right instruction fl ow, 287–288
Level-sensitive clocking, B-74, B-75–76

defi ned, B-74
two-phase, B-75

lhu (Load Halfword Unsigned), 64
li (Load Immediate), 162
Link, OL6.9-2
Linkers, 126–129, A-18–19

defi ned, 126, A-4
executable fi les, 126, A-19
function illustration, A-19
steps, 126
using, 126–129

Linking object fi les, 126–129
Linpack, 538, OL3.11-4
Liquid crystal displays (LCDs), 18
LISP, SPARC support, E-30
Little-endian byte order, A-43
Live range, OL2.15-11
Livermore Loops, OL1.12-11
ll (Load Linked), 64
Load balancing, 505–506
Load instructions. See also Store 

instructions
access, C-41
base register, 262
block, 149
compiling with, 71
datapath in operation for, 267
defi ned, 68
details, A-66–68
EX stage, 292
fl oating-point, A-76–77
halfword unsigned, 110
ID stage, 291
IF stage, 291
linked, 122, 123
list of, A-66–68
load byte unsigned, 76
load half, 110
load upper immediate, 112, 113
MEM stage, 293
pipelined datapath in, 296
signed, 76
unit for implementing, 255
unsigned, 76
WB stage, 293

Load word, 68, 71
Loaders, 129
Loading, A-19–20
Load-store architectures, OL2.21-3
Load-use data hazard, 280, 318
Load-use stalls, 318
Local area networks (LANs), 24. See also 

Networks
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Local labels, A-11
Local memory, C-21, C-40
Local miss rates, 416
Local optimization, OL2.15-5. 

See also Optimization
implementing, OL2.15-8

Locality
principle, 374
spatial, 374, 377
temporal, 374, 377

Lock synchronization, 121
Locks, 518
Logic

address select, D-24, D-25
ALU control, D-6
combinational, 250, B-5, B-9–20
components, 249
control unit equations, D-11
design, 248–251, B-1–79
equations, B-7
minimization, B-18
programmable array (PAL), 

B-78
sequential, B-5, B-56–58
two-level, B-11–14

Logical operations, 87–89
AND, 88, A-52
ARM, 149
desktop RISC, E-11
embedded RISC, E-14
MIPS, A-51–57
NOR, 89, A-54
NOT, 89, A-55
OR, 89, A-55
shift s, 87

Long instruction word (LIW), 
OL4.16-5

Lookup tables (LUTs), B-79
Loop unrolling

defi ned, 338, OL2.15-4
for multiple-issue pipelines, 338
register renaming and, 338

Loops, 92–93
conditional branches in, 114
for, 141
prediction and, 321–323
test, 142, 143
while, compiling, 92–93

lui (Load Upper Imm.), 64
lw (Load Word), 64
lwc1 (Load FP Single), A-73

M

M32R, E-15, E-40
Machine code, 81
Machine instructions, 81
Machine language, 15

branch off set in, 115
decoding, 118–120
defi ned, 14, 81, A-3
fl oating-point, 212
illustrated, 15
MIPS, 85
SRAM, 21
translating MIPS assembly language 

into, 84
Macros

defi ned, A-4
example, A-15–17
use of, A-15

Main memory, 428. See also Memory
defi ned, 23
page tables, 437
physical addresses, 428

Mapping applications, C-55–72
Mark computers, OL1.12-14
Matrix multiply, 225–228, 553–555
Mealy machine, 463–464, B-68, B-71, 

B-72
Mean time to failure(MTTF), 418

improving, 419
versus AFR of disks, 419–420

Media Access Control (MAC) address, 
OL6.9-7

Megabyte, 6
Memory

addresses, 77
affi  nity, 545
atomic, C-21
bandwidth, 380–381, 397
cache, 21, 383–398, 398–417
CAM, 408
constant, C-40
control, D-26
defi ned, 19
DRAM, 19, 379–380, B-63–65
fl ash, 23
global, C-21, C-39
GPU, 523
instructions, datapath for, 256
layout, A-21
local, C-21, C-40

main, 23
nonvolatile, 22
operands, 68–69
parallel system, C-36–41
read-only (ROM), B-14–16
SDRAM, 379–380
secondary, 23
shared, C-21, C-39–40
spaces, C-39
SRAM, B-58–62
stalls, 400
technologies for building, 24–28
texture, C-40
usage, A-20–22
virtual, 427–454
volatile, 22

Memory access instructions, C-33–34
Memory access stage

control line, 302
load instruction, 292
store instruction, 292

Memory bandwidth, 551, 557
Memory consistency model, 469
Memory elements, B-50–58

clocked, B-51
D fl ip-fl op, B-51, B-53
D latch, B-52
DRAMs, B-63–67
fl ip-fl op, B-51
hold time, B-54
latch, B-51
setup time, B-53, B-54
SRAMs, B-58–62
unclocked, B-51

Memory hierarchies, 545
of ARM cortex-A8, 471–475
block (or line), 376
cache performance, 398–417
caches, 383–417
common framework, 454–461
defi ned, 375
design challenges, 461
development, OL5.17-6–5.17-8
exploiting, 372–498
of Intel core i7, 471–475
level pairs, 376
multiple levels, 375
overall operation of, 443–444
parallelism and, 466–470, OL5.11-2
pitfalls, 478–482
program execution time and, 417
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quantitative design parameters, 454
redundant arrays and inexpensive 

disks, 470
reliance on, 376
structure, 375
structure diagram, 378
variance, 417
virtual memory, 427–454

Memory rank, 381
Memory technologies, 378–383

disk memory, 381–383
DRAM technology, 378, 379–381
fl ash memory, 381
SRAM technology, 378, 379

Memory-mapped I/O, OL6.9-3
use of, A-38

Memory-stall clock cycles, 399
Message passing

defi ned, 529
multiprocessors, 529–534

Metastability, B-76
Methods

defi ned, OL2.15-5
invoking in Java, OL2.15-20–2.15-21
static, A-20

mfc0 (Move From Control), A-71
mfh i (Move From Hi), A-71
mfl o (Move From Lo), A-71
Microarchitectures, 347

Intel Core i7 920, 347
Microcode

assembler, D-30
control unit as, D-28
defi ned, D-27
dispatch ROMs, D-30–31
horizontal, D-32
vertical, D-32

Microinstructions, D-31
Microprocessors

design shift , 501
multicore, 8, 43, 500–501

Microprograms
as abstract control representation, 

D-30
fi eld translation, D-29
translating to hardware, D-28–32

Migration, 467
Million instructions per second (MIPS), 

51
Minterms

defi ned, B-12, D-20
in PLA implementation, D-20

MIP-map, C-44
MIPS, 64, 84, A-45–80

addressing for 32-bit immediates, 
116–118

addressing modes, A-45–47
arithmetic core, 233
arithmetic instructions, 63, A-51–57
ARM similarities, 146
assembler directive support, A-47–49
assembler syntax, A-47–49
assembly instruction, mapping, 80–81
branch instructions, A-59–63
comparison instructions, A-57–59
compiling C assignment statements 

into, 65
compiling complex C assignment into, 

65–66
constant-manipulating instructions, 

A-57
control registers, 448
control unit, D-10
CPU, A-46
divide in, 194
exceptions in, 326–327
fi elds, 82–83
fl oating-point instructions, 211–213
FPU, A-46
instruction classes, 163
instruction encoding, 83, 119, A-49
instruction formats, 120, 148, A-49–51
instruction set, 62, 162, 234
jump instructions, A-63–66
logical instructions, A-51–57
machine language, 85
memory addresses, 70
memory allocation for program and 

data, 104
multiply in, 188
opcode map, A-50
operands, 64
Pseudo, 233, 235
register conventions, 105
static multiple issue with, 335–338

MIPS core
architecture, 195
arithmetic/logical instructions not in, 

E-21, E-23
common extensions to, E-20–25
control instructions not in, E-21

data transfer instructions not in, E-20, 
E-22

fl oating-point instructions not in, E-22
instruction set, 233, 244–248, E-9–10

MIPS-16
16-bit instruction set, E-41–42
immediate fi elds, E-41
instructions, E-40–42
MIPS core instruction changes, E-42
PC-relative addressing, E-41

MIPS-32 instruction set, 235
MIPS-64 instructions, E-25–27

conditional procedure call instructions, 
E-27

constant shift  amount, E-25
jump/call not PC-relative, E-26
move to/from control registers, E-26
nonaligned data transfers, E-25
NOR, E-25
parallel single precision fl oating-point 

operations, E-27
reciprocal and reciprocal square root, 

E-27
SYSCALL, E-25
TLB instructions, E-26–27

Mirroring, OL5.11-5
Miss penalty

defi ned, 376
determination, 391–392
multilevel caches, reducing, 410

Miss rates
block size versus, 392
data cache, 455
defi ned, 376
global, 416
improvement, 391–392
Intrinsity FastMATH processor, 397
local, 416
miss sources, 460
split cache, 397

Miss under miss, 472
MMX (MultiMedia eXtension), 224
Modules, A-4
Moore machines, 463–464, B-68, B-71, 

B-72
Moore’s law, 11, 379, 522, OL6.9-2, 

C-72–73
Most signifi cant bit

1-bit ALU for, B-33
defi ned, 74

move (Move), 139

Memory hierarchies (Continued)
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Move instructions, A-70–73
coprocessor, A-71–72
details, A-70–73
fl oating-point, A-77–78

MS-DOS, OL5.17-11
mul.d (FP Multiply Double), A-78
mul.s (FP Multiply Single), A-78
mult (Multiply), A-53
Multicore, 517–521
Multicore multiprocessors, 8, 43

defi ned, 8, 500–501
MULTICS (Multiplexed Information 

and Computing Service), OL5.17-
9–5.17-10

Multilevel caches. See also Caches
complications, 416
defi ned, 398, 416
miss penalty, reducing, 410
performance of, 410
summary, 417–418

Multimedia extensions
desktop/server RISCs, E-16–18
as SIMD extensions to instruction sets, 

OL6.15-4
vector versus, 511–512

Multiple dimension arrays, 218
Multiple instruction multiple data 

(MIMD), 558
defi ned, 507, 508
fi rst multiprocessor, OL6.15-14

Multiple instruction single data (MISD), 507
Multiple issue, 332–339

code scheduling, 337–338
dynamic, 333, 339–341
issue packets, 334
loop unrolling and, 338
processors, 332, 333
static, 333, 334–339
throughput and, 342

Multiple processors, 553–555
Multiple-clock-cycle pipeline diagrams, 

296–297
fi ve instructions, 298
illustrated, 298

Multiplexors, B-10
controls, 463
in datapath, 263
defi ned, 246
forwarding, control values, 310
selector control, 256–257
two-input, B-10

Multiplicand, 183
Multiplication, 183–188. See also 

Arithmetic
fast, hardware, 188
faster, 187–188
fi rst algorithm, 185
fl oating-point, 206–208, A-78
hardware, 184–186
instructions, 188, A-53–54
in MIPS, 188
multiplicand, 183
multiplier, 183
operands, 183
product, 183
sequential version, 184–186
signed, 187

Multiplier, 183
Multiply algorithm, 186
Multiply-add (MAD), C-42
Multiprocessors

benchmarks, 538–540
bus-based coherent, OL6.15-7
defi ned, 500
historical perspective, 561
large-scale, OL6.15-7–6.15-8, OL6.15-

9–6.15-10
message-passing, 529–534
multithreaded architecture, C-26–27, 

C-35–36
organization, 499, 529
for performance, 559
shared memory, 501, 517–521
soft ware, 500
TFLOPS, OL6.15-6
UMA, 518

Multistage networks, 535
Multithreaded multiprocessor 

architecture, C-25–36
conclusion, C-36
ISA, C-31–34
massive multithreading, C-25–26
multiprocessor, C-26–27
multiprocessor comparison, C-35–36
SIMT, C-27–30
special function units (SFUs), C-35
streaming processor (SP), C-34
thread instructions, C-30–31
threads/thread blocks management, 

C-30
Multithreading, C-25–26

coarse-grained, 514

defi ned, 506
fi ne-grained, 514
hardware, 514–517
simultaneous (SMT), 515–517

multu (Multiply Unsigned), A-54
Must-information, OL2.15-5
Mutual exclusion, 121

N

Name dependence, 338
NAND gates, B-8
NAS (NASA Advanced Supercomputing), 

540
N-body

all-pairs algorithm, C-65
GPU simulation, C-71
mathematics, C-65–67
multiple threads per body, C-68–69
optimization, C-67
performance comparison, C-69–70
results, C-70–72
shared memory use, C-67–68

Negation instructions, A-54, A-78–79
Negation shortcut, 76
Nested procedures, 100–102

compiling recursive procedure 
showing, 101–102

NetFPGA 10-Gigagit Ethernet card, 
OL6.9-2, OL6.9-3

Network of Workstations, OL6.15-
8–6.15-9

Network topologies, 534–537
implementing, 536
multistage, 537

Networking, OL6.9-4
operating system in, OL6.9-4–6.9-5
performance improvement, OL6.9-

7–6.9-10
Networks, 23–24

advantages, 23
bandwidth, 535
crossbar, 535
fully connected, 535
local area (LANs), 24
multistage, 535
wide area (WANs), 24

Newton’s iteration, 218
Next state

nonsequential, D-24
sequential, D-23
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Next-state function, 463, B-67
defi ned, 463
implementing, with sequencer, 

D-22–28
Next-state outputs, D-10, D-12–13

example, D-12–13
implementation, D-12
logic equations, D-12–13
truth tables, D-15

No Redundancy (RAID 0), OL5.11-4
No write allocation, 394
Nonblocking assignment, B-24
Nonblocking caches, 344, 472
Nonuniform memory access (NUMA), 

518
Nonvolatile memory, 22
Nops, 314
nor (NOR), 64
NOR gates, B-8

cross-coupled, B-50
D latch implemented with, B-52

NOR operation, 89, A-54, E-25
NOT operation, 89, A-55, B-6
Numbers

binary, 73
computer versus real-world, 221
decimal, 73, 76
denormalized, 222
hexadecimal, 81–82
signed, 73–78
unsigned, 73–78

NVIDIA GeForce 8800, C-46–55
all-pairs N-body algorithm, C-71
dense linear algebra computations, 

C-51–53
FFT performance, C-53
instruction set, C-49
performance, C-51
rasterization, C-50
ROP, C-50–51
scalability, C-51
sorting performance, C-54–55
special function approximation 

statistics, C-43
special function unit (SFU), C-50
streaming multiprocessor (SM), 

C-48–49
streaming processor, C-49–50
streaming processor array (SPA), C-46
texture/processor cluster (TPC), 

C-47–48

NVIDIA GPU architecture, 523–526
NVIDIA GTX 280, 548–553
NVIDIA Tesla GPU, 548–553

O

Object fi les, 125, A-4
debugging information, 124
defi ned, A-10
format, A-13–14
header, 125, A-13
linking, 126–129
relocation information, 125
static data segment, 125
symbol table, 125, 126
text segment, 125

Object-oriented languages. See also Java
brief history, OL2.21-8
defi ned, 145, OL2.15-5

One’s complement, 79, B-29
Opcodes

control line setting and, 264
defi ned, 82, 262

OpenGL, C-13
OpenMP (Open MultiProcessing), 520, 

540
Operands, 66–73. See also Instructions

32-bit immediate, 112–113
adding, 179
arithmetic instructions, 66
compiling assignment when in 

memory, 69
constant, 72–73
division, 189
fl oating-point, 212
memory, 68–69
MIPS, 64
multiplication, 183
shift ing, 148

Operating systems
brief history, OL5.17-9–5.17-12
defi ned, 13
encapsulation, 22
in networking, OL6.9-4–6.9-5

Operations
atomic, implementing, 121
hardware, 63–66
logical, 87–89
x86 integer, 152, 154–155

Optimization
class explanation, OL2.15-14

compiler, 141
control implementation, D-27–28
global, OL2.15-5
high-level, OL2.15-4–2.15-5
local, OL2.15-5, OL2.15-8
manual, 144

or (OR), 64
OR operation, 89, A-55, B-6
ori (Or Immediate), 64
Out-of-order execution

defi ned, 341
performance complexity, 416
processors, 344

Output devices, 16
Overfl ow

defi ned, 74, 198
detection, 180
exceptions, 329
fl oating-point, 198
occurrence, 75
saturation and, 181
subtraction, 179

P

P+Q redundancy (RAID 6), OL5.11-7
Packed fl oating-point format, 224
Page faults, 434. See also Virtual memory

for data access, 450
defi ned, 428
handling, 429, 446–453
virtual address causing, 449, 450

Page tables, 456
defi ned, 432
illustrated, 435
indexing, 432
inverted, 436
levels, 436–437
main memory, 437
register, 432
storage reduction techniques, 436–437
updating, 432
VMM, 452

Pages. See also Virtual memory
defi ned, 428
dirty, 437
fi nding, 432–434
LRU, 434
off set, 429
physical number, 429
placing, 432–434
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size, 430
virtual number, 429

Parallel bus, OL6.9-3
Parallel execution, 121
Parallel memory system, C-36–41. See 

also Graphics processing units 
(GPUs)

caches, C-38
constant memory, C-40
DRAM considerations, C-37–38
global memory, C-39
load/store access, C-41
local memory, C-40
memory spaces, C-39
MMU, C-38–39
ROP, C-41
shared memory, C-39–40
surfaces, C-41
texture memory, C-40

Parallel processing programs, 502–507
creation diffi  culty, 502–507
defi ned, 501
for message passing, 519–520
great debates in, OL6.15-5
for shared address space, 519–520
use of, 559

Parallel reduction, C-62
Parallel scan, C-60–63

CUDA template, C-61
inclusive, C-60
tree-based, C-62

Parallel soft ware, 501
Parallelism, 12, 43, 332–344

and computers arithmetic, 222–223
data-level, 233, 508
debates, OL6.15-5–6.15-7
GPUs and, 523, C-76
instruction-level, 43, 332, 343
memory hierarchies and, 466–470, 

OL5.11-2
multicore and, 517
multiple issue, 332–339
multithreading and, 517
performance benefi ts, 44–45
process-level, 500
redundant arrays and inexpensive 

disks, 470
subword, E-17
task, C-24
task-level, 500
thread, C-22

Paravirtualization, 482
PA-RISC, E-14, E-17

branch vectored, E-35
conditional branches, E-34, E-35
debug instructions, E-36
decimal operations, E-35
extract and deposit, E-35
instructions, E-34–36
load and clear instructions, E-36
multiply/add and multiply/subtract, 

E-36
nullifi cation, E-34
nullifying branch option, E-25
store bytes short, E-36
synthesized multiply and divide, 

E-34–35
Parity, OL5.11-5

bits, 421
code, 420, B-65

PARSEC (Princeton Application 
Repository for Shared Memory 
Computers), 540

Pass transistor, B-63
PCI-Express (PCIe), 537, C-8, OL6.9-2
PC-relative addressing, 114, 116
Peak fl oating-point performance, 542
Pentium bug morality play, 231–232
Performance, 28–36

assessing, 28
classic CPU equation, 36–40
components, 38
CPU, 33–35
defi ning, 29–32
equation, using, 36
improving, 34–35
instruction, 35–36
measuring, 33–35, OL1.12-10
program, 39–40
ratio, 31
relative, 31–32
response time, 30–31
sorting, C-54–55
throughput, 30–31
time measurement, 32

Personal computers (PCs), 7
defi ned, 5

Personal mobile device (PMD)
defi ned, 7

Petabyte, 6
Physical addresses, 428

mapping to, 428–429

space, 517, 521
Physically addressed caches, 443
Pipeline registers

before forwarding, 309
dependences, 308
forwarding unit selection, 312

Pipeline stalls, 280
avoiding with code reordering, 280
data hazards and, 313–316
insertion, 315
load-use, 318
as solution to control hazards, 282

Pipelined branches, 319
Pipelined control, 300–303. See also 

Control
control lines, 300, 303
overview illustration, 316
specifying, 300

Pipelined datapaths, 286–303
with connected control signals, 304
with control signals, 300–303
corrected, 296
illustrated, 289
in load instruction stages, 296

Pipelined dependencies, 305
Pipelines

branch instruction impact, 317
eff ectiveness, improving, OL4.16-

4–4.16-5
execute and address calculation stage, 

290, 292
fi ve-stage, 274, 290, 299
graphic representation, 279, 296–300
instruction decode and register fi le 

read stage, 289, 292
instruction fetch stage, 290, 292
instructions sequence, 313
latency, 286
memory access stage, 290, 292
multiple-clock-cycle diagrams, 

296–297
performance bottlenecks, 343
single-clock-cycle diagrams, 296–297
stages, 274
static two-issue, 335
write-back stage, 290, 294

Pipelining, 12, 272–286
advanced, 343–344
benefi ts, 272
control hazards, 281–282
data hazards, 278
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exceptions and, 327–332
execution time and, 286
fallacies, 355–356
hazards, 277–278
instruction set design for, 277
laundry analogy, 273
overview, 272–286
paradox, 273
performance improvement, 277
pitfall, 355–356
simultaneous executing instructions, 

286
speed-up formula, 273
structural hazards, 277, 294
summary, 285
throughput and, 286

Pitfalls. See also Fallacies
address space extension, 479
arithmetic, 229–232
associativity, 479
defi ned, 49
GPUs, C-74–75
ignoring memory system behavior, 478
memory hierarchies, 478–482
out-of-order processor evaluation, 479
performance equation subset, 50–51
pipelining, 355–356
pointer to automatic variables, 160
sequential word addresses, 160
simulating cache, 478
soft ware development with 

multiprocessors, 556
VMM implementation, 481, 481–482

Pixel shader example, C-15–17
Pixels, 18
Pointers

arrays versus, 141–145
frame, 103
global, 102
incrementing, 143
Java, OL2.15-26
stack, 98, 102

Polling, OL6.9-8
Pop, 98
Power

clock rate and, 40
critical nature of, 53
effi  ciency, 343–344
relative, 41

PowerPC
algebraic right shift , E-33

branch registers, E-32–33
condition codes, E-12
instructions, E-12–13
instructions unique to, E-31–33
load multiple/store multiple, E-33
logical shift ed immediate, E-33
rotate with mask, E-33

Precise interrupts, 332
Prediction, 12

2-bit scheme, 322
accuracy, 321, 324
dynamic branch, 321–323
loops and, 321–323
steady-state, 321

Prefetching, 482, 544
Primitive types, OL2.15-26
Procedure calls

convention, A-22–33
examples, A-27–33
frame, A-23
preservation across, 102

Procedures, 96–106
compiling, 98
compiling, showing nested procedure 

linking, 101–102
execution steps, 96
frames, 103
leaf, 100
nested, 100–102
recursive, 105, A-26–27
for setting arrays to zero, 142
sort, 135–139
strcpy, 108–109
string copy, 108–109
swap, 133

Process identifi ers, 446
Process-level parallelism, 500
Processors, 242–356

as cores, 43
control, 19
datapath, 19
defi ned, 17, 19
dynamic multiple-issue, 333
multiple-issue, 333
out-of-order execution, 344, 416
performance growth, 44
ROP, C-12, C-41
speculation, 333–334
static multiple-issue, 333, 334–339
streaming, C-34
superscalar, 339, 515–516, OL4.16-5
technologies for building, 24–28

two-issue, 336–337
vector, 508–510
VLIW, 335

Product, 183
Product of sums, B-11
Program counters (PCs), 251

changing with conditional branch, 324
defi ned, 98, 251
exception, 445, 447
incrementing, 251, 253
instruction updates, 289

Program libraries, A-4
Program performance

elements aff ecting, 39
understanding, 9

Programmable array logic (PAL), B-78
Programmable logic arrays (PLAs)

component dots illustration, B-16
control function implementation, D-7, 

D-20–21
defi ned, B-12
example, B-13–14
illustrated, B-13
ROMs and, B-15–16
size, D-20
truth table implementation, B-13

Programmable logic devices (PLDs), B-78
Programmable ROMs (PROMs), B-14
Programming languages. See also specifi c 

languages
brief history of, OL2.21-7–2.21-8
object-oriented, 145
variables, 67

Programs
assembly language, 123
Java, starting, 131–132
parallel processing, 502–507
starting, 123–132
translating, 123–132

Propagate
defi ned, B-40
example, B-44
super, B-41

Protected keywords, OL2.15-21
Protection

defi ned, 428
implementing, 444–446
mechanisms, OL5.17-9
VMs for, 424

Protection group, OL5.11-5
Pseudo MIPS

defi ned, 233

Pipelining (Continued)
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instruction set, 235
Pseudodirect addressing, 116
Pseudoinstructions

defi ned, 124
summary, 125

Pthreads (POSIX threads), 540
PTX instructions, C-31, C-32
Public keywords, OL2.15-21
Push

defi ned, 98
using, 100

Q

Quad words, 154
Quicksort, 411, 412
Quotient, 189

R

Race, B-73
Radix sort, 411, 412, C-63–65

CUDA code, C-64
implementation, C-63–65

RAID, See Redundant arrays of 
inexpensive disks (RAID)

RAM, 9
Raster operation (ROP) processors, C-12, 

C-41, C-50–51
fi xed function, C-41

Raster refresh buff er, 18
Rasterization, C-50
Ray casting (RC), 552
Read-only memories (ROMs), B-14–16

control entries, D-16–17
control function encoding, D-18–19
dispatch, D-25
implementation, D-15–19
logic function encoding, B-15
overhead, D-18
PLAs and, B-15–16
programmable (PROM), B-14
total size, D-16

Read-stall cycles, 399
Read-write head, 381
Receive message routine, 529
Receiver Control register, A-39
Receiver Data register, A-38, A-39
Recursive procedures, 105, A-26–27. See 

also Procedures
clone invocation, 100
stack in, A-29–30

Reduced instruction set computer (RISC) 
architectures, E-2–45, OL2.21-5, 
OL4.16-4. See also Desktop and 
server RISCs; Embedded RISCs

group types, E-3–4
instruction set lineage, E-44

Reduction, 519
Redundant arrays of inexpensive disks 

(RAID), OL5.11-2–5.11-8
history, OL5.11-8
RAID 0, OL5.11-4
RAID 1, OL5.11-5
RAID 2, OL5.11-5
RAID 3, OL5.11-5
RAID 4, OL5.11-5–5.11-6
RAID 5, OL5.11-6–5.11-7
RAID 6, OL5.11-7
spread of, OL5.11-6
summary, OL5.11-7–5.11-8
use statistics, OL5.11-7

Reference bit, 435
References

absolute, 126
forward, A-11
types, OL2.15-26
unresolved, A-4, A-18

Register addressing, 116
Register allocation, OL2.15-11–2.15-13
Register fi les, B-50, B-54–56

defi ned, 252, B-50, B-54
in behavioral Verilog, B-57
single, 257
two read ports implementation, B-55
with two read ports/one write port, 

B-55
write port implementation, B-56

Register-memory architecture, OL2.21-3
Registers, 152, 153–154

architectural, 325–332
base, 69
callee-saved, A-23
caller-saved, A-23
Cause, A-35
clock cycle time and, 67
compiling C assignment with, 67–68
Count, A-34
defi ned, 66
destination, 83, 262
fl oating-point, 217
left  half, 290
mapping, 80
MIPS conventions, 105

number specifi cation, 252
page table, 432
pipeline, 308, 309, 312
primitives, 66
Receiver Control, A-39
Receiver Data, A-38, A-39
renaming, 338
right half, 290
spilling, 71
Status, 327, A-35
temporary, 67, 99
Transmitter Control, A-39–40
Transmitter Data, A-40
usage convention, A-24
use convention, A-22
variables, 67

Relative performance, 31–32
Relative power, 41
Reliability, 418
Relocation information, A-13, A-14
Remainder

defi ned, 189
instructions, A-55

Reorder buff ers, 343
Replication, 468
Requested word fi rst, 392
Request-level parallelism, 532
Reservation stations

buff ering operands in, 340–341
defi ned, 339–340

Response time, 30–31
Restartable instructions, 448
Return address, 97
Return from exception (ERET), 445
R-format, 262

ALU operations, 253
defi ned, 83

Ripple carry
adder, B-29
carry lookahead speed versus, B-46

Roofl ine model, 542–543, 544, 545
with ceilings, 546, 547
computational roofl ine, 545
illustrated, 542
Opteron generations, 543, 544
with overlapping areas shaded, 547
peak fl oating-point performance, 

542
peak memory performance, 543
with two kernels, 547

Rotational delay.See Rotational latency
Rotational latency, 383
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Rounding, 218
accurate, 218
bits, 220
with guard digits, 219
IEEE 754 modes, 219

Row-major order, 217, 413
R-type instructions, 252

datapath for, 264–265
datapath in operation for, 266

S

Saturation, 181
sb (Store Byte), 64
sc (Store Conditional), 64
SCALAPAK, 230
Scaling

strong, 505, 507
weak, 505

Scientifi c notation
adding numbers in, 203
defi ned, 196
for reals, 197

Search engines, 4
Secondary memory, 23
Sectors, 381
Seek, 382
Segmentation, 431
Selector values, B-10
Semiconductors, 25
Send message routine, 529
Sensitivity list, B-24
Sequencers

explicit, D-32
implementing next-state function with, 

D-22–28
Sequential logic, B-5
Servers, OL5. See also Desktop and server 

RISCs
cost and capability, 5

Service accomplishment, 418
Service interruption, 418
Set instructions, 93
Set-associative caches, 403. See also 

Caches
address portions, 407
block replacement strategies, 457
choice of, 456
four-way, 404, 407
memory-block location, 403
misses, 405–406

 n-way, 403
two-way, 404

Setup time, B-53, B-54
sh (Store Halfword), 64
Shaders

defi ned, C-14
fl oating-point arithmetic, C-14
graphics, C-14–15
pixel example, C-15–17

Shading languages, C-14
Shadowing, OL5.11-5
Shared memory. See also Memory

as low-latency memory, C-21
caching in, C-58–60
CUDA, C-58
N-body and, C-67–68
per-CTA, C-39
SRAM banks, C-40

Shared memory multiprocessors (SMP), 
517–521

defi ned, 501, 517
single physical address space, 517
synchronization, 518

Shift  amount, 82
Shift  instructions, 87, A-55–56
Sign and magnitude, 197
Sign bit, 76
Sign extension, 254

defi ned, 76
shortcut, 78

Signals
asserted, 250, B-4
control, 250, 263–264
deasserted, 250, B-4

Signed division, 192–194
Signed multiplication, 187
Signed numbers, 73–78

sign and magnitude, 75
treating as unsigned, 94–95

Signifi cands, 198
addition, 203
multiplication, 206

Silicon, 25
as key hardware technology, 53
crystal ingot, 26
defi ned, 26
wafers, 26

Silicon crystal ingot, 26
SIMD (Single Instruction Multiple Data), 

507–508, 558
computers, OL6.15-2–6.15-4

data vector, C-35
extensions, OL6.15-4
for loops and, OL6.15-3
massively parallel multiprocessors, 

OL6.15-2
small-scale, OL6.15-4
vector architecture, 508–510
in x86, 508

SIMMs (single inline memory modules), 
OL5.17-5, OL5.17-6

Simple programmable logic devices 
(SPLDs), B-78

Simplicity, 161
Simultaneous multithreading (SMT), 

515–517
support, 515
thread-level parallelism, 517
unused issue slots, 515

Single error correcting/Double error 
correcting (SEC/DEC), 420–422

Single instruction single data (SISD), 507
Single precision. See also Double 

precision
binary representation, 201
defi ned, 198

Single-clock-cycle pipeline diagrams, 
296–297

illustrated, 299
Single-cycle datapaths. See also Datapaths

illustrated, 287
instruction execution, 288

Single-cycle implementation
control function for, 269
defi ned, 270
nonpipelined execution versus 

pipelined execution, 276
non-use of, 271–272
penalty, 271–272
pipelined performance versus, 274

Single-instruction multiple-thread 
(SIMT), C-27–30

overhead, C-35
multithreaded warp scheduling, C-28
processor architecture, C-28
warp execution and divergence, 

C-29–30
Single-program multiple data (SPMD), 

C-22
sll (Shift  Left  Logical), 64
slt (Set Less Th an), 64
slti (Set Less Th an Imm.), 64
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sltiu (Set Less Th an Imm.Unsigned), 64
sltu (Set Less Th an Unsig.), 64
Smalltalk-80, OL2.21-8
Smart phones, 7
Snooping protocol, 468–470
Snoopy cache coherence, OL5.12-7
Soft ware optimization

via blocking, 413–418
Sort algorithms, 141
Soft ware

layers, 13
multiprocessor, 500
parallel, 501
as service, 7, 532, 558
systems, 13

Sort procedure, 135–139. See also 
Procedures

code for body, 135–137
full procedure, 138–139
passing parameters in, 138
preserving registers in, 138
procedure call, 137
register allocation for, 135

Sorting performance, C-54–55
Source fi les, A-4
Source language, A-6
Space allocation

on heap, 104–106
on stack, 103

SPARC
annulling branch, E-23
CASA, E-31
conditional branches, E-10–12
fast traps, E-30
fl oating-point operations, E-31
instructions, E-29–32
least signifi cant bits, E-31
multiple precision fl oating-point 

results, E-32
nonfaulting loads, E-32
overlapping integer operations, E-31
quadruple precision fl oating-point 

arithmetic, E-32
register windows, E-29–30
support for LISP and Smalltalk, E-30

Sparse matrices, C-55–58
Sparse Matrix-Vector multiply (SpMV), 

C-55, C-57, C-58
CUDA version, C-57
serial code, C-57
shared memory version, C-59

Spatial locality, 374
large block exploitation of, 391
tendency, 378

SPEC, OL1.12-11–1.12-12
CPU benchmark, 46–48
power benchmark, 48–49
SPEC2000, OL1.12-12
SPEC2006, 233, OL1.12-12
SPEC89, OL1.12-11
SPEC92, OL1.12-12
SPEC95, OL1.12-12
SPECrate, 538–539
SPECratio, 47

Special function units (SFUs), C-35, C-50
defi ned, C-43

Speculation, 333–334
hardware-based, 341
implementation, 334
performance and, 334
problems, 334
recovery mechanism, 334

Speed-up challenge, 503–505
balancing load, 505–506
bigger problem, 504–505

Spilling registers, 71, 98
SPIM, A-40–45

byte order, A-43
features, A-42–43
getting started with, A-42
MIPS assembler directives support, 

A-47–49
speed, A-41
system calls, A-43–45
versions, A-42
virtual machine simulation, A-41–42

Split algorithm, 552
Split caches, 397
Square root instructions, A-79
sra (Shift  Right Arith.), A-56
srl (Shift  Right Logical), 64
Stack architectures, OL2.21-4
Stack pointers

adjustment, 100
defi ned, 98
values, 100

Stack segment, A-22
Stacks

allocating space on, 103
for arguments, 140
defi ned, 98
pop, 98

push, 98, 100
recursive procedures, A-29–30

Stalls, 280
as solution to control hazard, 282
avoiding with code reordering, 280
behavioral Verilog with detection, 

OL4.13-6–4.13-8
data hazards and, 313–316
illustrations, OL4.13-23, OL4.13-30
insertion into pipeline, 315
load-use, 318
memory, 400
write-back scheme, 399
write buff er, 399

Standby spares, OL5.11-8
State

in 2-bit prediction scheme, 322
assignment, B-70, D-27
bits, D-8
exception, saving/restoring, 450
logic components, 249
specifi cation of, 432

State elements
clock and, 250
combinational logic and, 250
defi ned, 248, B-48
inputs, 249
in storing/accessing instructions, 

252
register fi le, B-50

Static branch prediction, 335
Static data

as dynamic data, A-21
defi ned, A-20
segment, 104

Static multiple-issue processors, 333, 
334–339. See also Multiple issue

control hazards and, 335–336
instruction sets, 335
with MIPS ISA, 335–338

Static random access memories (SRAMs), 
378, 379, B-58–62

array organization, B-62
basic structure, B-61
defi ned, 21, B-58
fi xed access time, B-58
large, B-59
read/write initiation, B-59
synchronous (SSRAMs), B-60
three-state buff ers, B-59, B-60

Static variables, 102
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Status register
fi elds, A-34, A-35

Steady-state prediction, 321
Sticky bits, 220
Store buff ers, 343
Store instructions. See also Load 

instructions
access, C-41
base register, 262
block, 149
compiling with, 71
conditional, 122
defi ned, 71
details, A-68–70
EX stage, 294
fl oating-point, A-79
ID stage, 291
IF stage, 291
instruction dependency, 312
list of, A-68–70
MEM stage, 295
unit for implementing, 255
WB stage, 295

Store word, 71
Stored program concept, 63

as computer principle, 86
illustrated, 86
principles, 161

Strcpy procedure, 108–109. See also 
Procedures

as leaf procedure, 109
pointers, 109

Stream benchmark, 548
Streaming multiprocessor (SM), C-48–49
Streaming processors, C-34, C-49–50

array (SPA), C-41, C-46
Streaming SIMD Extension 2 (SSE2) 

fl oating-point architecture, 224
Streaming SIMD Extensions (SSE) and 

advanced vector extensions in x86, 
224–225

Stretch computer, OL4.16-2
Strings

defi ned, 107
in Java, 109–111
representation, 107

Strip mining, 510
Striping, OL5.11-4
Strong scaling, 505, 517
Structural hazards, 277, 294
sub (Subtract), 64

sub.d (FP Subtract Double), A-79
sub.s (FP Subtract Single), A-80
Subnormals, 222
Subtraction, 178–182. See also Arithmetic

binary, 178–179
fl oating-point, 211, A-79–80
instructions, A-56–57
negative number, 179
overfl ow, 179

subu (Subtract Unsigned), 119
Subword parallelism, 222–223, 352, E-17

and matrix multiply, 225–228
Sum of products, B-11, B-12
Supercomputers, OL4.16-3

defi ned, 5
SuperH, E-15, E-39–40
Superscalars

defi ned, 339, OL4.16-5
dynamic pipeline scheduling, 339
multithreading options, 516

Surfaces, C-41
sw (Store Word), 64
Swap procedure, 133. See also Procedures

body code, 135
full, 135, 138–139
register allocation, 133

Swap space, 434
swc1 (Store FP Single), A-73
Symbol tables, 125, A-12, A-13
Synchronization, 121–123, 552

barrier, C-18, C-20, C-34
defi ned, 518
lock, 121
overhead, reducing, 44–45
unlock, 121

Synchronizers
defi ned, B-76
failure, B-77
from D fl ip-fl op, B-76

Synchronous DRAM (SRAM), 379–380, 
B-60, B-65

Synchronous SRAM (SSRAM), B-60
Synchronous system, B-48
Syntax tree, OL2.15-3
System calls, A-43–45

code, A-43–44
defi ned, 445
loading, A-43

Systems soft ware, 13
SystemVerilog

cache controller, OL5.12-2

cache data and tag modules, OL5.12-6
FSM, OL5.12-7
simple cache block diagram, OL5.12-4
type declarations, OL5.12-2

T

Tablets, 7
Tags

defi ned, 384
in locating block, 407
page tables and, 434
size of, 409

Tail call, 105–106
Task identifi ers, 446
Task parallelism, C-24
Task-level parallelism, 500
Tebibyte (TiB), 5
Telsa PTX ISA, C-31–34

arithmetic instructions, C-33
barrier synchronization, C-34
GPU thread instructions, C-32
memory access instructions, C-33–34

Temporal locality, 374
tendency, 378

Temporary registers, 67, 99
Terabyte (TB) , 6

defi ned, 5
Text segment, A-13
Texture memory, C-40
Texture/processor cluster (TPC), 

C-47–48
TFLOPS multiprocessor, OL6.15-6
Th rashing, 453
Th read blocks, 528

creation, C-23
defi ned, C-19
managing, C-30
memory sharing, C-20
synchronization, C-20

Th read parallelism, C-22
Th reads

creation, C-23
CUDA, C-36
ISA, C-31–34
managing, C-30
memory latencies and, C-74–75
multiple, per body, C-68–69
warps, C-27

Th ree Cs model, 459–461
Th ree-state buff ers, B-59, B-60



Index I-23

Th roughput
defi ned, 30–31
multiple issue and, 342
pipelining and, 286, 342

Th umb, E-15, E-38
Timing

asynchronous inputs, B-76–77
level-sensitive, B-75–76
methodologies, B-72–77
two-phase, B-75

TLB misses, 439. See also Translation-
lookaside buff er (TLB)

entry point, 449
handler, 449
handling, 446–453
occurrence, 446
problem, 453

Tomasulo’s algorithm, OL4.16-3
Touchscreen, 19
Tournament branch predicators, 324
Tracks, 381–382
Transfer time, 383
Transistors, 25
Translation-lookaside buff er (TLB), 

438–439, E-26–27, OL5.17-6. See 
also TLB misses

associativities, 439
illustrated, 438
integration, 440–441
Intrinsity FastMATH, 440
typical values, 439

Transmit driver and NIC hardware time
versus.receive driver and NIC hardware 

time, OL6.9-8
Transmitter Control register, A-39–40
Transmitter Data register, A-40
Trap instructions, A-64–66
Tree-based parallel scan, C-62
Truth tables, B-5

ALU control lines, D-5
for control bits, 260–261
datapath control outputs, D-17
datapath control signals, D-14
defi ned, 260
example, B-5
next-state output bits, D-15
PLA implementation, B-13

Two’s complement representation, 75–76
advantage, 75–76
negation shortcut, 76
rule, 79

sign extension shortcut, 78
Two-level logic, B-11–14
Two-phase clocking, B-75
TX-2 computer, OL6.15-4

U

Unconditional branches, 91
Underfl ow, 198
Unicode

alphabets, 109
defi ned, 110
example alphabets, 110

Unifi ed GPU architecture, C-10–12
illustrated, C-11
processor array, C-11–12

Uniform memory access (UMA), 518, 
C-9

multiprocessors, 519
Units

commit, 339–340, 343
control, 247–248, 259–261, D-4–8, 

D-10, D-12–13
defi ned, 219
fl oating point, 219
hazard detection, 313, 314–315
for load/store implementation, 255
special function (SFUs), C-35, C-43, 

C-50
UNIVAC I, OL1.12-5
UNIX, OL2.21-8, OL5.17-9–5.17-12

AT&T, OL5.17-10
Berkeley version (BSD), OL5.17-10
genius, OL5.17-12
history, OL5.17-9–5.17-12

Unlock synchronization, 121
Unresolved references

defi ned, A-4
linkers and, A-18

Unsigned numbers, 73–78
Use latency

defi ned, 336–337
one-instruction, 336–337

V

Vacuum tubes, 25
Valid bit, 386
Variables

C language, 102
programming language, 67

register, 67
static, 102
storage class, 102
type, 102

VAX architecture, OL2.21-4, OL5.17-7
Vector lanes, 512
Vector processors, 508–510. See also 

Processors
conventional code comparison, 

509–510
instructions, 510
multimedia extensions and, 511–512
scalar versus, 510–511

Vectored interrupts, 327
Verilog

behavioral defi nition of MIPS ALU, 
B-25

behavioral defi nition with bypassing, 
OL4.13-4–4.13-6

behavioral defi nition with stalls for 
loads, OL4.13-6–4.13-8

behavioral specifi cation, B-21, OL4.13-
2–4.13-4

behavioral specifi cation of multicycle 
MIPS design, OL4.13-12–4.13-13

behavioral specifi cation with 
simulation, OL4.13-2

behavioral specifi cation with stall 
detection, OL4.13-6–4.13-8

behavioral specifi cation with synthesis, 
OL4.13-11–4.13-16

blocking assignment, B-24
branch hazard logic implementation, 

OL4.13-8–4.13-10
combinational logic, B-23–26
datatypes, B-21–22
defi ned, B-20
forwarding implementation, 

OL4.13-4
MIPS ALU defi nition in, B-35–38
modules, B-23
multicycle MIPS datapath, OL4.13-14
nonblocking assignment, B-24
operators, B-22
program structure, B-23
reg, B-21–22
sensitivity list, B-24
sequential logic specifi cation, B-56–58
structural specifi cation, B-21
wire, B-21–22

Vertical microcode, D-32
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Very large-scale integrated (VLSI) 
circuits, 25

Very Long Instruction Word (VLIW)
defi ned, 334–335
fi rst generation computers, OL4.16-5
processors, 335

VHDL, B-20–21
Video graphics array (VGA) controllers, 

C-3–4
Virtual addresses

causing page faults, 449
defi ned, 428
mapping from, 428–429
size, 430

Virtual machine monitors (VMMs)
defi ned, 424
implementing, 481, 481–482
laissez-faire attitude, 481
page tables, 452
in performance improvement, 427
requirements, 426

Virtual machines (VMs), 424–427
benefi ts, 424
defi ned, A-41
illusion, 452
instruction set architecture support, 

426–427
performance improvement, 427
for protection improvement, 424
simulation of, A-41–42

Virtual memory, 427–454. See also Pages
address translation, 429, 438–439
integration, 440–441
mechanism, 452–453
motivations, 427–428
page faults, 428, 434
protection implementation, 

444–446
segmentation, 431
summary, 452–453
virtualization of, 452
writes, 437

Virtualizable hardware, 426
Virtually addressed caches, 443
Visual computing, C-3
Volatile memory, 22

W

Wafers, 26
defects, 26
dies, 26–27
yield, 27

Warehouse Scale Computers (WSCs), 7, 
531–533, 558

Warps, 528, C-27
Weak scaling, 505
Wear levelling, 381
While loops, 92–93
Whirlwind, OL5.17-2
Wide area networks (WANs), 24. See also 

Networks
Words

accessing, 68
defi ned, 66
double, 152
load, 68, 71
quad, 154
store, 71

Working set, 453
World Wide Web, 4
Worst-case delay, 272
Write buff ers

defi ned, 394
stalls, 399
write-back cache, 395

Write invalidate protocols, 468, 469
Write serialization, 467
Write-back caches. See also Caches

advantages, 458
cache coherency protocol, OL5.12-5
complexity, 395
defi ned, 394, 458
stalls, 399
write buff ers, 395

Write-back stage
control line, 302
load instruction, 292
store instruction, 294

Writes
complications, 394
expense, 453
handling, 393–395

memory hierarchy handling of, 
457–458

schemes, 394
virtual memory, 437
write-back cache, 394, 395
write-through cache, 394, 395

Write-stall cycles, 400
Write-through caches. See also Caches

advantages, 458
defi ned, 393, 457
tag mismatch, 394

X

x86, 149–158
Advanced Vector Extensions in, 225
brief history, OL2.21-6
conclusion, 156–158
data addressing modes, 152, 153–154
evolution, 149–152
fi rst address specifi er encoding, 158
historical timeline, 149–152
instruction encoding, 155–156
instruction formats, 157
instruction set growth, 161
instruction types, 153
integer operations, 152–155
registers, 152, 153–154
SIMD in, 507–508, 508
Streaming SIMD Extensions in, 

224–225
typical instructions/functions, 155
typical operations, 157

Xerox Alto computer, OL1.12-8
XMM, 224

Y

Yahoo! Cloud Serving Benchmark 
(YCSB), 540

Yield, 27
YMM, 225

Z

Zettabyte, 6
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